ts14j-large woody material - agricultural research service · pdf filepart 654 national...

18
Technical Supplement 14J (210–VI–NEH, August 2007) Use of Large Woody Material for Habitat and Bank Protection

Upload: phamkhuong

Post on 31-Jan-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TS14J-Large Woody Material - Agricultural Research Service · PDF filePart 654 National Engineering Handbook Use of Large Woody Material for Habitat and Bank Protection Technical Supplement

Technical Supplement 14J

(210–VI–NEH,August2007)

Use of Large Woody Material for Habitat and Bank Protection

Page 2: TS14J-Large Woody Material - Agricultural Research Service · PDF filePart 654 National Engineering Handbook Use of Large Woody Material for Habitat and Bank Protection Technical Supplement

Part 654 National Engineering Handbook

Use of Large Woody Material for Habitat and Bank Protection

Technical Supplement 14J

(210–VI–NEH,August2007)

Advisory Note

Techniquesandapproachescontainedinthishandbookarenotall-inclusive,noruniversallyapplicable.Designingstreamrestorationsrequiresappropriatetrainingandexperience,especiallytoidentifyconditionswherevariousapproaches,tools,andtechniquesaremostapplicable,aswellastheirlimitationsfordesign.Notealsothatprod-uctnamesareincludedonlytoshowtypeandavailabilityanddonotconstituteendorsementfortheirspecificuse.

Cover photos:Top—Logsandrootwadsmaybedesignedtoprotecterod-ingstreambanks.

Bottom—LargewoodymaterialisanimportantecologicalcomponentofmanystreamsintheUnitedStates.

IssuedAugust2007

Page 3: TS14J-Large Woody Material - Agricultural Research Service · PDF filePart 654 National Engineering Handbook Use of Large Woody Material for Habitat and Bank Protection Technical Supplement

(210–VI–NEH,August2007) TS14J–i

Contents Introduction TS14J–1

Area of applicability TS14J–1

Environmental and habitat considerations TS14J–1

Design TS14J–4

TypesofLWMstructures................................................................................TS14J–4

Selectingatypeofstructure..........................................................................TS14J–4

DimensionsforintermittentLWMstructures..............................................TS14J–6

Forceandmomentanalysis...........................................................................TS14J–6

Ballastandanchoring.....................................................................................TS14J–9

Materials.........................................................................................................TS14J–10

Cost.................................................................................................................TS14J–12

Maintenance..................................................................................................TS14J–12

Tables Table TS14J–1 Limitationsonapplicabilityoflargewood TS14J–2 woodstructures

Table TS14J–2 PublishedvaluesfordesignvariablesforLWM TS14J–3 structures

Table TS14J–3 Classificationoflargewoodinstreamstruc- TS14J–5 tures

Table TS14J–4 Comparisonofdesirabilityofvarioustree TS14J–11 speciesforstreamstructures

Table TS14J–5 Reportedcostsforstreamstabilizationand TS14J–13 habitatenhancementstructures

Figures Figure TS14J–1 Largehistoricallogjamsoflargewoodymater- TS14J–3 ial,GreatRaft,RedRiver,LA

Figure TS14J–2 WhiteRiver,IN,withlargewoodydebris TS14J–4

Figure TS14J–3 Definitionsketchforgeotechnicalforceson TS14J–8 buriedlog

TechnicalSupplement 14J

The Use of Large Woody Material for Habitat and Bank Protection

Page 4: TS14J-Large Woody Material - Agricultural Research Service · PDF filePart 654 National Engineering Handbook Use of Large Woody Material for Habitat and Bank Protection Technical Supplement
Page 5: TS14J-Large Woody Material - Agricultural Research Service · PDF filePart 654 National Engineering Handbook Use of Large Woody Material for Habitat and Bank Protection Technical Supplement

(210–VI–NEH,August2007) TS14J–1

Introduction

Largewoodymaterials(LWM)havebeenusedforrivertrainingandstabilizationforcenturies.ManyoftheearliestrivertrainingstructuresbuiltonlargeriversintheUnitedStatesincludedwillowmattresses,brushmattresses,orwoodenpilingsdrivenintothebed.MorerecenteffortsincludetreerevetmentsandotherstructuresfeaturinglargewoodthatwereplacedintheWinooskiRiver,Vermont,inthe1930s,aspartofasuccessfulcomprehensivewatershedstabilizationproject(Edminster,Atkinson,andMcIntyre1949;U.S.DepartmentofAgriculture(USDA)NaturalResourcesConservationService(NRCS)1999a).Awide-rang-ingfederallyfundedstreambankprotectionresearchanddemonstrationprograminthe1970sincludedseveralfieldtrialsofLWM-basedprotectionschemes(U.S.ArmyCorpsofEngineers(USACE)1981).Mostoftheseinstallationsproducedfavorableshort-termresultsforerosioncontrolandintermsofcosts,althoughsomeprojectsweredamagedbyice(Hender-son1986).

Inthe1970s,GeorgePalmiterdevelopedasuiteoftechniquesinvolvingrepositioningLWMforcontrol-lingerosionandhigh-frequencyfloodingalonglow-gradient,medium-sizedriverscloggedwithdebrisandsediment.Hisapproachfeatureduseofhandtoolsandsmallpowerequipment(InstituteofEnvironmentalSciences,MiamiUniversity,1982;NationalResearchCouncil1992).A1986evaluationof137loghabitatstructuresintheNorthwestrevealedhighratesofdamageandfailure(FrissellandNawa1992).

Duringthe1990s,increasingappreciationoftheim-portanceoflargewoodinnaturalriverineecosystemstriggeredeffortstodesignstructuresthatemulatedtheformandfunctionofnaturallyoccurring,stableaccu-mulationsofwood,particularlyinriversofthePacificNorthwest(Abbe,Montgomery,andPetroff1997;Hil-derbrandetal.1998).However,rootwadcomposites,whicharecurrentlyamongthemostpopulartypesoflargewoodstructures,donotresembleanycommonlyobservedlargewoodformations.

Area of applicability

LWMstructuresareintendedtoprovidehabitatandstabilizationuntilwoodyriparianvegetationandstablebankslopescanbeestablished.LWMdecayswithinafewyearsunlessitiscontinuouslysubmerged.There-fore,structuresmadeentirelyorpartiallyofwoodymaterialsarenotsuitedforlong-termstabilizationunlesswoodispreservedbycontinuouswettingorwithchemicals.Woodystructuresarebestappliedtochannelsthatareatleastmoderatelystable,havegravelorwithfinerbedmaterial,andneedwoodforhabitat.MoredetailedcriteriaaresummarizedintableTS14J–1(adaptedfromFischenichandMorrow2000).

Woodymaterialstructures,likemostbankprotection,arenotsuitedforreacheswithactivebeddegradation.Streamsnottransportingsedimentsorsteep,high-ener-gysystemstransportinglargecobblesandbouldersareusuallynotgoodcandidatesforwoodymaterialstruc-tures.Althoughtherearemanyexamplesofwoodymaterialprojects,thebasisfordesignissomewhatlimitedbyalackofquantitativedatafordesign,perfor-mance,andenvironmentaleffects.Furthermore,manyofthemostimportantdesignvariablesareregionalorsitespecific.Anoverviewofpublishedvaluescom-putedorassumedforkeydesignvariablesisprovidedintableTS14J–2.Thistableisintendedtoprovideanimpressionofthelimitationsofcurrentdesigncriteria,andsuggesteddesignvaluesarepresented.Long-termperformanceinformationislimited(Thompson2002;USDANRCS1999a).Accordingly,woodstructuresarenotwellsuitedforhigh-hazard,high-riskprojects.

Environmental and habitat considerations

Althoughearlyinterestintheuseofwoodstructuresforstreamstabilizationwasdrivenbytheneedforlow-costapproaches,currentunderstandingincludesconsider-ationoftheimportantrolethatwoodymaterialsplayincreatingandprovidingthediverseconditionstypicalofaquatichabitats(Gurnelletal.2002).Knowledgeregard-inggeomorphicandecologicalfunctionsofwoodinriv-ersisrapidlyincreasing.ConsiderableevidencesuggeststhatstreamsacrossNorthAmericaweredominatedbyinputsandlargeaccumulationsofwoodymaterialspriortoEuropeansettlement(fig.TS14J–1).

TechnicalSupplement 14J

The Use of Large Woody Material for Habitat and Bank Protection

Page 6: TS14J-Large Woody Material - Agricultural Research Service · PDF filePart 654 National Engineering Handbook Use of Large Woody Material for Habitat and Bank Protection Technical Supplement

Part 654 National Engineering Handbook

Use of Large Woody Material for Habitat and Bank Protection

Technical Supplement 14J

TS14J–2 (210–VI–NEH,August2007)

Table TS14J–1 Limitationsonapplicabilityoflargewoodstructures

Variable Considerations

Habitatrequirements Providesphysicaldiversity,cover,velocityshelter,substratesorting,pooldevelopment,under-cutbanks,andsitesforterrestrialplantcolonizationusingnaturalmaterials

ExistingLWMdensity Absentordepressedrelativetosimilarnearbyreachesthatarelightlydegraded

Sedimentload Generallynotsuitableforhigh-energystreamsactivelytransportingmateriallargerthangravel.LWMstructuresmayberapidlyburiedinhighsedimentloadreaches,diminishingtheiraquatichabitatvalue,butacceleratingrecoveryofterrestrialriparianhabitats

Bedmaterial Anchoringwillbedifficultinhardbedssuchascobble,boulder,orbedrock

Bedstability Notsuitableforavulsing,degrading,orincisingchannels.Thebestsituationsincludeareasofgeneralorlocalsedimentdepositionalongreachesthatarestableorgraduallyaggrading.De-positioninducedbyLWMstructuresmaybestabilizedbyplantedorvolunteerwoodyvegeta-tion,fullyrehabilitatinganaturallystablebankbythetimetheplacedwoodymaterialsdecay(Shields,Morin,andCooper2004).Unlikesomeoftheotherstructures,rootwadsoftencreatescourzones,notdeposition

Bankmaterial LWMstructuresplacedinbankswith>85%sandaresubjecttoflanking

Bankerosionprocesses Notrecommendedwherethemechanismoffailureismassfailure,subsurfaceentrainment,orchannelavulsion.Bestwhentoeerosionistheprimaryprocess

Flowvelocity Well-anchoredstructureshavebeensuccessfullyappliedtosituationswithestimatedveloci-ties—2.5m/s(D’AoustandMillar2000).Rootwadinstallationshavewithstoodvelocitiesof2.7to3.7m/s(AllenandLeech1997).Engineeredlogjam(ELJ)-typestructureswithstood1.2m/sinasand-bedstream(Shields,Morin,andCooper2004)

Siteaccess Heavyequipmentaccessusuallyisneededtobringinandplacelargetreeswithrootwads

Conveyance LWMstructurescanincreaseflowresistanceiftheyoccupysignificantpartsofthechannelprism(ShieldsandGippel1995;Fischenich1996)

Navigationandrecreation LWMshouldnotbelocatedwheretheywillposeahazardorpotentialhazardtocommercialorrecreationalnavigation.Potentialhazardsaregreatestforstructuresthatspanthechannel

Rawmaterials Suitablesourcesoftreesneedednearby

Risk Notsuitedforsituationswherefailurewouldendangerhumanlifeorcriticalinfrastructure

Page 7: TS14J-Large Woody Material - Agricultural Research Service · PDF filePart 654 National Engineering Handbook Use of Large Woody Material for Habitat and Bank Protection Technical Supplement

TS14J–3(210–VI–NEH,August2007)

Part 654 National Engineering Handbook

Use of Large Woody Material for Habitat and Bank Protection

Technical Supplement 14J

Table TS14J–2 PublishedvaluesfordesignvariablesforLWMstructures

Quantity Used for Typical values Source

Densityofwooding/cm3(lowest,orworst-casecondition1/)

Buoyantforcecomputation

0.4to0.50.50.4to0.5

Shields,Morin,andCooper(2004)D’AoustandMillar(2000)D’AoustandMillar(1999)

Dragcoefficient Dragforcecomputation

0.7to0.9Upto1.50.4to1.21.01.2to0.3(tree)1.2(rootwad)

ShieldsandGippel(1995)Alonso(2004)Gippeletal.(1996)FischenichandMorrow(2000)D’AoustandMillar(2000)D’AoustandMillar(1999)D’AoustandMillar(1999)

Designlifeforwood,yr Planning 5to15 FischenichandMorrow(2000)

Soilstrength Analysisofloads/anchoringprovidedbyburiedmembers

Soilforcesonburiedmembersneglectedinordertobeconserva-tive.Rangeofvaluesbasedonsoiltypes

Shields,Morin,andCooper(2004)

1/ Worstcaseconditionspresumewell-driedwood.Drywoodrapidlyabsorbswaterandmayincreaseitsdensityby100%afteronly24-hrsubmergence(Thevenet,Citterio,andPiegay1998).However,criticalconditions,especiallyalongsmallerstreams,arelikelytooccurbeforewoodhashadtimetofullyabsorbwater.

Figure TS14J–1 LargehistoricallogjamsofLWM,GreatRaft,RedRiver,LA

Page 8: TS14J-Large Woody Material - Agricultural Research Service · PDF filePart 654 National Engineering Handbook Use of Large Woody Material for Habitat and Bank Protection Technical Supplement

Part 654 National Engineering Handbook

Use of Large Woody Material for Habitat and Bank Protection

Technical Supplement 14J

TS14J–4 (210–VI–NEH,August2007)

Nativecommunitiesofplantsandanimalsdependonhabitatsprovidedbywood.Largewoodhasbeenob-servedtosupportstep-poolmorphology,generatelo-calscouranddeposition,andeventocreatedamsandtriggeravulsionsonstreamsofallsizes.Naturalwoodaccumulationsreduceflow-throughvelocityatbase-flow(ShieldsandSmith1992),facilitatingretentionoforganicmaterialsforprocessingbylowerlevelsofthefoodweb.Woodymaterialisanimportantsubstrateforbenthicmacroinvertebrates(WallaceandBenke1984)andprovidesdiversepoolhabitat,cover,andvelocityrefugiaforfishandotheranimals.Visualcoverfrompredatorsisimportantforfishinmanystreamecosystems.Terrestrialandamphibiousanimalsuseinstreamwoodforbaskingandperching.Riparianplantsoftenrapidlyestablishondepositionassociatedwithwoodymaterial.Habitatrehabilitationprojectsoftenfeatureadditionofwoodymaterialstostreams,primarilyforhabitatreasonsandonlysecondarilyforerosioncontrolorchannelstabilization(FischenichandMorrow2000).Localeffectsofwoodstructures(whethertheyinducescourordeposition)dependonstructuredesignandsitevariables.

Design

Designofwoodymaterialstructuresshouldfollowageomorphicandecologicalassessmentofthewater-shedandasimilar,moredetailedassessmentofthereachorreachestobetreatedincludingananalysisofexistingconditionsandanticipatedresponsesrelatedtostability,aswellashabitatdiversity.Siteassess-mentsaredescribedinmoredetailinNEH654.03.

Types of LWM structures

Existingdesignsforlargewoodstructuresmaybegroupedintoafewbasicconfigurations,asshownintableTS14J–3.Onlygeneralconceptsarepresented,asnumerousvariationsarefound.Combinationsofwoodymaterialswithstoneandlivingplantmateri-alsarecommon.ThefirstthreetypesshownintableTS14J–3areintermittentstructures,whilethelastthreeprovidecontinuousprotectionalonganerodingbank.Rootwadsmaybeplacedatspacedintervalsorinaninterlockingfashionsotheymaybeconsideredeitherintermittentorcontinuoustypes.Thedesignandconstructionofrootwadsandtreerevetmentsare

alsoaddressedinNEH654TSTS14I.Intermittentstruc-turesprovidegreateraquatichabitatdiversitythancontinuousprotection.Existingdesigncriteriaforengineeredlogjams(ELJ)weredevelopedbasedonexperienceinwide,shallow,coarse-bedstreamsinthePacificNorthwest.Applicationoftheseconceptstostreamswithrelativelydeepchannels,sandbeds,andflashyhydrologyrequiresconsiderablemodification(Shields,Morin,andCooper2004).FigureTS14J–2de-pictsLWM(alsoknownaslargewoodydebris)whereitisanimpedimenttoflowornavigation,asillustratedinfigureTS14J–2.Woodymaterialshavebeenshowntobeanintegralpartofstreamecosystems.However,LWMsuchasthiscanalsobeusedforrestorationpurposes.

Selecting a type of structure

ConfigurationofaLWMstructureshouldbeselectedusingsimilarcriteriathatareemployedforselectinganyapproachforstreamstabilizationorhabitatreha-bilitation:

• Theconfigurationshouldaddressthedomi-nanterosionprocessesoperatingonthesite(ShieldsandAziz1992).

• Keyhabitatdeficiencies(lackofpools,cover,woodysubstrate)shouldbeaddressed.

Figure TS14J–2 WhiteRiver,IN,withlargewoodyde-bris(PhotocourtesyofUSGS)

Page 9: TS14J-Large Woody Material - Agricultural Research Service · PDF filePart 654 National Engineering Handbook Use of Large Woody Material for Habitat and Bank Protection Technical Supplement

TS14J–5(210–VI–NEH,August2007)

Part 654 National Engineering Handbook

Use of Large Woody Material for Habitat and Bank Protection

Technical Supplement 14J

Table TS14J–3 Classificationoflargewoodinstreamstructures

Configuration Sketch Description Strengths References

Engineeredlogjams

Intermittentstructuresbuiltbystackingwholetreesandlogsincrisscrossarrange-ments

Emulatesnaturalforma-tions.Createsdiversephysicalconditions,trapsadditionaldebris

Abbe,Montgom-ery,andPetroff(1997);Shields,Morin,andCooper(2004)

Logvanes Singlelogssecuredtobedprotrudingfrombankandangledupstream.Alsocalledlogbendwayweir

Low-cost,minimallyintrusive

Derrick(1997);D’AoustandMillar(2000)

Logweirs Weirsspanningsmallstreamscomprisedofoneormorelargelogs

Createspoolhabitat Hilderbrandetal.1998;Flosietal.(1998)

Rootwads Logsburiedinbankwithroot-wadsprotrudingintochannel

Protectslowbanks,providesscourpoolswithwoodycover

Treerevetmentsorroughnesslogs

Wholetreesplacedalongbankparalleltocurrent.Treesareoverlapped(shingled)andsecurelyanchored

Deflectshighflowsandshearfromouterbanks;mayinducesedimentdepositionandhalterosion

Crameretal.(2002)

Toelogs Oneortworowsoflogsrun-ningparalleltocurrentandsecuredtobanktoe.Gravelfillmaybeplacedimmediatelybehindlogs

Temporarytoeprotec-tion

Crameretal.(2002)

Page 10: TS14J-Large Woody Material - Agricultural Research Service · PDF filePart 654 National Engineering Handbook Use of Large Woody Material for Habitat and Bank Protection Technical Supplement

Part 654 National Engineering Handbook

Use of Large Woody Material for Habitat and Bank Protection

Technical Supplement 14J

TS14J–6 (210–VI–NEH,August2007)

• Thefinishedprojectshouldfunctioninhar-monywiththeanticipatedfuturegeomorphicresponseofthereach.

• Economic,political,institutional,andconstruc-tionaccessissuesshouldbeconsidered.

• Suitablematerialsmustbeavailableforreason-ablecost.

• Safetyissuesforrecreationaluseofthecom-pletedprojectreachshouldbeaddressed,ifappropriate.

• Structureslikeweirsorspursthatprotrudeintotheflowtendtocreategreaterhabitatdiversitythanthosethatparallelbanks,likerevetments,withattendanteffectsonfish(Shields,Cooper,andTesta1995).

Dimensions for intermittent LWM structures

Thegeometryofintermittent(spur-type)LWMstruc-turesmaybespecifiedbycrestangle,length,eleva-tion,andspacing.Spur-typestructuresareaddressedinmoredetailinNEH654TS14H.

Thecrestangle(anglebetweenalinenormaltotheap-proachflowvectorandtheweircrest)maybesetat15degreesupstreamfromalinedrawnperpendiculartoflowtopromotedeflectionofovertoppingflowawayfromerodingbanks.Basedonresultsofstraightchan-nelflumetests,Johnson,Hey,etal.(2001)suggestedthatstonespur-typestructuresbeangledupstreamsothattheanglebetweenthebankandthecrestisbe-tween25degreesand30degrees.However,theanglescanapproach90degreesonstraighterchannels.Woodmembersembeddedinthebankwiththeirbuttsorrootwadspointingupstreammaygainstabilityasdragforcestendtopushthemintothebank.

Crestlengthforstructuresthatdonotspanthechan-nelmaybebasedonaprojectedvaluefortheequilib-riumwidthofthechannel.Alternatively,crestlengthmaybebasedonatargetflowconveyanceforthede-signcrosssection.Astep-by-stepprocedureforspac-ingthesestructuresisprovidedinNEH654TS14H.

Inincisedchannels,crestelevationsforELJ-typestructuresmustbehighenoughsothatthesedimentbermsthatformoverthestructuresstabilizeexisting

near-verticalbanks.Stablebankheightsandanglesmaybebasedongeotechnicalanalysesorempiricalcriteriabasedonregionaldatasets.CastroandSamp-son(2001)suggestcrestelevationbesetequaltothatofthechannel-formingflowstage.Conversely,Derrick(1997)suggeststhatevenverylowstructurescanex-ertimportantinfluenceonflowpatterns.Allotherfac-torsbeingequal,localscourdepthstendtobegreaterforhigherstructures.

Spacingbetweenintermittentwoodstructuresshouldbegreatenoughtoprovidesegmentsofunprotectedbanklinebetweenstructurestoreducecostandtocreatephysicalhabitatdiversity(Shields,Cooper,andKnight1995),butalsopreventflankingandstructuralfailure.Spacingforintermittentstructuresisnormallyexpressedasamultipleofthelengthofthestructurefrombanktoriverwardtip,measuredperpendiculartotheapproachflow(projectedcrestlengthoreffectivelength).SylteandFischenich(2000)suggestthatspac-ingbethreetofourtimestheprojectedcrestlengthforbendswithR

c/W>3(radiusofcurvature/bankfull

width),decreasingto0forRc/W<2.5.Tortuouschan-

nelscanbeproblematic.Shields,Morin,andCooper(2004)suggestedthatELJ-typestructuresshouldbespacedoneandahalftotwotimesthecrestlengthapart,followingcriteriafortraditionaltrainingstruc-turespresentedbyPetersen(1986).

Theembedmentlengthordimensionforbankkey-inforstructuresthatarepartiallyburiedinthebankvarieswithbankheight,soiltype,andstreamsize.Thekey-inshouldbesufficienttomaintainthepositionoftherestofthestructurethroughoutitsdesignlifeandshouldbegreaterforfrequentlyovertoppedandhighlyerodiblebanks(SylteandFischenich2000).

Force and moment analysis

Someworkershavedevelopedengineeringdesignproceduresforwoodstructuresthatconsideredalloftheimportantforcesactingduringdesignevents,thusallowingdesignofanchoringsystemsthatproducedgivenfactorsofsafety(Abbe,Montgomery,andPetroff1997;D’AoustandMillar2000;Shields,Morin,andCooper2004).Forcesthatmaybeconsideredinsuchananalysisincludebuoyancy,frictionbetweenthewoodystructureandthebed,fluiddragandlift,andgeotechnicalforcesonburiedmembers.Simplifiedapproacheswithinherentassumptionsareavailable,includingoneinNEH654TS14E.

Page 11: TS14J-Large Woody Material - Agricultural Research Service · PDF filePart 654 National Engineering Handbook Use of Large Woody Material for Habitat and Bank Protection Technical Supplement

TS14J–7(210–VI–NEH,August2007)

Part 654 National Engineering Handbook

Use of Large Woody Material for Habitat and Bank Protection

Technical Supplement 14J

Buoyantforce—Thebuoyantforceisequaltotheweightofthedisplacedwatervolume.Thenetbuoy-antforce,

Fb ,isequaltothedifferencebetweentheweightofthestructureandtheweightofdisplacedwater:

F V V gb wood wood water water= − ρ ρ (eq.TS14J–1)

where:ρ =densityV =volume

g =thegravitationalaccelerationvectorintheverticaldirection

Forafullysubmergedstructure,

V V Vwood water= = and

F Vgb wood water= −( )ρ ρ

(eq.TS14J–2)

Woodstructuresmayhavecomplexgeometries,whichmakesdeterminationofvolumedifficult,particularlyforpartiallysubmergedstructures.Computationsmaybesimplifiedbyassumingthatlogsarecylindersorcones,adoptingadvantageouscoordinatesystems,andtreatingrootwadsandbolesasseparateelements(BraudrickandGrant2000;Shields,Morin,andCoo-per2004).Alternatively,avolumecomputedfromtheoutsidedimensionsofthestructuremaybemultipliedbyaporosityfactortoallowforairspaces.Thevenet,Citterio,andPiegay(1998)suggestedthatthisfactoris10percentforwoodjamsand7percentforshrubs.

Ifthewoodstructuremaybeapproximatedbyatri-angularprismofheight,h,andwithauniformspecificweightγ

structure,asimplesolutionforthedepth,d

wn,at

whichthestructurebecomesneutrallybuoyant(buoy-antforces=gravitationalforces)maybecomputedusing:

γ

γstructure

w

wn wnd

h

d

h= −

2 (eq.TS14J–3)

where:γ

w =specificweightofwater

Friction—Themovementoflargewoodstructuresbyslidingalongthebedwillberesistedbyafrictionalforce,

Ff ,withmagnitudeequaltothenormalforce,

Fn ,timesthecoefficientoffrictionbetweenthewoodymaterialandthebed.

F Ff bed n= µ (eq.TS14J–4)

Intheabsenceofmeasureddata,CastroandSampson(2001)assumedthatμ

bed=tanθ,whereθisthefriction

angleforthebedsediments.However,itshouldbenotedthatthenormalforce,

Fn ,approacheszeroasdepthincreasesandthestructureapproachesneutralbuoyancy.Therefore,

Ff maybeeffectivelyzerofordesignconditions.

Drag—ThedragforceonanLWMstructuremaybecomputedusingtheequation

F

C A U U

gcd

D w o o

=× γ

2

(eq.TS14J–5)

where:F d

=dragforceC

D =dragcoefficient

A =areaofstructureprojectedintheplaneperpen-diculartoflow

Uo=approachflowvelocityintheabsenceofthe

structure

c =unitvectorintheapproachflowdirection

Awoodymaterialstructuremaybetreatedasasinglebody,ratherthanasacollectionofindividualcylin-ders(Gippeletal.1996).Forstructureslocatedontheoutsideofbends,thecross-sectionalmeanvelocityshouldbeincreasedbyafactorof1.5toallowforhigh-ervelocitiesontheoutsideofbends(USACE1991b).Dragcoefficientsmaybecomputedusinganempiricalformula(ShieldsandGippel1995),andtypicallyrangefrom~0.7to0.9(tableTS14J–2).Dragcoefficientsforcylindersplacedperpendiculartotheflowreachvaluesashighas1.5forcylindersthatarebarelysub-mergedduetoforcesassociatedwiththeformationofstandingwaves(Alonso2004).DragcoefficientsforgeometricallycomplexobjectslikeLWMstructuresvarylesswithangleoforientationtotheflowthanforsimplecylindersandtendtofallintherangeof0.6to0.7(Gippeletal.1996).Alonso(2004)fitthefollowingregressionformulastolaboratorydataandsuggestedthatitmightbeusedtocomputethedragcoefficient,C

D:

C WG

d

R R

D

e e

= × −−

×

+ × − × +− −

1 0 354

1 062 2 10 3 10 26 12 2

. exp

. ×× −10 18 3Re

(eq.TS14J–6)

Page 12: TS14J-Large Woody Material - Agricultural Research Service · PDF filePart 654 National Engineering Handbook Use of Large Woody Material for Habitat and Bank Protection Technical Supplement

Part 654 National Engineering Handbook

Use of Large Woody Material for Habitat and Bank Protection

Technical Supplement 14J

TS14J–8 (210–VI–NEH,August2007)

where:G =distancefromthebottomofthelogtothebedR

e =cylinderReynoldsnumber, Ud

vwhere:

U =magnitudeoftheapproachflowvelocityd =diameterofthelog

v =kinematicviscosityofthewaterW=factortoaccountfortheincreaseindragdue

tosurfacewaves,andmaybegivenby

Wz

d= −

+0 28 1 4. ln . (eq.TS14J–7)

whenz/d<4,andW=1whenz/d>4,

where:z =distancefromthelogcenterlinetothewater

surface

Dragforcesareexpectedtorapidlydiminishwithtimeduringthefirstfewhigh-floweventsaspatternsofscouranddepositionreshapethelocaltopography(Wallersteinetal.2001).

Lift—Theliftforce, F L

,onanLWMstructuremaybecomputedusingtheequation

FC A U U

geL

L w o o

=× γ

2 (eq.TS14J–8)

where:C

L =liftcoefficient

e =unitvectornormaltotheplanecontainingpri-maryflowdirection,

c ,andthetransverseaxisofthestructure

Theliftcoefficientonasinglecylinderplacedperpen-diculartotheflowisgreatest(~0.45)whenthecylin-derisincontactwiththebedanddeclinestonearzerowhenthegapbetweenthebottomofthecylinderandthebedexceedsonehalftimesthecylinderdiameter(Alonso2004).Aswithdrag,liftforceslikelyrapidlydiminishaspatternsofscouranddepositionreshapethelocaltopography(Wallersteinetal.2001).Exceptforraresituations,liftmaybeneglectedindesignofLWMstructures.

Geotechnicalforces—Theresistiveforcesduetopas-sivesoilpressureactingonburiedportionsoflogsaredirectreactionstofluidforces.Asimplifiedanalysisispresentedhere.Amoredetailedtreatmentthatin-

cludesslopingbanksandanonhorizontalwatertableispresentedbyWoodandJarrett(2004)andprovidesthebasisforanassociatedExcel®worksheet.Thefol-lowingequations(Gray2003)assumethatthe:

• logisembeddedhorizontallyinthestreambank

• topofthebankishorizontal

• bankiscomposedofhomogeneous,isotropicsoilwithspecificweightγ

soil,frictionangleφ

andcohesionc

• groundwatertableelevationinthebankisap-proximatelyequaltothestreamsurfaceeleva-tion,whichishighenoughtofullysubmergethelog(fig.TS14J–3)

• bankslopeisassumedtobenearvertical

• thelogisassumedtobefrictionless

Theloghasalength=L,diameterd,andisburiedadistanceDbelowthetopbankandahorizontaldepthL

em(embedmentlength).Thepassivesoilresistance

distributionisassumedtobetriangularwithitsmaxi-mumvalueatthebankfaceanddecreasinglinearlytozeroattheembeddedtipofthelog.Thisimpliesthattheresultantpassiveresistanceforceactsonthelogadistanceof2/3L

emfromtheembeddedtip.Theactive

earthpressureforceisassumedtobesmall,relativetothepassiveforce.

Lex

Lem

d

D

L c

e

Dw

Figure TS14J–3 Definitionsketchforgeotechnicalforcesonburiedlog

Page 13: TS14J-Large Woody Material - Agricultural Research Service · PDF filePart 654 National Engineering Handbook Use of Large Woody Material for Habitat and Bank Protection Technical Supplement

TS14J–9(210–VI–NEH,August2007)

Part 654 National Engineering Handbook

Use of Large Woody Material for Habitat and Bank Protection

Technical Supplement 14J

Theverticalloadingonthelogduetotheweightofthesoilaboveitwillbegivenby:

F L dsoil em= ′σν (eq.TS14J–9)

where:

′ = −( ) −( ) +σ γ γ γν D D Dw soil water w soil (eq.TS14J–10)

where:γ

soil=moistortotalunitweightofthesoilabovethe

log

Alternatively,Fsoil

maybecomputedusingequationsdevelopedtocomputesoilloadingonconduitsburiedinditches.Whentheditchwidthisnogreaterthanthreetimesthelogdiameter,

F C BL

Dsoil d v d= ′σ 2 (eq.TS14J–11)

where:B

d =widthoftheditch

Cd =acoefficientthatcapturestheinteractionbe-

tweentheditchwallsandthefill

C

e

d

DBd

=

1

0 38

0 38.

.

(eq.TS14J–12)

forD

Bd

< 2 and (eq.TS14J–13)

C

D

Bdd

= (eq.TS14J–14)

forD

Bd

≥ 2 (eq.TS14J–15)

ThetwoapproachesforcomputingFsoil

convergeforditcheswithwidthsjustslightlygreaterthanthelogdiameter.

Assumingfrictionbetweenthesoilandlogisnegli-gible,thepassivesoilpressureforce,

Fp ,isgivenby

F L dp p em= 0 5. σ (eq.TS14J–16)

where:σ

p =passivesoilpressure

isgivenby

σ σνp p pK c K= ′ + ( )20 5.

(eq.TS14J–17)

where:

Kp =coefficientofpassiveearthpressure

isgivenby

Kp = +

tan2 452

φ (eq.TS14J–18)

Ifunknown,soilcohesion,c,mayconservativelybeas-sumedtoequal0.Ripariansoilsareoftennoncohesive,andcohesionincohesivesoilsiseffectively0whensoilsaresaturated.

Moments—Thedrivingmoment,

Md ,abouttheburiedtipoftheembeddedlogisgivenbythevectorsum

M F F LL

FL

ld d L emex

b= +( ) +

+

×

2 2

(eq.TS14J–19)

where

l istheunitvectoralongtheaxisoftheburiedlogandpositiveinthedirectionawayfromtheburiedtipandL

ex=L–L

em.Theresistingmoment,

Md ,willactoppositethedrivingmomentandisgivenbythevectorsum

M F L F L F L lr soil em p em c c=

+

+

×

1

2

2

3

(eq.TS14J–20)

where

Fc istherestrainingforceduetoanchorcablesorballast,andL

cistheappropriatemomentarmabout

theburiedtipoftheembeddedlog.

Ballast and anchoring

ForcesandmomentsduetoanchorsmaybeaddedtotheotherforcesactingontheLWstructuretocomputefactorsofsafety.Thefactorofsafetywithrespecttoforces,F

sf,istheratioofthemagnitudeoftheresul-

tantoftheresistingforcestothemagnitudeoftheresultantofthedrivingforceswithseparatefactorsofsafetycomputedforthevertical(y)andhorizontal(x,streamwise)directions.

FF F F

F Fsf

soil py cy

b Ly

y=+ +

+ (eq.TS14J–21)

FF F F

Fsf

soil px cx

Dy

x=+ + (eq.TS14J–22)

Page 14: TS14J-Large Woody Material - Agricultural Research Service · PDF filePart 654 National Engineering Handbook Use of Large Woody Material for Habitat and Bank Protection Technical Supplement

Part 654 National Engineering Handbook

Use of Large Woody Material for Habitat and Bank Protection

Technical Supplement 14J

TS14J–10 (210–VI–NEH,August2007)

MractsoppositeM

d,andbothvectorsactalongahori-

zontalaxisthroughtheembeddedtipofthelog.There-fore,thefactorofsafetywithrespecttomoments,F

sm,

issimplytheratiooftheirmagnitudes:

FM

Msmr

d

= (eq.TS14J–23)

Anchoringsystemsshouldbedesignedtoachievefactorsofsafetygreaterthan2duetothehighlevelofuncertaintyincomputationsforimposedforces.Anchoringapproachesincludeplacingballast(soil,cobbles,boulders)onorwithinthestructure,embed-dingpartorallofthelargewoodinthebankorinastonestructure,andusingcable,marinerope,orchaintosecurethestructuretoboulders,soilanchors(NEH654TS14E),stumps,trees,deadmen,orpilings(Crameretal.2002;FischenichandMorrow2000).Whenlogsorwoodyelementsareusedasballast,itisimportantforthedesignertoconsidertheimplica-tionsofthewoodrottingandbecominglighter.Whenbouldersorbedmaterialareusedforballast,buoyant,drag,andliftforcesontheballastrockmustbecon-sideredintheforcebalance(D’AoustandMillar2000).Anelectronicspreadsheetmayfacilitatethiscalcula-tion.

Logsincomplexstructuresmaybeattachedtooneanotherortobouldersbydrillingholesthroughthelogsandpinningthemtogetherwithsteelrebar.Epoxyadhesivehasalsobeenusedforattachinglogs.Abbe,Montgomery,andPetroff(1997)favoranapproachthatmaybetermedpassiveanchoring(Crameretal.2002),inwhichtheshape,weight,ballast,andplace-mentofastructureareadequatetoresistmovementineventsuptothedesignflow.Passivelyanchoredstruc-turesmaybecomprisedofwoodmembersthatareattachedtooneanother,butnottoexternalanchors.Passiveanchoringisnotrecommendedforhighhazardsituations,siteswithvulnerableinfrastructuredown-stream,orsiteswherestructureswillbefrequentlyovertopped.

Materials

Minimumdimensions,species,andsourcesforwoodymaterialsshouldbespecifiedduringdesign.Crameretal.(2002)suggestthefollowingguidelinesforsizeoftreesandrootwads:

Dimension Minimum size

Rootwaddiameter Bankfulldischargedepth

Trunkdiameter 0.5×bankfulldischargedepth

Treelength 0.25×bankfulldischargewidth

Clearly,woodmaterialsthislargearenotalwaysavailable.Onsitesourcesarealwaysmosteconomi-cal;importinglargematerialscanbeextremelycostly.However,benefitstothestreamecosystemmustbeweighedagainsttheimpactsofclearingandgrubbingonexistingterrestrialhabitat.Complexwoodymateri-alstructuresthatfeaturenumerousbranchesandhighstemdensitylocallydecreaseflowvelocity,inducingsedimentdeposition.Accordingly,materialsshouldbeselectedthathavenumerousbranches,beingcarefulnottobreakorremovebranchesduringconstruction.Clearingwithinthestreamcorridorshouldbeavoided,butbarscalpingmaybeadvisableincertaincasestoprovidetemporaryreliefofouterbankerosioninasharpbend.Resultingwoodymaterials(willowroot-wadsandstems)maybeusedinstructurestotriggerrapidrevegetation.

Speciesthataredecayresistantarepreferred,suchaseasternredcedar(Juniperousvirginiana),westernredcedar(Thujaplicata),coastalredwood(Sequioasempervirens),Douglas-fir(Pseudotsugaspp.),orbaldcypress(Taxodiumdistichum).Rapidlydecayingspe-cies,suchascottonwood(Populusspp.),pinesnativetotheSoutheast(PinusechinataandPinustaeda),andalder(Alnusspp.),shouldbeavoided.However,asnoted,useoffreshlycutorgrubbedwilloworcot-tonwoodtreesmaybedesirableforquickrevegetationinstructuresthatarepartiallyburied.CommentsondecayratesareprovidedintableTS14J–4.

Decayratesareclimatedependent,duetotherequire-mentsofthefungiresponsibleforaerobicdecomposi-tionofwood.Ratesincreasewithincreasingtempera-tureandprecipitation.Scheffer(1971)developedthefollowingindexforcomparingpotentialdecayratesofabovegroundwoodstructuresindifferentclimaticregionsoftheUnitedStates.

Page 15: TS14J-Large Woody Material - Agricultural Research Service · PDF filePart 654 National Engineering Handbook Use of Large Woody Material for Habitat and Bank Protection Technical Supplement

TS14J–11(210–VI–NEH,August2007)

Part 654 National Engineering Handbook

Use of Large Woody Material for Habitat and Bank Protection

Technical Supplement 14J

Table TS14J–4 Comparisonofdesirabilityofvarioustreespeciesforstreamstructures

SpeciesDurability (assuming wetting and drying)

Source of information1/

Cottonwood(Populusspp.) Poor JohnsonandStypula(1993)

Alder(Alnusspp.) Poor JohnsonandStypula(1993)

Maple(Acerspp.) Fair(willsurvive5to10yr) JohnsonandStypula(1993)

Hemlock(Tsugaspp.) Leastdurableofconifers JohnsonandStypula(1993)

Sitkaspruce(Piceasitchensis) Excellent JohnsonandStypula(1993)

Douglas-fir(Pseudotsugaspp.) Excellent(willsurvive25to60yr)32–56yr

JohnsonandStypula1993);Harmonetal.(1986)

Westernredcedar(Thujaplicata) Mostdesirable(willsurvive50to100yr)

JohnsonandStypula(1993)

Yellow-poplar(Liriodendrontulipifera) 0.4yr Harmonetal.(1986)

Aspen(P.tremuloides) 5yr Harmonetal.(1986)

Whitefir(A.concolor) 4yr Harmonetal.(1986)

Norwayspruce(Piceaabies) ~30yr Kruys,Jonsson,andStahl(2002)

Conifers(P.sitchensis,T.heterophylla,P.menziesii,T.plicata)

Half-lifeof~20yr HyattandNaiman(2001)

Blacklocust,redmulberry,Osageorange,Pacificyew

Exceptionallyhighheartwooddecayresistance

SimpsonandTenWolde(1999)

Oldgrowthbaldcypress,catalpa,cedars,blackcherry,chestnut,Arizonacypress,junipers,honeylocust,mesquite,oldgrowthredwood,sassafras,blackwalnut

Resistantorveryresistanttoheart-wooddecay

SimpsonandTenWolde(1999)

Younggrowthbaldcypress,Douglas-fir,westernlarch,longleafoldgrowthpine,oldgrowthslashpine,younggrowthredwood,tamarack,oldgrowtheasternwhitepine

Moderatelyresistanttoheartwooddecay

SimpsonandTenWolde(1999)

Redalder,ashes,aspens,beech,birches,buckeye,butternut,cottonwood,elms,basswood,truefirs,hackberry,hemlocks,hickories,magnolia,maples,pines,spruces,sweetgum,sycamore,tanoak,wil-lows,yellow-poplar

Slightlyornonresistanttoheartwooddecay

SimpsonandTenWolde(1999)

1/ InformationfromJohnsonandStypula(1993)isqualitativeandunsubstantiated.Evidently,thesecommentspertaintotheregionofKingCounty,Washington.Harmonetal.(1986)provideareviewofscientificliteraturedealingwithdecompositionratesofsnagsandlogsinforestecosystems.ThetimesfromHarmonetal.(1986)representthetimerequiredfor20percentdecomposition(mineralization)ofalogbasedonexponentialdecayconstantsobtainedfromtheliterature.Fragmentationoflogsinstreamsduetomechanicalabrasionwouldac-celeratethedecayprocess,aswouldmorefrequentwettinganddrying.Kruys,Jonsson,andStahl(2002)providedataondecayoffallenandstandingdeadtreesinaforestinmid-northernSweden.HyattandNaiman(2001)providedataonresidencetimeoflargewoodinQueetsRiver,Washington.SimpsonandTenWolde(1999)providedataforevaluatingwoodproducts,notwholetrees.

Page 16: TS14J-Large Woody Material - Agricultural Research Service · PDF filePart 654 National Engineering Handbook Use of Large Woody Material for Habitat and Bank Protection Technical Supplement

Part 654 National Engineering Handbook

Use of Large Woody Material for Habitat and Bank Protection

Technical Supplement 14J

TS14J–12 (210–VI–NEH,August2007)

Climateindex= T DJan

Dec

−( ) −( ) ∑ 35 3

30 (eq.TS14J–23)

where:T =meanmonthlytemperature(ºF)D =meannumberofdaysinthemonthwith0.01

inchormoreofprecipitation

Thesummationrepresentsthesumofproductsforallofthemonthsoftheyear.Thesumisdividedby30tomaketheindexfallbetween0and100formostoftheUnitedStates.Forexample,Scheffercomputedvaluesof82.5,44.8,and22.0forAtlanta,Georgia;DesMoines,Iowa;andCasper,Wyoming,respectively.ThisimpliesthatawoodstructurewouldlastaboutfourtimeslongerinaclimatetypicalofWyomingthanonetypicalofGeorgia,allotherfactorsbeingequal.

SyntheticLWMforstreamworkisavailablecommer-cially(Boltonetal.1998).Theseproductsareengi-neeredtocomparefavorablywithnaturalmaterialsintermsofdurabilityorhabitatvalue.However,theymaybelesseffectiveintermsofhabitatcreationormorecostlythannaturalmaterials.Costcomparisonsshouldconsiderfullprojectlifecycles.

Cost

CostsforLWMstructuresareheavilyinfluencedbysitevariablesandmaterialsources.Crameretal.(2002)providetypicalcostrangesforlargewoodof$500to$750pertreewithrootwadand$200to$300pertreewithoutrootwad.Thesefiguresincludema-terial,haulingtothesite,excavation,spoilage,andinstallation.AdditionalcostinformationissummarizedintableTS14J–5.

Maintenance

LWMstructuresshouldbeviewedastemporarymea-surestotriggerdesirablenaturalchangesinchannelsandbanks.Accordingly,structuresgraduallydegradeandbreakdown.However,structuresshouldbemain-taineduntilplantedorinvadingwoodyplantshavesucceededinestablishinginthetreatedarea.Arela-tivelyhighlevelofmaintenanceisnecessaryifinitialconfigurationsaretobemaintainedformorethanafewyears.Annuallow-waterinspectionsareadvisable,

withparticularattentiontoanchoringsystems,decaystatusofwoodymaterials,hazardstodownstreaminfrastructure,anderosionpatterns.Habitatmonitor-ingmaybequalitative,butfieldmeasurementofwaterdepth,width,andvelocity(Shields,Knight,Morin,andBlank2003)ispreferable.Photodocumentationandcross-sectionalandthalwegsurveysaremosthelpfulindetectingchanges.Crameretal.(2002)recommendadditionalinspectionsfollowinganyeventthatequalsorexceedsthe1-yearflowduringthefirst3yearsfol-lowingconstruction.

Page 17: TS14J-Large Woody Material - Agricultural Research Service · PDF filePart 654 National Engineering Handbook Use of Large Woody Material for Habitat and Bank Protection Technical Supplement

TS14J–13(210–VI–NEH,August2007)

Part 654 National Engineering Handbook

Use of Large Woody Material for Habitat and Bank Protection

Technical Supplement 14J

Table TS14J–5 Reportedcostsforstreamstabilizationandhabitatenhancementstructures

Year LocationProtected bank length,m

Unit cost1/, $/m

Comments Source

1987 NestuccaRiverandElkCreek,OR

1,960 24 119woodydebrisstructuresusing99matureconifersplacedforhabitatobjectives,notstabilization

HouseandCrispin(1990)

1990–91 NorthForkPorterCreek,WA

500 165 Fivedifferentlogconfigurationsanchoredwithcablesandbouldersforhabitatpurposesonly

Cederholmetal.(1997)

1990–91 NorthForkPorterCreek,WA

500 13 60trees>30cmdiametercutfelledintostreamfrombanksandtetheredtostumpswithcableforhabitatpur-posesonly

Cederholmetal.(1997)

1994 BuffaloRiver,AR 66 Cedartreerevetmentsandwillowrootwadsplantedinditches.Twoof13siteshavenotperformedwell

Personalcommunica-tion,DavidMott,Na-tionalParkService

1996 CowlitzRiver,WA 430 47 Engineeredlogjams.Includesestimateforvalueofdonatedmaterials

Abbe,Montgomery,andPetroff(1997)

1996 BayouPierre,MS 240 117 Eighttree-trunkbendwayweirsspaced30mapart.Weirsconsistedoftwotofourtreesperweircabledto0.15-msteelpipesdrivenintobed.Riprap-protectedkeys.Twostructuresfailed,othershaveperformedwell

Personalcommunica-tion,LarryMarcy,U.S.FishandWildlifeService

1988–97 Sixurbangravelbedstreams,PugetSound,WA

2,960 493 AnchoredandunanchoredLWMaddedforfloodcontrol,sediment/ero-sioncontrolandhabitatenhancement

Larson,Booth,andMor-ley(2001)

1998 Various,MO 722/ Doublerowtreerevetmentinstalledusingheavyequipment

Personalcommunica-tion,BrianTodd,StateofMissouri

1999 BitterrootRiver,MT 80 Rootwads BrownandGray(1999)

2000 LittleTopashawCreek,MS

1,500 80 72LWMstructuresinsmall,sand-bedstream.Unitcost=$95/mwhenwil-lowplantingisincluded

Shields,Morin,andCoo-per(2004)

2000 Various 40–200 Rootwads SylteandFischenich(2000)

2002 Various 40–80 Roughnesstrees Crameretal.(2002)

2002 Various,WA 70–200 Logtoe Crameretal.(2002)

1995–2002 Various,PA 79–2133/ Rootwads Wood(2003)

1/ Costsarefortheconstructioncontractanddonotincludedesignandcontractadministration.Constructionmaterials,mobilization,andprofitareincluded.

2/ Upperendofrangeprovidedbyoriginalsource3/ Anemergencyprojectthatincludedimportingfilltoreplacea10mhighbankcost$591/m

Page 18: TS14J-Large Woody Material - Agricultural Research Service · PDF filePart 654 National Engineering Handbook Use of Large Woody Material for Habitat and Bank Protection Technical Supplement