tsks01&digital&communication recall:&pulsemamplitude ......

4
TSKS01 Digital Communication Lecture 6 Dispersive channels, ML sequence detection Emil Björnson Department of Electrical Engineering (ISY) Division of Communication Systems Recall: Nyquist Criterion Recall: PulseMAmplitude Modulation (PAM): ! " =$% & '(" − &*) - Receiver filtering . " , Γ(1): .∗! " =$% & (. ∗ ')(" − &*) - Nyquist criterion: $ Γ 1− 3 * 4 1− 3 * 5 6785 = Constant 2016M10M07 TSKS01 Digital Communication M Lecture 6 2 Called: '(") and .(") are Nyquist together Bandwidth more than 1/(2*): Many Nyquist pulses 2016M10M07 TSKS01 Digital Communication M Lecture 6 3 ' " and . " are FGHIJKL LMNOLPOQ if $ Γ 1− 3 * 4 1− 3 * 5 6785 is constant $ Γ 1− 3 * 4 1− 3 * 5 6785 Γ 14 1 2016M10M07 TSKS01 Digital Communication M Lecture 6 4 OneMway Digital Communication System Analog channel Source Destination Channel encoder Modulator Channel decoder De8 modulator Channel coding Error control Error correction Digital to analog Analog to digital Medium Digital modulation Channel properties Impulse response ℎ(") Additive noise V(")

Upload: others

Post on 09-Oct-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TSKS01&Digital&Communication Recall:&PulseMAmplitude ... filefMtap&Channel&with&Gaussian&Noise! Sampled&output ab =$%b−dc[d] i8j k7l +Vm[b] where&Vm[b]is! Gaussian&with&zero&mean&and&variance&nl/2!

TSKS01&Digital&CommunicationLecture&6

Dispersive&channels,&ML&sequence&detection

Emil&Björnson

Department&of&Electrical&Engineering&(ISY)Division&of&Communication&Systems

Recall:&Nyquist&Criterion

Recall:&PulseMAmplitude&Modulation&(PAM):

! " =$% & '(" − &*)�

-

Receiver&filtering&. " , Γ(1):

. ∗ ! " =$% & (. ∗ ')(" − &*)�

-

Nyquist&criterion:

$ Γ 1 −3*

4 1 −3*

5

6785

= Constant

2016M10M07 TSKS01&Digital&Communication&M Lecture&6 2

Called:&'(") and&.(") are&Nyquist(together

Bandwidth more than 1/(2*):Many Nyquist&pulses

2016M10M07 TSKS01&Digital&Communication&M Lecture&6 3

' " BandB. " BareBFGHIJKLBLMNOLPOQBif $ Γ 1 −3* 4 1 −

3*

5

6785

isBconstant

$ Γ 1 −3*

4 1 −3*

5

6785

Γ 1 4 1

2016M10M07 TSKS01&Digital&Communication&M Lecture&6 4

OneMway&Digital&Communication&System

Analog(channel

Source

Destination

Channel(encoder Modulator

Channel(decoder

De8modulator

Channel&coding

Error&control

Error&correction

Digital to&analog

Analog&to&digital

Medium

Digital&modulation

Channel(propertiesImpulse response

ℎ(")Additive&noise&V(")

Page 2: TSKS01&Digital&Communication Recall:&PulseMAmplitude ... filefMtap&Channel&with&Gaussian&Noise! Sampled&output ab =$%b−dc[d] i8j k7l +Vm[b] where&Vm[b]is! Gaussian&with&zero&mean&and&variance&nl/2!

Channel&Filtering

! Transmitted&PAM&signal

W " =$% & '(" − &*)�

-

! Filtered&by&channel,&impulse&response&ℎ("):

! Noise&is&added

X " = W ∗ ℎ " +V(")

2016M10M07 TSKS01&Digital&Communication&M Lecture&6 5

ℎ(")W(") W ∗ ℎ (")

How will this affect the&Nyquist&criterion?

Example

Nyquist&Criterion&with&Channel&Filtering&(1/2)

Signal&after&Receiver&filtering&. " , Γ(1):

. ∗ ! " =$% & (. ∗ ' ∗ ℎ)(" − &*)�

-

+ . ∗ V (")

Effective&pulse:. ∗ ' ∗ ℎ (")

Nyquist&criterion:

$ Γ 1 −3*

Z 1 −3*

4 1 −3*

5

6785

= Constant

2016M10M07 TSKS01&Digital&Communication&M Lecture&6 6

Can(this be(achieved in(practice?

Nyquist&Criterion&with&Channel&Filtering&(2/2)

! If&Z 1 ≠ 0 everywhere&with&P 1 ≠ 0 and&P 1 is&Nyquist! Pick&Γ 1 = 1/Z(1) Impractical&to&depend&on&Z(1)!

! If&Z 1 ≈ constant where&P 1 ≠ 0

! Pick&Γ 1 and&4(1) as&Nyquist&together

2016M10M07 TSKS01&Digital&Communication&M Lecture&6 7

FGHIJKLB^QJLOQJM_ $ Γ 1 −3*

Z 1 −3*

4 1 −3*

5

6785

BisBconstant

Example:Small(bandwidth:

Approximately constantOne reason to&use OFDM

|Z 1 |

What&if&Nyquist&Criterion&is&not&satisfied?

! Sampled&output

a b =$% & (. ∗ ' ∗ ℎ)(b* − &*)�

-

+ . ∗ V (b*)

! Define&c d = (. ∗ ' ∗ ℎ)(d*)

! InterMsymbol&interference&if&c d ≠ 0 for&some&d ≠ 0

! Causal&and&timeMlimited&pulses&and&impulse&response! c d ≠ 0 for&d = 0, … , f − 1

a b = $% b − d c[d]i8j

k7l

+Vm[b]

2016M10M07 TSKS01&Digital&Communication&M Lecture&6 8

Vm[b]

Page 3: TSKS01&Digital&Communication Recall:&PulseMAmplitude ... filefMtap&Channel&with&Gaussian&Noise! Sampled&output ab =$%b−dc[d] i8j k7l +Vm[b] where&Vm[b]is! Gaussian&with&zero&mean&and&variance&nl/2!

fMtap&Channel&with&Gaussian&Noise

! Sampled&output

a b = $% b − d c[d]i8j

k7l

+Vm[b]

where&Vm[b] is! Gaussian&with&zero&mean&and&variance&nl/2

! Independent&for&different&values&of&b

2016M10M07 TSKS01&Digital&Communication&M Lecture&6 9

This is&called a&dispersive channel

How to(perform detection? This is&the&topic of this and&next lecture

2016M10M07 TSKS01&Digital&Communication&M Lecture&6 10

Detecting&Sequence&of&o symbols

ChannelSender ReceiverSource Destination

Noise

Message&set: pq q7lrs8j Size:&tu

Mapping: pq → %q 0 , %q 1 , … %q[o − 1]

for&w ∈ 0,1, … ,tu − 1

A&message consists of oBsymbols&from&an&tMsize constellation (n = 1)

% 0 , % 1 , … %[o − 1]

a 0 , a 1 , …a[o − 1]

Assume: % −f + 1 ,… , %[−1] are known

ML&Sequence&Detection&(1/3)

! Recall:

! In&this&case:

! Note

a b = $% b − d c[d]i8j

k7l

+Vm[b]

is&Gaussian&with&variance&nl/2 and mean&∑ % b − d c[d]i8jk7l

2016M10M07 TSKS01&Digital&Communication&M Lecture&6 11

ML(decision(rule: Set&pz = pq if 1{̅|}(~̅|p-) is&maximized for&& = w.

ML&Sequence&Detection&(2/3)

! Define:

� %- b , … , %-[b − f + 1] = $%- b − d c[d]i8j

k7l! We&obtain:

! Maximized&by&minimizing

2016M10M07 TSKS01&Digital&Communication&M Lecture&6 12

Page 4: TSKS01&Digital&Communication Recall:&PulseMAmplitude ... filefMtap&Channel&with&Gaussian&Noise! Sampled&output ab =$%b−dc[d] i8j k7l +Vm[b] where&Vm[b]is! Gaussian&with&zero&mean&and&variance&nl/2!

ML&Sequence&Detection&(3/3)

! Define

! We&have

! Euclidean&distance&between&~̅ and&received&signal&without&noise

2016M10M07 TSKS01&Digital&Communication&M Lecture&6 13

ML(decision(rule:&Set&pz = pq&if&Ä ~̅, �Å- &is&minimized&for&& = w.

2016M10M07 TSKS01&Digital&Communication&M Lecture&6 14

1 3

3

1

–1

Geometric&Illustration

?

Received&vector: z

z

Goal:&Minimize&the&error&probability

Pr É ≠ ÉÑ|a̅ = ~̅

Estimated&message

Sent&message

Received&vector

Observed&realization

Same(setup(as(beforeAre&we&done&now?

�Åj

�ÅÖ

�Ål

Complexity&Considerations

! ML&sequence&detection! Compute&Ä ~̅, �Å- for&& = 0,… ,tu − 1

! Select&the&smallest&distance

! Ways&to&reduce&complexity1. Send&one&symbol&and&be&silent&for&f − 1 symbols2. Design&some&approximate&detection&algorithm3. Find&a&way&to&implement&ML&detection&more&efficiently

2016M10M07 TSKS01&Digital&Communication&M Lecture&6 15

Number(of(messages(grows(very(fast!

This(is(what(we(will(do!www.liu.se