trinuclear nickel coordination complexes of phenanthrene-9 ... · the proton-bridged complex...

36
538 http://dx.doi.org/10.1107/S2056989016004023 Acta Cryst. (2016). E72, 538–542 research communications Received 4 February 2016 Accepted 9 March 2016 Edited by S. Parkin, University of Kentucky, USA Keywords: crystal structure; nickel; H 2 pqd; dioxime; trinuclear; hydrogen bonding. CCDC references: 1462814; 1462813 Supporting information: this article has supporting information at journals.iucr.org/e Trinuclear nickel coordination complexes of phenanthrene-9,10-dione dioxime Owen M. Williams and Alan H. Cowley* 105 E. 24th St., Austin, TX 78704, USA. *Correspondence e-mail: [email protected] A trinuclear nickel complex of phenanthrene-9,10-dione dioxime (H 2 pqd), namely bis[ 2 -9,10-bis(oxidoimino)phenanthrene]bis[ 2 -10-(oxidoimino)- phenanthrene-9-one oxime](phenanthrene-9,10-dione dioxime)trinickel(II) toluene disolvate, [Ni 3 (C 14 H 8 N 2 O 2 ) 2 (C 14 H 9 N 2 O 2 ) 2 (C 14 H 10 N 2 O 2 )]2C 7 H 8 , has been isolated and its crystal structure determined. This complex features three independent Ni II atoms that are arranged in a triangular fashion along with five supporting ligands. There are two square-planar Ni II atoms and a third pseudo- octahedral Ni II atom. While the square-planar Ni II atoms are stacked, there are no ligand bridges between them. Each square-planar Ni II atom, however, bridges with the pseudo-octahedral Ni II atom through Ni—N—O—Ni and Ni— O—Ni bonds. A fluoridoboration reaction of the proton-bridged species gave the analogous complex bis( 2 -bis{[10-(oxidoimino)-9,10-dihydrophenanthren- 9-ylidene]amino}difluoridoborato)(phenanthrene-9,10-dione dioxime)tri- nickel(II) dichloromethane trisolvate, [Ni 3 (C 28 H 16 BF 2 N 4 O 4 ) 2 (C 14 H 10 N 2 O 2 )]- 3CH 2 Cl 2 , which shows the same binding structure, but features a widened Ni— Ni interaction between the square-planar Ni II atoms. The proton-bridged complex completes the macrocyclic coordination around the square-planar Ni II atoms by means of an O—HO hydrogen bond. Both compounds feature O— HN hydrogen bonds between the oxime and the N atoms attached to square- planar nickel atom. The nickel units show no direct interaction with their nearest neighbors in the extended lattice. Two -stacking interactions between adjacent molecules are found: one with a centroid–centroid distance of 3.886 (2) A ˚ and the other with a centroid–centroid distance of 4.256 (3) A ˚ . In the latter case, although not aromatic, the distance to the centroid of the central phenanthrene ring is shorter, with a distance of 3.528 (3) A ˚ . Toluene molecules occupy the solvent channels that are oriented along the c axis. In the fluoridoboronate structure, the solvent (DCM) was too badly disordered to be modelled, so its contribution was removed using SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18]. 1. Chemical context Oxime functional groups can coordinate to transition metal ions in a variety of ways, due to the presence of both nitrogen and oxygen donors. On account of the multitude of possible coordinations, these ligands, and particularly dioximes, have the capability of forming bridging multinuclear complexes with many transition metals, including nickel (Chaudhuri, 2003). From the standpoint of single-molecule magnets, these multi-nuclear complexes play an important role due to their ability to facilitate spin-frustration in magnetic transition-metal clusters (Aromı´ & Brechin, 2006). Other nickel polynuclear compounds supported by oxime ligands have been reported (Jiang et al., 2005; Biswas et al. , 2009). ISSN 2056-9890

Upload: others

Post on 22-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • 538 http://dx.doi.org/10.1107/S2056989016004023 Acta Cryst. (2016). E72, 538–542

    research communications

    Received 4 February 2016

    Accepted 9 March 2016

    Edited by S. Parkin, University of Kentucky, USA

    Keywords: crystal structure; nickel; H2pqd; �–�

    dioxime; trinuclear; hydrogen bonding.

    CCDC references: 1462814; 1462813

    Supporting information: this article has

    supporting information at journals.iucr.org/e

    Trinuclear nickel coordination complexes ofphenanthrene-9,10-dione dioxime

    Owen M. Williams and Alan H. Cowley*

    105 E. 24th St., Austin, TX 78704, USA. *Correspondence e-mail: [email protected]

    A trinuclear nickel complex of phenanthrene-9,10-dione dioxime (H2pqd),

    namely bis[�2-9,10-bis(oxidoimino)phenanthrene]bis[�2-10-(oxidoimino)-phenanthrene-9-one oxime](phenanthrene-9,10-dione dioxime)trinickel(II)

    toluene disolvate, [Ni3(C14H8N2O2)2(C14H9N2O2)2(C14H10N2O2)]�2C7H8, hasbeen isolated and its crystal structure determined. This complex features three

    independent NiII atoms that are arranged in a triangular fashion along with five

    supporting ligands. There are two square-planar NiII atoms and a third pseudo-

    octahedral NiII atom. While the square-planar NiII atoms are stacked, there are

    no ligand bridges between them. Each square-planar NiII atom, however,

    bridges with the pseudo-octahedral NiII atom through Ni—N—O—Ni and Ni—

    O—Ni bonds. A fluoridoboration reaction of the proton-bridged species gave

    the analogous complex bis(�2-bis{[10-(oxidoimino)-9,10-dihydrophenanthren-9-ylidene]amino}difluoridoborato)(phenanthrene-9,10-dione dioxime)tri-

    nickel(II) dichloromethane trisolvate, [Ni3(C28H16BF2N4O4)2(C14H10N2O2)]�-3CH2Cl2, which shows the same binding structure, but features a widened Ni—

    Ni interaction between the square-planar NiII atoms. The proton-bridged

    complex completes the macrocyclic coordination around the square-planar NiII

    atoms by means of an O—H� � �O hydrogen bond. Both compounds feature O—H� � �N hydrogen bonds between the oxime and the N atoms attached to square-planar nickel atom. The nickel units show no direct interaction with their

    nearest neighbors in the extended lattice. Two �-stacking interactions betweenadjacent molecules are found: one with a centroid–centroid distance of

    3.886 (2) Å and the other with a centroid–centroid distance of 4.256 (3) Å. In

    the latter case, although not aromatic, the distance to the centroid of the central

    phenanthrene ring is shorter, with a distance of 3.528 (3) Å. Toluene molecules

    occupy the solvent channels that are oriented along the c axis. In the

    fluoridoboronate structure, the solvent (DCM) was too badly disordered to be

    modelled, so its contribution was removed using SQUEEZE [Spek (2015). Acta

    Cryst. C71, 9–18].

    1. Chemical context

    Oxime functional groups can coordinate to transition metal

    ions in a variety of ways, due to the presence of both nitrogen

    and oxygen donors. On account of the multitude of possible

    coordinations, these ligands, and particularly �–� dioximes,have the capability of forming bridging multinuclear

    complexes with many transition metals, including nickel

    (Chaudhuri, 2003). From the standpoint of single-molecule

    magnets, these multi-nuclear complexes play an important

    role due to their ability to facilitate spin-frustration in

    magnetic transition-metal clusters (Aromı́ & Brechin, 2006).

    Other nickel polynuclear compounds supported by oxime

    ligands have been reported (Jiang et al., 2005; Biswas et al.,

    2009).

    ISSN 2056-9890

    https://crossmark.crossref.org/dialog/?doi=10.1107/S2056989016004023&domain=pdf&date_stamp=2016-03-24

  • Phenanthrenequinone dioxime (pqdH2) is an �–� dioximeligand that incorporates a constrained ring system. Similar to

    other dioximes, however, it exists as three separate stereo-

    isomers (E–E, E–Z, and Z–Z), as confirmed by liquid chro-

    matography – mass spectrometry. Interestingly, although this

    compound was synthesized over 100 years ago (Schmidt &

    Söll, 1907), no coordination complexes of this ligand have

    been structurally characterized to date.

    2. Structural commentary

    Fig. 1 shows the structure of [Ni3(H2pqd)(Hpqd)2(pqd)2], (1).

    This complex consists of three NiII atoms in a triangular

    arrangement, two of which are in a square-planar coordination

    environment, while the third is in a pseudo-octahedral

    coordination environment. The square-planar NiII atoms (Ni1

    and Ni2) consist of one N,N-coordinating and one N,O-coor-

    dinating ligand. These ligands form bridges with the pseudo-

    octahedral NiII atom (Ni3) by means of their oxime O atoms.

    This arrangement permits the formation of Ni—N—O—Ni

    and Ni—O—Ni bridges between each square-planar NiII atom

    and the pseudo-octahedral NiII atom.

    The structural features of the core ligation sphere warrant

    special attention. The Nisp—Nisp distance is 3.3657 (9) Å, a

    distance that precludes the presence of any metal–metal

    bonding. However, the distances between each of these nickel

    moieties and the pseudo-octahedral NiII atom are nearly

    identical [Nisp—Nioct = 3.2697 (7), 3.2674 (7) Å]. The pseudo-

    octahedral nickel geometry deviates significantly from a

    perfect octahedral symmetry [O2—Ni3—O8 = 160.00 (9),

    O4—Ni3—N10 = 164.8 (1), N9—Ni3—O6 = 165.5 (1)�].

    Fig. 2 shows the complete coordination geometry of the

    compound [Ni3(pqdH2)(pqdBF2)2(pqd)2], (2). The physical

    arrangement of the ligation sphere directly mimics that of (1).

    In this case, however, the steric bulk of the BF2 groups forces

    an expansion of the stacked square-planar nickel units,

    resulting in an Nisp—Nisp distance of 3.592 (1) Å. The

    distances between these units and the pseudo-octahedral NiII

    atom, however, remain similar [Nisp—Nioct = 3.274 (1),

    3.255 (1) Å]. Overall, the entire structure retains all the other

    structural features that are present in the proton-bridged

    compound.

    The phenanthrene backbones show pronounced twisting

    between their aromatic rings, which precludes conjugation

    across this unit. For the proton-bridged complex, the angle

    between mean planes within a single phenanthrene

    backbone ranges from 9.24 (19)� (between C45–C50 and C51–

    C56) to 15.44 (13)� (between C59–C64 and C65–C70). For the

    research communications

    Acta Cryst. (2016). E72, 538–542 Williams and Cowley � [Ni3(H2pqd)(Hpqd)2(pqd)2] and [Ni3(pqdH2)(pqdBF2)2(pqd)2] 539

    Figure 1Displacement ellipsoid plot at the 50% probability level for[Ni3(H2pqd)(Hpqd)2(pqd)2]. H atoms (with the exception of hydrogen-bonded atoms) and solvent molecules have been omitted for clarity.

  • BF2-bridged complex, there is a wider range of angles, with

    5.2 (4)� (between C31–C36 and C37–C42) being the smallest,

    and 17.5 (3)� (between C59–C64 and C65–C70) being the

    largest.

    3. Supramolecular features

    The proton-bridged complex completes the macrocyclic

    coordination around the square-planar NiII atoms by means of

    hydrogen bonds. Furthermore, the ligand that coordinates the

    pseudo-octahedral NiII atom features hydrogen-bonding

    interactions (Table 1) between the oxime hydroxy groups and

    the ligands of the square-planar NiII atoms. The nickel units

    show no direct interaction with their nearest neighbors in the

    extended lattice. Some �-stacking between adjacent moleculesis, however, evident (Fig. 3). Two interactions were found, one

    with a centroid–centroid distance of 3.886 (2) Å (symmetry

    code: 1 � x, �12 + y, 32 � z) and the other with a centroid–centroid distance of 4.256 (3) Å (symmetry code: �x, �y,2 � z). In the latter case, although not aromatic, the distanceto the centroid of the central ring of phenanthrene is shorter,

    with a distance of 3.528 (3) Å. Toluene molecules occupy the

    solvent channels that are oriented along the c axis.

    540 Williams and Cowley � [Ni3(H2pqd)(Hpqd)2(pqd)2] and [Ni3(pqdH2)(pqdBF2)2(pqd)2] Acta Cryst. (2016). E72, 538–542

    research communications

    Figure 2Displacement ellipsoid plot at the 50% probability level of[Ni3(H2pqd)(BF2pqd)2(pqd)2]. H atoms (with the exception ofhydrogen-bonded atoms) and solvent molecules have been omitted forclarity.

    Figure 3Packing diagram of [Ni3(H2pqd)(Hpqd)2(pqd)2], viewed approximately down the c-axis direction.

    Table 1Hydrogen-bond geometry (Å, �) for (1).

    D—H� � �A D—H H� � �A D� � �A D—H� � �A

    O1—H1A� � �O5 1.29 (6) 1.13 (6) 2.405 (4) 169 (6)O3—H2A� � �O7 1.17 (5) 1.23 (5) 2.402 (4) 176 (5)O9—H3A� � �N4 0.86 (6) 1.82 (6) 2.672 (4) 175 (7)O10—H4A� � �N6 1.04 (5) 1.63 (5) 2.657 (4) 168 (4)

    Table 2Hydrogen-bond geometry (Å, �) for (2).

    D—H� � �A D—H H� � �A D� � �A D—H� � �A

    O9—H1A� � �N2 0.85 1.96 2.771 (6) 158O10—H2A� � �N8 1.06 1.77 2.765 (6) 155

  • The BF2-bridged complex completes the macrocyclic

    coordination around the square-planar NiII atoms by means of

    covalent O—B—O bonds. However, the hydrogen-bonding

    interactions (Table 2) that lock the pseudo-octahedral NiII

    atom remain in place. The nickel units show no direct inter-

    action with their nearest neighbors in the extended lattice. A

    solvent channel oriented along the c axis is also evident

    (Fig. 4). However, the extreme disorder of the solvent does

    not permit the determination of a suitable model.

    research communications

    Acta Cryst. (2016). E72, 538–542 Williams and Cowley � [Ni3(H2pqd)(Hpqd)2(pqd)2] and [Ni3(pqdH2)(pqdBF2)2(pqd)2] 541

    Figure 4Packing diagram of Ni3(H2pqd)(BF2pqd)2(pqd)2, viewed approximately down the c-axis direction. Voids presented in brown were calculated in Mercury(Macrae et al., 2006) using a probe radius of 1.2 Å.

    Table 3Experimental details.

    (1) (2)

    Crystal dataChemical formula [Ni3(C14H8N2O2)2(C14H9N2O2)2-

    (C14H10N2O2)]�2C7H8[Ni3(C28H16BF2N4O4)2(C14H10N2O2)]�-

    3CH2Cl2Mr 1545.55 1456.88Crystal system, space group Monoclinic, P21/c Monoclinic, P21/cTemperature (K) 100 100a, b, c (Å) 15.973 (3), 18.639 (3), 22.785 (4) 15.6414 (8), 30.8358 (11), 14.7380 (8)� (�) 101.757 (4) 112.411 (6)V (Å3) 6641.1 (19) 6571.5 (6)Z 4 4Radiation type Mo K� Cu K�� (mm�1) 0.92 1.67Crystal size (mm) 0.16 � 0.11 � 0.11 0.29 � 0.07 � 0.04

    Data collectionDiffractometer Rigaku Saturn724+ Agilent SuperNova Dual Source diffractometer

    with an Atlas detectorAbsorption correction Multi-scan (ABSCOR; Higashi, 1995) Multi-scan (CrysAlis PRO; Agilent, 2014)Tmin, Tmax 0.799, 1.000 0.303, 1.000No. of measured, independent and observed

    [I > 2�(I)] reflections79592, 15260, 13993 25337, 13041, 8782

    Rint 0.054 0.060(sin �/�)max (Å

    �1) 0.650 0.626

    RefinementR[F 2 > 2�(F 2)], wR(F 2), S 0.067, 0.151, 1.21 0.077, 0.226, 1.03No. of reflections 15260 13041No. of parameters 1046 896No. of restraints 291 0H-atom treatment H atoms treated by a mixture of independent

    and constrained refinementH atoms treated by a mixture of independent

    and constrained refinement�max, �min (e Å

    �3) 0.56, �0.68 1.16, �0.83

    Computer programs: CrystalClear (Rigaku Inc, 2008), CrysAlis PRO (Agilent, 2014), SIR2004 (Burla et al., 2005), OLEX2 (Dolomanov et al., 2009), SHELXL2013 (Sheldrick, 2015),Mercury (Macrae et al., 2006), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

  • 4. Synthesis and crystallization

    The parent ligand, pqdH2 (0.75 g; 3.1 mmol), was dissolved in

    100 ml of ethanol, to which nickel(II) acetate (0.33 g,

    1.3 mmol) was added. A red precipitate began to form after

    approximately 30 min. The solution was then allowed to stir

    for 1 h, followed by cooling in a freezer and filtration of the

    crude product (yield: 272 mg, 0.2 mmol, 32%). The resulting

    product was dissolved in DMF solution and layered with

    toluene, resulting in the formation of crystals of

    [Ni3(H2pqd)(Hpqd)2(pqd)2] after a period of 3–4 d. The

    crystals grew as red blocks with an asymmetric unit consisting

    of a complete [Ni3(H2pqd)(Hpqd)2(pqd)2] molecule and two

    toluene solvent molecules.

    The foregoing complex is stable enough to undergo a

    fluoridoboration reaction with boron trifluoride, thereby

    affording the compound [Ni3(H2pqd)(BF2pqd)2(pqd)2].

    [Ni3(H2pqd)(Hpqd)2(pqd)2] was diluted in diethyl ether,

    thereby creating a slurry. One ml of 1.0 molar BF3–OEt2 (in

    ether) was then added and the mixture was allowed to react

    overnight. The resulting precipitate was then filtered off and

    washed thoroughly with EtOH and Et2O. The resulting

    precipitate was then dissolved in dichloromethane (DCM) and

    filtered through Celite (yield: 43 mg, 30 mmol, 79%). Subse-quently, a crop of red block-shaped crystals was grown by

    solvent evaporation over a period of one day.

    5. Refinement

    Crystal data, data collection and structure refinement details

    are summarized in Table 3. In proton-bridged structure (1),

    atoms H1A, H2A and H4A were found by assignment of

    difference map peaks and refined isotropically without

    geometrical constraints. The proton H3A was initially placed

    with the SHELXL HFIX 147 command (refinement on rota-

    tion) on O9, but was refined freely. Four distinct hydrogen-

    bonding interactions were evident in the trinuclear cluster.

    Finally, there were two O—H—O interactions between an

    oxime and oximato of each [Ni(Hpqd)(pqd)]� unit that could

    not be resolved due to rapid conversion to [Ni(pqd)(Hpqd)]�.

    All the restraints that are reported were included for the

    modelling of the disordered toluene solvent molecules.

    In the case of BF2-bridged structure (2), atoms H1A and

    H2A were affixed to O9 and O10, respectively. They were then

    refined isotropically without rotational constraints. The

    SQUEEZE routine (Spek, 2015) as implemented in PLATON

    (Spek, 2009) was used to remove the electron density of three

    solvent DCM molecules per unit cell (calculated: 134 e�;

    593 Å3).

    Acknowledgements

    The data were collected using instrumentation purchased with

    funds provided by the National Science Foundation (grant No.

    0741973). The chemistry was supported by the Robert A.

    Welch Foundation (grant F-0003).

    References

    Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton,England.

    Aromı́, G. & Brechin, E. K. (2006). Single-Molecule Magnets andRelated Phenomena, edited by R. Winpenny, pp. 1–67. Berlin,Heidelberg: Springer.

    Biswas, B., Pieper, U., Weyhermüller, T. & Chaudhuri, P. (2009).Inorg. Chem. 48, 6781–6793.

    Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J.Appl. Cryst. 38, 381–388.

    Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–190.Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. &

    Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.Jiang, Y.-B., Kou, H.-Z., Wang, R.-J., Cui, A.-L. & Ribas, J. (2005).

    Inorg. Chem. 44, 709–715.Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P.,

    Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39,453–457.

    Rigaku Inc. (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.Schmidt, J. & Söll, J. (1907). Ber. Dtsch. Chem. Ges. 40, 2454–2460.Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.Spek, A. L. (2009). Acta Cryst. D65, 148–155.Spek, A. L. (2015). Acta Cryst. C71, 9–18.Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

    542 Williams and Cowley � [Ni3(H2pqd)(Hpqd)2(pqd)2] and [Ni3(pqdH2)(pqdBF2)2(pqd)2] Acta Cryst. (2016). E72, 538–542

    research communications

    https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB1https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB1https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB2https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB2https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB2https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB3https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB3https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB4https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB4https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB4https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB5https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB6https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB6https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB7https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB8https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB9https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB9https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB10https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB10https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB10https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB11https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB12https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB13https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB14https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB15https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pk2575&bbid=BB16

  • supporting information

    sup-1Acta Cryst. (2016). E72, 538-542

    supporting information

    Acta Cryst. (2016). E72, 538-542 [https://doi.org/10.1107/S2056989016004023]

    Trinuclear nickel coordination complexes of phenanthrene-9,10-dione dioxime

    Owen M. Williams and Alan H. Cowley

    Computing details

    Data collection: CrystalClear (Rigaku Inc, 2008) for (1); CrysAlis PRO (Agilent, 2014) for (2). Cell refinement:

    CrystalClear (Rigaku Inc, 2008) for (1); CrysAlis PRO (Agilent, 2014) for (2). Data reduction: CrystalClear (Rigaku Inc,

    2008) for (1); CrysAlis PRO (Agilent, 2014) for (2). Program(s) used to solve structure: SIR2004 (Burla et al., 2005) for

    (1); OLEX2 (Dolomanov et al., 2009) for (2). For both compounds, program(s) used to refine structure: SHELXL2013

    (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication:

    publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

    (1) Bis[µ2-9,10-bis(oxidoimino)phenanthrene]bis[µ2-10-(oxidoimino)phenanthrene-9-one oxime]

    (phenanthrene-9,10-dione dioxime)trinickel(II) toluene disolvate

    Crystal data

    [Ni3(C14H8N2O2)2(C14H9N2O2)2(C14H10N2O2)]·2C7H8Mr = 1545.55Monoclinic, P21/ca = 15.973 (3) Åb = 18.639 (3) Åc = 22.785 (4) Åβ = 101.757 (4)°V = 6641.1 (19) Å3

    Z = 4

    F(000) = 3192Dx = 1.546 Mg m−3

    Mo Kα radiation, λ = 0.71069 ÅCell parameters from 20424 reflectionsθ = 1.3–31.1°µ = 0.92 mm−1

    T = 100 KBlock, red0.16 × 0.11 × 0.11 mm

    Data collection

    Rigaku Saturn724+ (2x2 bin mode) diffractometer

    Radiation source: Sealed TubeDetector resolution: 28.5714 pixels mm-1

    dtprofit.ref scansAbsorption correction: multi-scan

    (ABSCOR; Higashi, 1995)Tmin = 0.799, Tmax = 1.000

    79592 measured reflections15260 independent reflections13993 reflections with I > 2σ(I)Rint = 0.054θmax = 27.5°, θmin = 1.8°h = −20→20k = −24→24l = −29→29

    Refinement

    Refinement on F2

    Least-squares matrix: fullR[F2 > 2σ(F2)] = 0.067wR(F2) = 0.151S = 1.2115260 reflections1046 parameters291 restraints

    Hydrogen site location: mixedH atoms treated by a mixture of independent

    and constrained refinementw = 1/[σ2(Fo2) + (0.0495P)2 + 7.4732P]

    where P = (Fo2 + 2Fc2)/3(Δ/σ)max = 0.001Δρmax = 0.56 e Å−3

    Δρmin = −0.68 e Å−3

  • supporting information

    sup-2Acta Cryst. (2016). E72, 538-542

    Special details

    Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

    Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

    x y z Uiso*/Ueq Occ. (

  • supporting information

    sup-3Acta Cryst. (2016). E72, 538-542

    C26 0.3618 (2) 0.44223 (19) 0.89172 (17) 0.0408 (8)H26 0.3242 0.4751 0.8696 0.049*C27 0.3360 (2) 0.37214 (18) 0.89741 (16) 0.0363 (8)H27 0.2809 0.3585 0.8790 0.044*C28 0.3911 (2) 0.32129 (17) 0.93032 (15) 0.0312 (7)C29 0.0764 (2) 0.10264 (17) 0.76379 (14) 0.0291 (7)C30 0.1064 (2) 0.03055 (17) 0.75287 (15) 0.0309 (7)C31 0.0435 (2) −0.02258 (18) 0.72335 (15) 0.0346 (7)C32 0.0685 (2) −0.0803 (2) 0.69200 (18) 0.0429 (9)H32 0.1254 −0.0851 0.6889 0.051*C33 0.0088 (3) −0.1305 (2) 0.6655 (2) 0.0529 (10)H33 0.0255 −0.1689 0.6445 0.064*C34 −0.0749 (3) −0.1236 (2) 0.6701 (2) 0.0539 (11)H34 −0.1146 −0.1579 0.6526 0.065*C35 −0.1009 (2) −0.0668 (2) 0.70016 (19) 0.0472 (9)H35 −0.1581 −0.0628 0.7026 0.057*C36 −0.0422 (2) −0.01423 (19) 0.72739 (16) 0.0366 (8)C37 −0.0676 (2) 0.0483 (2) 0.75883 (16) 0.0360 (8)C38 −0.1479 (2) 0.0511 (2) 0.77467 (18) 0.0434 (9)H38 −0.1845 0.0120 0.7661 0.052*C39 −0.1741 (2) 0.1100 (2) 0.80252 (18) 0.0462 (9)H39 −0.2275 0.1102 0.8127 0.055*C40 −0.1214 (2) 0.1683 (2) 0.81519 (18) 0.0450 (9)H40 −0.1397 0.2086 0.8331 0.054*C41 −0.0410 (2) 0.1676 (2) 0.80142 (17) 0.0393 (8)H41 −0.0054 0.2072 0.8109 0.047*C42 −0.0122 (2) 0.10822 (18) 0.77336 (15) 0.0323 (7)C43 0.0836 (2) 0.08681 (19) 0.92655 (15) 0.0345 (7)C44 0.1243 (2) 0.02254 (19) 0.90908 (15) 0.0346 (7)C45 0.0739 (2) −0.04203 (19) 0.89031 (16) 0.0378 (8)C46 0.1065 (3) −0.1008 (2) 0.86405 (17) 0.0433 (9)H46 0.1639 −0.1016 0.8616 0.052*C47 0.0542 (3) −0.1577 (2) 0.8417 (2) 0.0555 (11)H47 0.0760 −0.1960 0.8233 0.067*C48 −0.0306 (3) −0.1576 (3) 0.8468 (2) 0.0633 (13)H48 −0.0655 −0.1963 0.8323 0.076*C49 −0.0636 (3) −0.1003 (2) 0.8731 (2) 0.0535 (11)H49 −0.1209 −0.1011 0.8758 0.064*C50 −0.0134 (2) −0.0412 (2) 0.89578 (16) 0.0424 (9)C51 −0.0494 (2) 0.0194 (2) 0.92335 (16) 0.0408 (9)C52 −0.1321 (3) 0.0157 (2) 0.93653 (19) 0.0505 (10)H52 −0.1643 −0.0258 0.9266 0.061*C53 −0.1662 (2) 0.0706 (3) 0.96312 (19) 0.0524 (11)H53 −0.2208 0.0661 0.9712 0.063*C54 −0.1207 (2) 0.1331 (3) 0.97825 (18) 0.0507 (10)H54 −0.1443 0.1706 0.9964 0.061*C55 −0.0392 (2) 0.1395 (2) 0.96614 (17) 0.0430 (9)H55 −0.0084 0.1816 0.9762 0.052*

  • supporting information

    sup-4Acta Cryst. (2016). E72, 538-542

    C56 −0.0028 (2) 0.0833 (2) 0.93893 (15) 0.0379 (8)C57 0.4778 (2) −0.09599 (17) 0.87975 (15) 0.0311 (7)C58 0.4046 (2) −0.13101 (17) 0.83829 (15) 0.0305 (7)C59 0.4055 (2) −0.20914 (17) 0.83084 (14) 0.0320 (7)C60 0.3314 (2) −0.24949 (19) 0.80879 (17) 0.0412 (8)H60 0.2797 −0.2260 0.7955 0.049*C61 0.3342 (3) −0.3230 (2) 0.80656 (19) 0.0508 (10)H61 0.2842 −0.3488 0.7931 0.061*C62 0.4101 (3) −0.3585 (2) 0.82407 (19) 0.0534 (11)H62 0.4120 −0.4082 0.8214 0.064*C63 0.4839 (3) −0.3203 (2) 0.84575 (19) 0.0487 (10)H63 0.5352 −0.3449 0.8576 0.058*C64 0.4835 (2) −0.24541 (18) 0.85028 (16) 0.0367 (8)C65 0.5628 (2) −0.20611 (19) 0.87678 (16) 0.0367 (8)C66 0.6421 (2) −0.2409 (2) 0.88592 (18) 0.0453 (9)H66 0.6448 −0.2878 0.8724 0.054*C67 0.7154 (3) −0.2078 (2) 0.91426 (19) 0.0483 (10)H67 0.7673 −0.2321 0.9199 0.058*C68 0.7123 (2) −0.1384 (2) 0.93455 (18) 0.0441 (9)H68 0.7622 −0.1167 0.9550 0.053*C69 0.6367 (2) −0.10049 (19) 0.92512 (16) 0.0372 (8)H69 0.6360 −0.0534 0.9384 0.045*C70 0.5598 (2) −0.13368 (18) 0.89503 (15) 0.0321 (7)C71 0.1134 (3) 0.1368 (4) 0.5502 (3) 0.100 (2)H71A 0.0755 0.1011 0.5291 0.150*H71B 0.1188 0.1755 0.5235 0.150*H71C 0.0906 0.1547 0.5832 0.150*C72 0.2006 (3) 0.1037 (3) 0.5736 (2) 0.0596 (12)C73 0.2598 (3) 0.0972 (2) 0.5371 (2) 0.0513 (10)H73 0.2466 0.1145 0.4980 0.062*C74 0.3375 (3) 0.0656 (2) 0.55792 (19) 0.0501 (10)H74 0.3767 0.0618 0.5330 0.060*C75 0.3582 (3) 0.0391 (2) 0.61574 (19) 0.0502 (10)H75 0.4106 0.0167 0.6294 0.060*C76 0.3013 (3) 0.0460 (3) 0.6527 (2) 0.0634 (13)H76 0.3150 0.0287 0.6917 0.076*C77 0.2235 (3) 0.0787 (3) 0.6320 (2) 0.0722 (15)H77 0.1857 0.0842 0.6578 0.087*C78 −0.1860 (5) 0.0902 (4) 0.4357 (4) 0.087 (2) 0.66H78A −0.1443 0.0585 0.4248 0.131* 0.66H78B −0.1928 0.1314 0.4099 0.131* 0.66H78C −0.2397 0.0656 0.4315 0.131* 0.66C79 −0.1572 (3) 0.1133 (3) 0.4982 (3) 0.0727 (19) 0.66C80 −0.1792 (5) 0.0748 (4) 0.5449 (3) 0.080 (2) 0.66H80 −0.2124 0.0336 0.5364 0.096* 0.66C81 −0.1524 (6) 0.0964 (5) 0.6039 (4) 0.086 (3) 0.66H81 −0.1681 0.0703 0.6348 0.103* 0.66C82 −0.1021 (6) 0.1574 (5) 0.6167 (3) 0.082 (3) 0.66

  • supporting information

    sup-5Acta Cryst. (2016). E72, 538-542

    H82 −0.0833 0.1721 0.6562 0.098* 0.66C83 −0.0800 (5) 0.1963 (4) 0.5703 (3) 0.083 (2) 0.66H83 −0.0466 0.2373 0.5789 0.100* 0.66C84 −0.1068 (4) 0.1750 (3) 0.5113 (3) 0.0769 (19) 0.66H84 −0.0916 0.2015 0.4805 0.092* 0.66C78A −0.1035 (9) 0.1587 (8) 0.4495 (6) 0.078 (4) 0.34H78D −0.0889 0.2087 0.4523 0.118* 0.34H78E −0.1505 0.1513 0.4163 0.118* 0.34H78F −0.0551 0.1314 0.4433 0.118* 0.34C79A −0.1290 (7) 0.1344 (6) 0.5073 (7) 0.080 (3) 0.34C81A −0.2097 (10) 0.0579 (9) 0.5603 (8) 0.082 (3) 0.34H81A −0.2488 0.0208 0.5596 0.098* 0.34C80A −0.1873 (8) 0.0791 (7) 0.5038 (8) 0.079 (3) 0.34H80A −0.2108 0.0567 0.4677 0.094* 0.34C82A −0.1790 (13) 0.0872 (12) 0.6100 (11) 0.082 (3) 0.34H82A −0.1962 0.0714 0.6444 0.098* 0.34C83A −0.1209 (15) 0.1416 (12) 0.6139 (7) 0.082 (3) 0.34H83A −0.0979 0.1629 0.6505 0.099* 0.34C84A −0.0965 (12) 0.1648 (9) 0.5594 (6) 0.081 (2) 0.34H84A −0.0572 0.2019 0.5609 0.097* 0.34N1 0.27646 (17) 0.24607 (14) 0.76671 (13) 0.0330 (6)N2 0.37143 (17) 0.14219 (14) 0.79170 (13) 0.0302 (6)N3 0.28561 (17) 0.22388 (14) 0.93075 (12) 0.0312 (6)N4 0.42751 (17) 0.12499 (14) 0.93553 (12) 0.0307 (6)N5 0.13044 (18) 0.15645 (14) 0.76514 (14) 0.0337 (6)N6 0.18439 (17) 0.00730 (14) 0.76635 (13) 0.0308 (6)N7 0.13358 (18) 0.14323 (15) 0.93093 (13) 0.0345 (6)N8 0.20644 (18) 0.03278 (15) 0.90921 (13) 0.0330 (6)N9 0.45806 (17) −0.03173 (14) 0.89580 (12) 0.0301 (6)N10 0.34564 (17) −0.08566 (14) 0.81453 (13) 0.0329 (6)O1 0.21502 (15) 0.29635 (12) 0.75199 (13) 0.0424 (6)O2 0.41168 (14) 0.07989 (11) 0.80519 (11) 0.0333 (5)O3 0.22535 (15) 0.27495 (13) 0.92507 (12) 0.0399 (6)O4 0.34924 (14) 0.09770 (12) 0.91047 (11) 0.0342 (5)O5 0.09813 (16) 0.22254 (13) 0.76779 (14) 0.0454 (7)O6 0.24766 (14) 0.05433 (12) 0.79020 (11) 0.0331 (5)O7 0.10615 (16) 0.20776 (14) 0.94544 (13) 0.0445 (6)O8 0.25669 (15) −0.02059 (12) 0.89833 (11) 0.0361 (5)O9 0.52088 (17) 0.00669 (14) 0.93202 (12) 0.0404 (6)O10 0.27559 (16) −0.11284 (13) 0.77446 (12) 0.0395 (6)Ni1 0.25135 (3) 0.14989 (2) 0.77620 (2) 0.03005 (11)Ni2 0.24612 (3) 0.12803 (2) 0.92204 (2) 0.03014 (11)Ni3 0.34675 (3) 0.01380 (2) 0.85238 (2) 0.02978 (11)H1A 0.149 (4) 0.262 (3) 0.761 (3) 0.10 (2)*H2A 0.166 (3) 0.244 (3) 0.935 (2) 0.081 (16)*H3A 0.488 (4) 0.043 (3) 0.933 (3) 0.09 (2)*H4A 0.233 (3) −0.070 (3) 0.770 (2) 0.095 (18)*

  • supporting information

    sup-6Acta Cryst. (2016). E72, 538-542

    Atomic displacement parameters (Å2)

    U11 U22 U33 U12 U13 U23

    C1 0.0263 (16) 0.0267 (15) 0.0376 (17) −0.0007 (13) 0.0076 (13) 0.0027 (13)C2 0.0271 (16) 0.0272 (15) 0.0329 (16) 0.0010 (13) 0.0088 (13) 0.0019 (13)C3 0.0274 (16) 0.0301 (16) 0.0318 (16) −0.0026 (13) 0.0120 (13) −0.0014 (13)C4 0.0296 (17) 0.0359 (18) 0.0379 (18) 0.0044 (14) 0.0095 (14) 0.0015 (14)C5 0.0292 (18) 0.047 (2) 0.0414 (19) 0.0061 (16) 0.0076 (15) 0.0005 (16)C6 0.0243 (17) 0.055 (2) 0.046 (2) −0.0013 (16) 0.0035 (15) −0.0013 (18)C7 0.0321 (19) 0.045 (2) 0.046 (2) −0.0098 (16) 0.0084 (15) −0.0027 (17)C8 0.0286 (17) 0.0349 (17) 0.0343 (17) −0.0010 (14) 0.0122 (13) −0.0019 (14)C9 0.0319 (17) 0.0291 (16) 0.0334 (16) −0.0043 (13) 0.0125 (13) −0.0049 (13)C10 0.0361 (19) 0.0343 (18) 0.0448 (19) −0.0093 (15) 0.0173 (15) −0.0043 (15)C11 0.049 (2) 0.0278 (17) 0.048 (2) −0.0082 (16) 0.0199 (17) 0.0011 (15)C12 0.048 (2) 0.0265 (16) 0.046 (2) 0.0013 (15) 0.0182 (17) 0.0047 (15)C13 0.0344 (18) 0.0274 (16) 0.0396 (18) 0.0021 (14) 0.0104 (14) 0.0029 (14)C14 0.0313 (17) 0.0237 (15) 0.0354 (16) −0.0018 (13) 0.0118 (13) 0.0005 (13)C15 0.0300 (17) 0.0285 (16) 0.0298 (15) −0.0013 (13) 0.0080 (13) −0.0011 (13)C16 0.0288 (16) 0.0261 (15) 0.0309 (15) −0.0018 (13) 0.0081 (13) −0.0004 (12)C17 0.0282 (16) 0.0318 (16) 0.0285 (15) −0.0034 (13) 0.0072 (12) −0.0013 (13)C18 0.0335 (18) 0.0324 (17) 0.0321 (16) −0.0039 (14) 0.0062 (14) −0.0003 (14)C19 0.0315 (18) 0.043 (2) 0.0338 (17) 0.0031 (15) 0.0052 (14) 0.0020 (15)C20 0.0312 (18) 0.049 (2) 0.0400 (19) −0.0079 (16) −0.0001 (15) −0.0026 (16)C21 0.039 (2) 0.0372 (19) 0.0425 (19) −0.0116 (16) 0.0077 (16) −0.0027 (16)C22 0.0322 (17) 0.0329 (17) 0.0312 (16) −0.0055 (14) 0.0095 (13) −0.0022 (13)C23 0.0345 (18) 0.0299 (16) 0.0328 (16) −0.0010 (14) 0.0116 (14) −0.0016 (13)C24 0.040 (2) 0.0316 (17) 0.047 (2) −0.0064 (15) 0.0132 (16) −0.0014 (15)C25 0.053 (2) 0.0287 (17) 0.050 (2) −0.0040 (16) 0.0183 (18) −0.0005 (16)C26 0.048 (2) 0.0298 (17) 0.046 (2) 0.0042 (16) 0.0131 (17) 0.0056 (15)C27 0.039 (2) 0.0315 (17) 0.0391 (18) 0.0016 (15) 0.0109 (15) 0.0002 (14)C28 0.0335 (17) 0.0283 (16) 0.0341 (17) −0.0011 (14) 0.0123 (14) −0.0011 (13)C29 0.0243 (16) 0.0294 (16) 0.0328 (16) 0.0010 (13) 0.0043 (12) 0.0051 (13)C30 0.0267 (16) 0.0299 (16) 0.0355 (17) −0.0019 (13) 0.0053 (13) 0.0030 (13)C31 0.0344 (18) 0.0314 (17) 0.0359 (17) −0.0036 (14) 0.0026 (14) 0.0023 (14)C32 0.037 (2) 0.041 (2) 0.048 (2) −0.0034 (16) 0.0033 (16) −0.0064 (17)C33 0.050 (3) 0.040 (2) 0.064 (3) −0.0043 (19) 0.001 (2) −0.0108 (19)C34 0.047 (2) 0.042 (2) 0.065 (3) −0.0139 (19) −0.006 (2) −0.003 (2)C35 0.034 (2) 0.043 (2) 0.060 (2) −0.0075 (17) −0.0004 (17) 0.0005 (19)C36 0.0312 (18) 0.0355 (18) 0.0403 (19) −0.0055 (14) 0.0007 (14) 0.0057 (15)C37 0.0289 (17) 0.0405 (19) 0.0374 (18) −0.0029 (15) 0.0040 (14) 0.0083 (15)C38 0.0283 (18) 0.052 (2) 0.049 (2) −0.0044 (16) 0.0051 (16) 0.0110 (18)C39 0.0297 (19) 0.063 (3) 0.048 (2) 0.0074 (18) 0.0115 (16) 0.0120 (19)C40 0.033 (2) 0.057 (2) 0.047 (2) 0.0098 (18) 0.0127 (16) 0.0050 (18)C41 0.0339 (19) 0.0388 (19) 0.046 (2) 0.0010 (15) 0.0088 (15) −0.0008 (16)C42 0.0255 (16) 0.0349 (17) 0.0357 (17) 0.0006 (13) 0.0043 (13) 0.0063 (14)C43 0.0300 (17) 0.0390 (18) 0.0344 (17) −0.0011 (14) 0.0059 (13) 0.0044 (14)C44 0.0328 (18) 0.0368 (18) 0.0328 (17) −0.0041 (14) 0.0035 (14) 0.0078 (14)C45 0.038 (2) 0.0362 (18) 0.0372 (18) −0.0071 (15) 0.0031 (15) 0.0051 (15)

  • supporting information

    sup-7Acta Cryst. (2016). E72, 538-542

    C46 0.043 (2) 0.041 (2) 0.044 (2) −0.0107 (17) 0.0031 (16) 0.0024 (16)C47 0.063 (3) 0.044 (2) 0.058 (3) −0.017 (2) 0.008 (2) −0.005 (2)C48 0.056 (3) 0.058 (3) 0.071 (3) −0.030 (2) 0.001 (2) −0.004 (2)C49 0.043 (2) 0.054 (3) 0.060 (3) −0.017 (2) 0.0017 (19) 0.002 (2)C50 0.038 (2) 0.047 (2) 0.0387 (19) −0.0151 (17) 0.0003 (15) 0.0102 (17)C51 0.0311 (19) 0.053 (2) 0.0361 (18) −0.0055 (16) 0.0019 (14) 0.0130 (16)C52 0.037 (2) 0.064 (3) 0.049 (2) −0.0115 (19) 0.0057 (17) 0.016 (2)C53 0.030 (2) 0.078 (3) 0.051 (2) 0.002 (2) 0.0115 (17) 0.019 (2)C54 0.035 (2) 0.074 (3) 0.046 (2) 0.005 (2) 0.0135 (17) 0.011 (2)C55 0.0318 (19) 0.054 (2) 0.045 (2) 0.0010 (17) 0.0108 (16) 0.0073 (18)C56 0.0281 (17) 0.050 (2) 0.0341 (17) −0.0037 (16) 0.0025 (14) 0.0097 (16)C57 0.0320 (17) 0.0263 (15) 0.0364 (17) 0.0007 (13) 0.0102 (14) 0.0033 (13)C58 0.0323 (17) 0.0262 (15) 0.0341 (16) 0.0016 (13) 0.0095 (13) 0.0031 (13)C59 0.0381 (18) 0.0273 (16) 0.0303 (16) 0.0003 (14) 0.0061 (14) 0.0001 (13)C60 0.042 (2) 0.0313 (18) 0.048 (2) −0.0002 (15) 0.0036 (16) 0.0007 (16)C61 0.065 (3) 0.0309 (19) 0.050 (2) −0.0080 (19) −0.003 (2) −0.0026 (17)C62 0.076 (3) 0.0271 (18) 0.053 (2) 0.0001 (19) 0.003 (2) −0.0054 (17)C63 0.058 (3) 0.0330 (19) 0.053 (2) 0.0136 (18) 0.0061 (19) 0.0004 (17)C64 0.047 (2) 0.0299 (17) 0.0355 (18) 0.0032 (15) 0.0124 (15) 0.0008 (14)C65 0.0396 (19) 0.0345 (18) 0.0382 (18) 0.0070 (15) 0.0130 (15) 0.0062 (15)C66 0.045 (2) 0.039 (2) 0.054 (2) 0.0106 (17) 0.0135 (18) 0.0073 (17)C67 0.038 (2) 0.047 (2) 0.060 (2) 0.0133 (18) 0.0112 (18) 0.0134 (19)C68 0.0332 (19) 0.047 (2) 0.050 (2) 0.0003 (16) 0.0055 (16) 0.0147 (18)C69 0.0358 (19) 0.0345 (18) 0.0411 (19) 0.0052 (15) 0.0074 (15) 0.0093 (15)C70 0.0312 (17) 0.0303 (16) 0.0356 (17) 0.0021 (14) 0.0085 (14) 0.0062 (14)C71 0.055 (3) 0.108 (5) 0.138 (6) 0.015 (3) 0.025 (4) 0.052 (4)C72 0.047 (3) 0.054 (3) 0.080 (3) 0.000 (2) 0.019 (2) 0.015 (2)C73 0.055 (3) 0.052 (2) 0.050 (2) −0.001 (2) 0.0157 (19) 0.0116 (19)C74 0.059 (3) 0.045 (2) 0.053 (2) 0.000 (2) 0.026 (2) −0.0001 (19)C75 0.054 (3) 0.045 (2) 0.053 (2) 0.0034 (19) 0.014 (2) 0.0046 (19)C76 0.070 (3) 0.074 (3) 0.052 (3) 0.018 (3) 0.025 (2) 0.016 (2)C77 0.075 (3) 0.083 (4) 0.071 (3) 0.017 (3) 0.045 (3) 0.020 (3)C78 0.110 (6) 0.077 (5) 0.074 (5) −0.002 (5) 0.018 (5) −0.001 (4)C79 0.081 (4) 0.068 (4) 0.068 (3) 0.006 (4) 0.014 (3) −0.012 (3)C80 0.100 (5) 0.069 (4) 0.067 (4) 0.005 (4) 0.006 (4) −0.005 (3)C81 0.105 (5) 0.069 (4) 0.075 (4) 0.007 (4) −0.001 (4) 0.004 (4)C82 0.097 (5) 0.070 (5) 0.069 (4) 0.009 (4) −0.005 (4) −0.009 (3)C83 0.088 (4) 0.078 (5) 0.080 (4) 0.007 (4) 0.007 (4) −0.015 (4)C84 0.080 (4) 0.075 (4) 0.076 (4) 0.010 (4) 0.018 (4) −0.010 (4)C78A 0.087 (8) 0.089 (8) 0.067 (7) 0.002 (7) 0.035 (6) 0.000 (7)C79A 0.090 (5) 0.074 (5) 0.074 (4) 0.010 (4) 0.015 (4) −0.008 (4)C81A 0.098 (6) 0.074 (6) 0.070 (5) 0.002 (5) 0.010 (5) −0.003 (5)C80A 0.093 (6) 0.070 (5) 0.072 (5) 0.001 (5) 0.014 (5) −0.005 (5)C82A 0.097 (6) 0.072 (5) 0.071 (5) 0.007 (5) 0.004 (5) 0.000 (4)C83A 0.095 (6) 0.074 (5) 0.071 (4) 0.006 (5) −0.003 (5) −0.005 (5)C84A 0.090 (5) 0.074 (5) 0.075 (4) 0.008 (4) 0.007 (4) −0.009 (4)N1 0.0260 (14) 0.0272 (14) 0.0453 (16) 0.0056 (11) 0.0061 (12) 0.0058 (12)N2 0.0292 (14) 0.0235 (13) 0.0386 (15) 0.0031 (11) 0.0087 (12) 0.0020 (11)

  • supporting information

    sup-8Acta Cryst. (2016). E72, 538-542

    N3 0.0283 (14) 0.0289 (14) 0.0366 (15) 0.0044 (11) 0.0072 (11) 0.0010 (11)N4 0.0267 (14) 0.0288 (13) 0.0366 (14) −0.0035 (11) 0.0064 (11) −0.0041 (11)N5 0.0284 (15) 0.0259 (13) 0.0478 (17) 0.0024 (11) 0.0104 (12) 0.0030 (12)N6 0.0275 (14) 0.0251 (13) 0.0394 (15) −0.0040 (11) 0.0060 (12) 0.0006 (11)N7 0.0304 (15) 0.0345 (15) 0.0379 (15) −0.0016 (12) 0.0058 (12) 0.0002 (12)N8 0.0307 (15) 0.0301 (14) 0.0389 (15) −0.0007 (12) 0.0084 (12) 0.0027 (12)N9 0.0279 (14) 0.0247 (13) 0.0365 (14) −0.0019 (11) 0.0034 (11) 0.0023 (11)N10 0.0294 (15) 0.0264 (13) 0.0415 (16) −0.0013 (11) 0.0039 (12) −0.0017 (12)O1 0.0271 (13) 0.0255 (12) 0.0740 (19) 0.0064 (10) 0.0091 (12) 0.0141 (12)O2 0.0295 (12) 0.0231 (11) 0.0480 (14) 0.0047 (9) 0.0098 (10) 0.0017 (10)O3 0.0292 (13) 0.0282 (12) 0.0627 (17) 0.0058 (10) 0.0104 (11) 0.0020 (11)O4 0.0255 (12) 0.0296 (12) 0.0474 (14) −0.0045 (9) 0.0072 (10) −0.0069 (10)O5 0.0288 (13) 0.0255 (12) 0.084 (2) 0.0048 (10) 0.0163 (13) 0.0077 (13)O6 0.0249 (12) 0.0255 (11) 0.0468 (14) −0.0039 (9) 0.0021 (10) 0.0009 (10)O7 0.0333 (14) 0.0368 (14) 0.0663 (18) 0.0036 (11) 0.0169 (12) −0.0043 (13)O8 0.0344 (13) 0.0292 (12) 0.0449 (14) −0.0010 (10) 0.0087 (11) 0.0005 (10)O9 0.0337 (14) 0.0317 (13) 0.0506 (15) −0.0002 (11) −0.0038 (11) −0.0058 (11)O10 0.0349 (14) 0.0309 (12) 0.0471 (15) 0.0019 (11) −0.0049 (11) −0.0071 (11)Ni1 0.0237 (2) 0.0232 (2) 0.0434 (2) 0.00088 (16) 0.00702 (17) 0.00455 (17)Ni2 0.0251 (2) 0.0275 (2) 0.0382 (2) −0.00170 (16) 0.00718 (17) −0.00033 (17)Ni3 0.0274 (2) 0.0223 (2) 0.0386 (2) 0.00040 (16) 0.00435 (17) 0.00011 (17)

    Geometric parameters (Å, º)

    C1—N1 1.310 (4) C55—H55 0.9300C1—C14 1.461 (4) C57—N9 1.310 (4)C1—C2 1.464 (4) C57—C70 1.465 (5)C2—N2 1.322 (4) C57—C58 1.495 (5)C2—C3 1.462 (4) C58—N10 1.299 (4)C3—C4 1.410 (5) C58—C59 1.467 (4)C3—C8 1.418 (4) C59—C60 1.406 (5)C4—C5 1.373 (5) C59—C64 1.408 (5)C4—H4 0.9300 C60—C61 1.372 (5)C5—C6 1.383 (5) C60—H60 0.9300C5—H5 0.9300 C61—C62 1.368 (6)C6—C7 1.374 (5) C61—H61 0.9300C6—H6 0.9300 C62—C63 1.380 (6)C7—C8 1.400 (5) C62—H62 0.9300C7—H7 0.9300 C63—C64 1.399 (5)C8—C9 1.479 (5) C63—H63 0.9300C9—C10 1.406 (4) C64—C65 1.481 (5)C9—C14 1.412 (5) C65—C66 1.400 (5)C10—C11 1.373 (5) C65—C70 1.416 (5)C10—H10 0.9300 C66—C67 1.364 (6)C11—C12 1.387 (5) C66—H66 0.9300C11—H11 0.9300 C67—C68 1.379 (6)C12—C13 1.384 (5) C67—H67 0.9300C12—H12 0.9300 C68—C69 1.378 (5)

  • supporting information

    sup-9Acta Cryst. (2016). E72, 538-542

    C13—C14 1.408 (4) C68—H68 0.9300C13—H13 0.9300 C69—C70 1.420 (5)C15—N3 1.321 (4) C69—H69 0.9300C15—C16 1.468 (4) C71—C72 1.517 (7)C15—C28 1.479 (4) C71—H71A 0.9600C16—N4 1.290 (4) C71—H71B 0.9600C16—C17 1.481 (4) C71—H71C 0.9600C17—C22 1.396 (4) C72—C73 1.387 (6)C17—C18 1.401 (5) C72—C77 1.388 (7)C18—C19 1.380 (5) C73—C74 1.369 (6)C18—H18 0.9300 C73—H73 0.9300C19—C20 1.390 (5) C74—C75 1.382 (6)C19—H19 0.9300 C74—H74 0.9300C20—C21 1.372 (5) C75—C76 1.365 (6)C20—H20 0.9300 C75—H75 0.9300C21—C22 1.410 (5) C76—C77 1.377 (7)C21—H21 0.9300 C76—H76 0.9300C22—C23 1.469 (5) C77—H77 0.9300C23—C24 1.399 (5) C78—C79 1.470 (10)C23—C28 1.424 (5) C78—H78A 0.9600C24—C25 1.376 (5) C78—H78B 0.9600C24—H24 0.9300 C78—H78C 0.9600C25—C26 1.378 (5) C79—C80 1.386 (6)C25—H25 0.9300 C79—C84 1.401 (6)C26—C27 1.384 (5) C80—C81 1.386 (7)C26—H26 0.9300 C80—H80 0.9300C27—C28 1.402 (5) C81—C82 1.390 (7)C27—H27 0.9300 C81—H81 0.9300C29—N5 1.319 (4) C82—C83 1.386 (7)C29—C30 1.465 (4) C82—H82 0.9300C29—C42 1.479 (4) C83—C84 1.384 (6)C30—N6 1.295 (4) C83—H83 0.9300C30—C31 1.472 (5) C84—H84 0.9300C31—C32 1.394 (5) C78A—C79A 1.523 (18)C31—C36 1.399 (5) C78A—H78D 0.9600C32—C33 1.384 (5) C78A—H78E 0.9600C32—H32 0.9300 C78A—H78F 0.9600C33—C34 1.367 (6) C79A—C84A 1.32 (2)C33—H33 0.9300 C79A—C80A 1.382 (8)C34—C35 1.372 (6) C81A—C82A 1.26 (3)C34—H34 0.9300 C81A—C80A 1.46 (2)C35—C36 1.410 (5) C81A—H81A 0.9300C35—H35 0.9300 C80A—H80A 0.9300C36—C37 1.469 (5) C82A—C83A 1.36 (3)C37—C38 1.403 (5) C82A—H82A 0.9300C37—C42 1.420 (5) C83A—C84A 1.44 (2)C38—C39 1.375 (6) C83A—H83A 0.9300C38—H38 0.9300 C84A—H84A 0.9300

  • supporting information

    sup-10Acta Cryst. (2016). E72, 538-542

    C39—C40 1.370 (6) N1—O1 1.349 (3)C39—H39 0.9300 N1—Ni1 1.859 (3)C40—C41 1.382 (5) N2—O2 1.333 (3)C40—H40 0.9300 N2—Ni1 1.884 (3)C41—C42 1.401 (5) N3—O3 1.341 (3)C41—H41 0.9300 N3—Ni2 1.892 (3)C43—N7 1.311 (4) N4—O4 1.363 (3)C43—C44 1.457 (5) N5—O5 1.342 (3)C43—C56 1.465 (5) N5—Ni1 1.900 (3)C44—N8 1.325 (4) N6—O6 1.364 (3)C44—C45 1.463 (5) N7—O7 1.344 (4)C45—C46 1.399 (5) N7—Ni2 1.871 (3)C45—C50 1.425 (5) N8—O8 1.333 (4)C46—C47 1.381 (5) N8—Ni2 1.888 (3)C46—H46 0.9300 N9—O9 1.365 (4)C47—C48 1.383 (6) N9—Ni3 2.035 (3)C47—H47 0.9300 N10—O10 1.388 (4)C48—C49 1.381 (7) N10—Ni3 2.043 (3)C48—H48 0.9300 O1—H1A 1.29 (6)C49—C50 1.399 (5) O2—Ni3 2.050 (2)C49—H49 0.9300 O3—H2A 1.17 (5)C50—C51 1.465 (6) O4—Ni2 1.811 (2)C51—C56 1.411 (5) O4—Ni3 2.044 (2)C51—C52 1.416 (5) O5—H1A 1.13 (6)C52—C53 1.359 (6) O6—Ni1 1.813 (2)C52—H52 0.9300 O6—Ni3 2.042 (2)C53—C54 1.378 (6) O7—H2A 1.24 (6)C53—H53 0.9300 O8—Ni3 2.047 (2)C54—C55 1.389 (5) O9—H3A 0.85 (6)C54—H54 0.9300 O10—H4A 1.04 (6)C55—C56 1.402 (5)

    N1—C1—C14 127.3 (3) C60—C59—C58 123.0 (3)N1—C1—C2 112.3 (3) C64—C59—C58 118.0 (3)C14—C1—C2 120.4 (3) C61—C60—C59 121.1 (4)N2—C2—C3 127.7 (3) C61—C60—H60 119.5N2—C2—C1 111.7 (3) C59—C60—H60 119.5C3—C2—C1 120.3 (3) C62—C61—C60 120.4 (4)C4—C3—C8 119.3 (3) C62—C61—H61 119.8C4—C3—C2 122.9 (3) C60—C61—H61 119.8C8—C3—C2 117.5 (3) C61—C62—C63 119.8 (4)C5—C4—C3 120.8 (3) C61—C62—H62 120.1C5—C4—H4 119.6 C63—C62—H62 120.1C3—C4—H4 119.6 C62—C63—C64 121.7 (4)C4—C5—C6 120.1 (3) C62—C63—H63 119.2C4—C5—H5 120.0 C64—C63—H63 119.2C6—C5—H5 120.0 C63—C64—C59 118.2 (3)C7—C6—C5 120.0 (3) C63—C64—C65 120.5 (3)

  • supporting information

    sup-11Acta Cryst. (2016). E72, 538-542

    C7—C6—H6 120.0 C59—C64—C65 121.3 (3)C5—C6—H6 120.0 C66—C65—C70 118.8 (3)C6—C7—C8 122.1 (4) C66—C65—C64 120.2 (3)C6—C7—H7 119.0 C70—C65—C64 120.9 (3)C8—C7—H7 119.0 C67—C66—C65 121.6 (4)C7—C8—C3 117.6 (3) C67—C66—H66 119.2C7—C8—C9 121.2 (3) C65—C66—H66 119.2C3—C8—C9 121.2 (3) C66—C67—C68 119.8 (4)C10—C9—C14 117.7 (3) C66—C67—H67 120.1C10—C9—C8 121.0 (3) C68—C67—H67 120.1C14—C9—C8 121.3 (3) C69—C68—C67 121.3 (4)C11—C10—C9 122.2 (3) C69—C68—H68 119.3C11—C10—H10 118.9 C67—C68—H68 119.3C9—C10—H10 118.9 C68—C69—C70 119.7 (3)C10—C11—C12 120.0 (3) C68—C69—H69 120.1C10—C11—H11 120.0 C70—C69—H69 120.1C12—C11—H11 120.0 C65—C70—C69 118.7 (3)C13—C12—C11 119.5 (3) C65—C70—C57 118.0 (3)C13—C12—H12 120.2 C69—C70—C57 123.3 (3)C11—C12—H12 120.2 C72—C71—H71A 109.5C12—C13—C14 121.1 (3) C72—C71—H71B 109.5C12—C13—H13 119.4 H71A—C71—H71B 109.5C14—C13—H13 119.4 C72—C71—H71C 109.5C13—C14—C9 119.4 (3) H71A—C71—H71C 109.5C13—C14—C1 122.9 (3) H71B—C71—H71C 109.5C9—C14—C1 117.6 (3) C73—C72—C77 117.9 (4)N3—C15—C16 118.6 (3) C73—C72—C71 121.0 (5)N3—C15—C28 124.4 (3) C77—C72—C71 121.2 (5)C16—C15—C28 117.0 (3) C74—C73—C72 120.7 (4)N4—C16—C15 126.2 (3) C74—C73—H73 119.7N4—C16—C17 115.3 (3) C72—C73—H73 119.7C15—C16—C17 118.5 (3) C73—C74—C75 120.6 (4)C22—C17—C18 120.3 (3) C73—C74—H74 119.7C22—C17—C16 119.6 (3) C75—C74—H74 119.7C18—C17—C16 120.1 (3) C76—C75—C74 119.6 (4)C19—C18—C17 120.7 (3) C76—C75—H75 120.2C19—C18—H18 119.6 C74—C75—H75 120.2C17—C18—H18 119.6 C75—C76—C77 119.9 (4)C18—C19—C20 119.5 (3) C75—C76—H76 120.0C18—C19—H19 120.3 C77—C76—H76 120.0C20—C19—H19 120.3 C76—C77—C72 121.3 (4)C21—C20—C19 120.2 (3) C76—C77—H77 119.3C21—C20—H20 119.9 C72—C77—H77 119.3C19—C20—H20 119.9 C79—C78—H78A 109.5C20—C21—C22 121.7 (3) C79—C78—H78B 109.5C20—C21—H21 119.2 H78A—C78—H78B 109.5C22—C21—H21 119.2 C79—C78—H78C 109.5C17—C22—C21 117.7 (3) H78A—C78—H78C 109.5

  • supporting information

    sup-12Acta Cryst. (2016). E72, 538-542

    C17—C22—C23 120.3 (3) H78B—C78—H78C 109.5C21—C22—C23 122.0 (3) C80—C79—C84 119.1 (5)C24—C23—C28 117.8 (3) C80—C79—C78 121.0 (5)C24—C23—C22 121.4 (3) C84—C79—C78 119.9 (5)C28—C23—C22 120.7 (3) C81—C80—C79 121.2 (5)C25—C24—C23 122.4 (3) C81—C80—H80 119.4C25—C24—H24 118.8 C79—C80—H80 119.4C23—C24—H24 118.8 C80—C81—C82 119.5 (5)C24—C25—C26 119.6 (3) C80—C81—H81 120.2C24—C25—H25 120.2 C82—C81—H81 120.2C26—C25—H25 120.2 C83—C82—C81 119.6 (5)C25—C26—C27 119.9 (4) C83—C82—H82 120.2C25—C26—H26 120.0 C81—C82—H82 120.2C27—C26—H26 120.0 C84—C83—C82 121.0 (5)C26—C27—C28 121.5 (3) C84—C83—H83 119.5C26—C27—H27 119.3 C82—C83—H83 119.5C28—C27—H27 119.3 C83—C84—C79 119.5 (5)C27—C28—C23 118.6 (3) C83—C84—H84 120.2C27—C28—C15 122.4 (3) C79—C84—H84 120.2C23—C28—C15 118.9 (3) C79A—C78A—H78D 109.5N5—C29—C30 117.8 (3) C79A—C78A—H78E 109.5N5—C29—C42 125.7 (3) H78D—C78A—H78E 109.5C30—C29—C42 116.4 (3) C79A—C78A—H78F 109.5N6—C30—C29 126.8 (3) H78D—C78A—H78F 109.5N6—C30—C31 114.6 (3) H78E—C78A—H78F 109.5C29—C30—C31 118.6 (3) C84A—C79A—C80A 120.4 (17)C32—C31—C36 120.4 (3) C84A—C79A—C78A 121.6 (11)C32—C31—C30 120.9 (3) C80A—C79A—C78A 117.9 (12)C36—C31—C30 118.7 (3) C82A—C81A—C80A 123.7 (16)C33—C32—C31 120.1 (4) C82A—C81A—H81A 118.2C33—C32—H32 120.0 C80A—C81A—H81A 118.2C31—C32—H32 120.0 C79A—C80A—C81A 115.9 (14)C34—C33—C32 120.1 (4) C79A—C80A—H80A 122.1C34—C33—H33 119.9 C81A—C80A—H80A 122.1C32—C33—H33 119.9 C81A—C82A—C83A 121 (2)C33—C34—C35 120.7 (4) C81A—C82A—H82A 119.5C33—C34—H34 119.7 C83A—C82A—H82A 119.5C35—C34—H34 119.7 C82A—C83A—C84A 117.8 (17)C34—C35—C36 121.0 (4) C82A—C83A—H83A 121.1C34—C35—H35 119.5 C84A—C83A—H83A 121.1C36—C35—H35 119.5 C79A—C84A—C83A 121.3 (18)C31—C36—C35 117.8 (3) C79A—C84A—H84A 119.3C31—C36—C37 119.5 (3) C83A—C84A—H84A 119.3C35—C36—C37 122.8 (3) C1—N1—O1 120.2 (3)C38—C37—C42 118.0 (3) C1—N1—Ni1 117.4 (2)C38—C37—C36 120.8 (3) O1—N1—Ni1 122.4 (2)C42—C37—C36 121.1 (3) C2—N2—O2 121.3 (3)C39—C38—C37 121.9 (4) C2—N2—Ni1 116.3 (2)

  • supporting information

    sup-13Acta Cryst. (2016). E72, 538-542

    C39—C38—H38 119.1 O2—N2—Ni1 122.3 (2)C37—C38—H38 119.1 C15—N3—O3 116.8 (3)C40—C39—C38 120.0 (4) C15—N3—Ni2 126.6 (2)C40—C39—H39 120.0 O3—N3—Ni2 116.3 (2)C38—C39—H39 120.0 C16—N4—O4 119.1 (3)C39—C40—C41 120.2 (4) C29—N5—O5 116.3 (3)C39—C40—H40 119.9 C29—N5—Ni1 126.6 (2)C41—C40—H40 119.9 O5—N5—Ni1 116.3 (2)C40—C41—C42 121.2 (4) C30—N6—O6 118.6 (3)C40—C41—H41 119.4 C43—N7—O7 120.8 (3)C42—C41—H41 119.4 C43—N7—Ni2 117.0 (2)C41—C42—C37 118.7 (3) O7—N7—Ni2 122.0 (2)C41—C42—C29 122.4 (3) C44—N8—O8 121.7 (3)C37—C42—C29 118.6 (3) C44—N8—Ni2 115.9 (2)N7—C43—C44 112.4 (3) O8—N8—Ni2 122.3 (2)N7—C43—C56 127.1 (3) C57—N9—O9 117.4 (3)C44—C43—C56 120.4 (3) C57—N9—Ni3 118.8 (2)N8—C44—C43 112.2 (3) O9—N9—Ni3 122.5 (2)N8—C44—C45 127.3 (3) C58—N10—O10 117.1 (3)C43—C44—C45 120.4 (3) C58—N10—Ni3 118.1 (2)C46—C45—C50 120.2 (3) O10—N10—Ni3 123.1 (2)C46—C45—C44 122.5 (3) N1—O1—H1A 101 (3)C50—C45—C44 117.1 (3) N2—O2—Ni3 111.88 (18)C47—C46—C45 120.6 (4) N3—O3—H2A 103 (2)C47—C46—H46 119.7 N4—O4—Ni2 127.34 (19)C45—C46—H46 119.7 N4—O4—Ni3 116.88 (18)C46—C47—C48 119.8 (4) Ni2—O4—Ni3 115.78 (11)C46—C47—H47 120.1 N5—O5—H1A 107 (3)C48—C47—H47 120.1 N6—O6—Ni1 127.55 (19)C49—C48—C47 120.4 (4) N6—O6—Ni3 116.43 (18)C49—C48—H48 119.8 Ni1—O6—Ni3 115.93 (11)C47—C48—H48 119.8 N7—O7—H2A 98 (2)C48—C49—C50 121.9 (4) N8—O8—Ni3 111.97 (18)C48—C49—H49 119.0 N9—O9—H3A 93 (4)C50—C49—H49 119.0 N10—O10—H4A 102 (3)C49—C50—C45 117.1 (4) O6—Ni1—N1 169.58 (11)C49—C50—C51 121.4 (4) O6—Ni1—N2 87.73 (10)C45—C50—C51 121.5 (3) N1—Ni1—N2 81.94 (11)C56—C51—C52 117.1 (4) O6—Ni1—N5 91.03 (11)C56—C51—C50 121.7 (3) N1—Ni1—N5 99.21 (12)C52—C51—C50 121.2 (4) N2—Ni1—N5 176.81 (12)C53—C52—C51 122.3 (4) O4—Ni2—N7 170.22 (11)C53—C52—H52 118.9 O4—Ni2—N8 88.31 (11)C51—C52—H52 118.9 N7—Ni2—N8 81.93 (12)C52—C53—C54 120.6 (4) O4—Ni2—N3 90.94 (11)C52—C53—H53 119.7 N7—Ni2—N3 98.79 (12)C54—C53—H53 119.7 N8—Ni2—N3 177.16 (12)C53—C54—C55 119.4 (4) N9—Ni3—O6 165.53 (11)

  • supporting information

    sup-14Acta Cryst. (2016). E72, 538-542

    C53—C54—H54 120.3 N9—Ni3—N10 76.02 (11)C55—C54—H54 120.3 O6—Ni3—N10 95.97 (10)C54—C55—C56 120.9 (4) N9—Ni3—O4 96.00 (10)C54—C55—H55 119.5 O6—Ni3—O4 94.37 (10)C56—C55—H55 119.5 N10—Ni3—O4 164.78 (11)C55—C56—C51 119.8 (3) N9—Ni3—O8 104.85 (10)C55—C56—C43 123.0 (3) O6—Ni3—O8 86.82 (10)C51—C56—C43 117.3 (3) N10—Ni3—O8 89.16 (10)N9—C57—C70 128.8 (3) O4—Ni3—O8 80.29 (9)N9—C57—C58 112.0 (3) N9—Ni3—O2 91.16 (10)C70—C57—C58 119.2 (3) O6—Ni3—O2 79.47 (9)N10—C58—C59 128.4 (3) N10—Ni3—O2 106.60 (10)N10—C58—C57 112.7 (3) O4—Ni3—O2 86.25 (9)C59—C58—C57 118.8 (3) O8—Ni3—O2 159.99 (9)C60—C59—C64 118.8 (3)

    N1—C1—C2—N2 6.8 (4) C50—C51—C56—C43 −0.1 (5)C14—C1—C2—N2 −174.0 (3) N7—C43—C56—C55 −9.7 (6)N1—C1—C2—C3 −166.9 (3) C44—C43—C56—C55 168.1 (3)C14—C1—C2—C3 12.4 (5) N7—C43—C56—C51 171.5 (3)N2—C2—C3—C4 −0.7 (5) C44—C43—C56—C51 −10.7 (5)C1—C2—C3—C4 171.9 (3) N9—C57—C58—N10 16.8 (4)N2—C2—C3—C8 −174.4 (3) C70—C57—C58—N10 −160.8 (3)C1—C2—C3—C8 −1.8 (4) N9—C57—C58—C59 −161.1 (3)C8—C3—C4—C5 3.3 (5) C70—C57—C58—C59 21.3 (4)C2—C3—C4—C5 −170.3 (3) N10—C58—C59—C60 −17.7 (6)C3—C4—C5—C6 −0.6 (5) C57—C58—C59—C60 159.9 (3)C4—C5—C6—C7 −1.8 (6) N10—C58—C59—C64 166.4 (3)C5—C6—C7—C8 1.4 (6) C57—C58—C59—C64 −16.0 (5)C6—C7—C8—C3 1.3 (5) C64—C59—C60—C61 0.6 (6)C6—C7—C8—C9 −179.2 (3) C58—C59—C60—C61 −175.3 (4)C4—C3—C8—C7 −3.6 (5) C59—C60—C61—C62 −2.1 (6)C2—C3—C8—C7 170.4 (3) C60—C61—C62—C63 1.9 (7)C4—C3—C8—C9 176.9 (3) C61—C62—C63—C64 −0.2 (7)C2—C3—C8—C9 −9.1 (4) C62—C63—C64—C59 −1.3 (6)C7—C8—C9—C10 13.2 (5) C62—C63—C64—C65 176.6 (4)C3—C8—C9—C10 −167.3 (3) C60—C59—C64—C63 1.1 (5)C7—C8—C9—C14 −169.4 (3) C58—C59—C64—C63 177.2 (3)C3—C8—C9—C14 10.1 (5) C60—C59—C64—C65 −176.9 (3)C14—C9—C10—C11 1.0 (5) C58—C59—C64—C65 −0.8 (5)C8—C9—C10—C11 178.6 (3) C63—C64—C65—C66 13.5 (5)C9—C10—C11—C12 −1.6 (6) C59—C64—C65—C66 −168.6 (3)C10—C11—C12—C13 0.8 (5) C63—C64—C65—C70 −164.5 (3)C11—C12—C13—C14 0.6 (5) C59—C64—C65—C70 13.4 (5)C12—C13—C14—C9 −1.2 (5) C70—C65—C66—C67 3.0 (6)C12—C13—C14—C1 −178.7 (3) C64—C65—C66—C67 −175.1 (4)C10—C9—C14—C13 0.4 (5) C65—C66—C67—C68 −0.1 (6)C8—C9—C14—C13 −177.2 (3) C66—C67—C68—C69 −2.1 (6)

  • supporting information

    sup-15Acta Cryst. (2016). E72, 538-542

    C10—C9—C14—C1 178.0 (3) C67—C68—C69—C70 1.3 (6)C8—C9—C14—C1 0.5 (5) C66—C65—C70—C69 −3.7 (5)N1—C1—C14—C13 −14.7 (5) C64—C65—C70—C69 174.3 (3)C2—C1—C14—C13 166.2 (3) C66—C65—C70—C57 174.0 (3)N1—C1—C14—C9 167.7 (3) C64—C65—C70—C57 −7.9 (5)C2—C1—C14—C9 −11.4 (5) C68—C69—C70—C65 1.6 (5)N3—C15—C16—N4 26.0 (5) C68—C69—C70—C57 −176.0 (3)C28—C15—C16—N4 −154.2 (3) N9—C57—C70—C65 173.9 (3)N3—C15—C16—C17 −153.7 (3) C58—C57—C70—C65 −9.0 (5)C28—C15—C16—C17 26.0 (4) N9—C57—C70—C69 −8.5 (6)N4—C16—C17—C22 166.5 (3) C58—C57—C70—C69 168.6 (3)C15—C16—C17—C22 −13.8 (4) C77—C72—C73—C74 1.6 (7)N4—C16—C17—C18 −14.7 (4) C71—C72—C73—C74 −178.3 (5)C15—C16—C17—C18 165.1 (3) C72—C73—C74—C75 0.3 (7)C22—C17—C18—C19 −1.0 (5) C73—C74—C75—C76 −1.4 (7)C16—C17—C18—C19 −179.9 (3) C74—C75—C76—C77 0.5 (8)C17—C18—C19—C20 1.6 (5) C75—C76—C77—C72 1.5 (9)C18—C19—C20—C21 −0.4 (5) C73—C72—C77—C76 −2.5 (8)C19—C20—C21—C22 −1.3 (6) C71—C72—C77—C76 177.3 (6)C18—C17—C22—C21 −0.6 (5) C84—C79—C80—C81 0.2 (4)C16—C17—C22—C21 178.2 (3) C78—C79—C80—C81 −179.8 (3)C18—C17—C22—C23 176.3 (3) C79—C80—C81—C82 −0.6 (6)C16—C17—C22—C23 −4.9 (5) C80—C81—C82—C83 0.7 (7)C20—C21—C22—C17 1.8 (5) C81—C82—C83—C84 −0.4 (8)C20—C21—C22—C23 −175.1 (3) C82—C83—C84—C79 0.1 (7)C17—C22—C23—C24 −166.6 (3) C80—C79—C84—C83 0.0 (5)C21—C22—C23—C24 10.2 (5) C78—C79—C84—C83 −180.0 (3)C17—C22—C23—C28 11.0 (5) C84A—C79A—C80A—C81A 0.3 (6)C21—C22—C23—C28 −172.2 (3) C78A—C79A—C80A—C81A −179.9 (2)C28—C23—C24—C25 −1.3 (5) C82A—C81A—C80A—C79A 0.0 (6)C22—C23—C24—C25 176.4 (3) C80A—C81A—C82A—C83A −0.5 (7)C23—C24—C25—C26 −2.0 (6) C81A—C82A—C83A—C84A 0.5 (8)C24—C25—C26—C27 2.8 (6) C80A—C79A—C84A—C83A −0.2 (7)C25—C26—C27—C28 −0.1 (6) C78A—C79A—C84A—C83A 180.0 (4)C26—C27—C28—C23 −3.3 (5) C82A—C83A—C84A—C79A −0.2 (8)C26—C27—C28—C15 −178.9 (3) C14—C1—N1—O1 −1.9 (5)C24—C23—C28—C27 3.9 (5) C2—C1—N1—O1 177.3 (3)C22—C23—C28—C27 −173.8 (3) C14—C1—N1—Ni1 176.6 (3)C24—C23—C28—C15 179.6 (3) C2—C1—N1—Ni1 −4.2 (4)C22—C23—C28—C15 1.9 (5) C3—C2—N2—O2 −9.3 (5)N3—C15—C28—C27 −24.8 (5) C1—C2—N2—O2 177.6 (3)C16—C15—C28—C27 155.5 (3) C3—C2—N2—Ni1 166.7 (3)N3—C15—C28—C23 159.6 (3) C1—C2—N2—Ni1 −6.4 (4)C16—C15—C28—C23 −20.1 (4) C16—C15—N3—O3 173.6 (3)N5—C29—C30—N6 28.4 (5) C28—C15—N3—O3 −6.2 (5)C42—C29—C30—N6 −150.6 (3) C16—C15—N3—Ni2 −13.4 (4)N5—C29—C30—C31 −151.3 (3) C28—C15—N3—Ni2 166.8 (2)C42—C29—C30—C31 29.7 (4) C15—C16—N4—O4 −4.3 (5)

  • supporting information

    sup-16Acta Cryst. (2016). E72, 538-542

    N6—C30—C31—C32 −24.0 (5) C17—C16—N4—O4 175.4 (3)C29—C30—C31—C32 155.8 (3) C30—C29—N5—O5 172.0 (3)N6—C30—C31—C36 155.9 (3) C42—C29—N5—O5 −9.0 (5)C29—C30—C31—C36 −24.4 (5) C30—C29—N5—Ni1 −18.5 (4)C36—C31—C32—C33 −1.1 (6) C42—C29—N5—Ni1 160.5 (3)C30—C31—C32—C33 178.8 (4) C29—C30—N6—O6 −4.0 (5)C31—C32—C33—C34 −0.1 (7) C31—C30—N6—O6 175.7 (3)C32—C33—C34—C35 0.8 (7) C44—C43—N7—O7 178.7 (3)C33—C34—C35—C36 −0.3 (7) C56—C43—N7—O7 −3.4 (5)C32—C31—C36—C35 1.5 (5) C44—C43—N7—Ni2 −6.0 (4)C30—C31—C36—C35 −178.3 (3) C56—C43—N7—Ni2 172.0 (3)C32—C31—C36—C37 −177.9 (3) C43—C44—N8—O8 175.6 (3)C30—C31—C36—C37 2.3 (5) C45—C44—N8—O8 −8.5 (5)C34—C35—C36—C31 −0.8 (6) C43—C44—N8—Ni2 −7.2 (4)C34—C35—C36—C37 178.5 (4) C45—C44—N8—Ni2 168.7 (3)C31—C36—C37—C38 −166.6 (3) C70—C57—N9—O9 −0.4 (5)C35—C36—C37—C38 14.1 (5) C58—C57—N9—O9 −177.7 (3)C31—C36—C37—C42 14.3 (5) C70—C57—N9—Ni3 166.5 (3)C35—C36—C37—C42 −165.1 (3) C58—C57—N9—Ni3 −10.8 (4)C42—C37—C38—C39 1.1 (5) C59—C58—N10—O10 −3.5 (5)C36—C37—C38—C39 −178.0 (3) C57—C58—N10—O10 178.9 (3)C37—C38—C39—C40 0.4 (6) C59—C58—N10—Ni3 162.1 (3)C38—C39—C40—C41 −1.6 (6) C57—C58—N10—Ni3 −15.6 (4)C39—C40—C41—C42 1.2 (6) C2—N2—O2—Ni3 143.0 (3)C40—C41—C42—C37 0.3 (5) Ni1—N2—O2—Ni3 −32.7 (3)C40—C41—C42—C29 −173.5 (3) C16—N4—O4—Ni2 −30.5 (4)C38—C37—C42—C41 −1.5 (5) C16—N4—O4—Ni3 148.7 (2)C36—C37—C42—C41 177.7 (3) C30—N6—O6—Ni1 −30.9 (4)C38—C37—C42—C29 172.6 (3) C30—N6—O6—Ni3 145.4 (2)C36—C37—C42—C29 −8.3 (5) C44—N8—O8—Ni3 145.0 (3)N5—C29—C42—C41 −18.5 (5) Ni2—N8—O8—Ni3 −32.1 (3)C30—C29—C42—C41 160.4 (3) N6—O6—Ni1—N1 −158.8 (6)N5—C29—C42—C37 167.6 (3) Ni3—O6—Ni1—N1 24.9 (7)C30—C29—C42—C37 −13.4 (4) N6—O6—Ni1—N2 −151.0 (3)N7—C43—C44—N8 8.4 (4) Ni3—O6—Ni1—N2 32.64 (14)C56—C43—C44—N8 −169.7 (3) N6—O6—Ni1—N5 31.9 (3)N7—C43—C44—C45 −167.8 (3) Ni3—O6—Ni1—N5 −144.41 (14)C56—C43—C44—C45 14.1 (5) C1—N1—Ni1—O6 8.5 (8)N8—C44—C45—C46 −6.1 (6) O1—N1—Ni1—O6 −173.0 (6)C43—C44—C45—C46 169.4 (3) C1—N1—Ni1—N2 0.7 (3)N8—C44—C45—C50 178.3 (3) O1—N1—Ni1—N2 179.1 (3)C43—C44—C45—C50 −6.2 (5) C1—N1—Ni1—N5 177.7 (3)C50—C45—C46—C47 1.8 (6) O1—N1—Ni1—N5 −3.9 (3)C44—C45—C46—C47 −173.7 (4) C2—N2—Ni1—O6 −175.1 (2)C45—C46—C47—C48 −1.8 (6) O2—N2—Ni1—O6 0.8 (2)C46—C47—C48—C49 1.1 (7) C2—N2—Ni1—N1 3.5 (2)C47—C48—C49—C50 −0.4 (7) O2—N2—Ni1—N1 179.4 (3)C48—C49—C50—C45 0.4 (6) C29—N5—Ni1—O6 −5.9 (3)

  • supporting information

    sup-17Acta Cryst. (2016). E72, 538-542

    C48—C49—C50—C51 179.7 (4) O5—N5—Ni1—O6 163.6 (3)C46—C45—C50—C49 −1.0 (5) C29—N5—Ni1—N1 176.0 (3)C44—C45—C50—C49 174.6 (3) O5—N5—Ni1—N1 −14.5 (3)C46—C45—C50—C51 179.7 (3) N4—O4—Ni2—N8 −149.4 (3)C44—C45—C50—C51 −4.7 (5) Ni3—O4—Ni2—N8 31.36 (14)C49—C50—C51—C56 −171.2 (4) N4—O4—Ni2—N3 33.3 (3)C45—C50—C51—C56 8.0 (5) Ni3—O4—Ni2—N3 −145.90 (14)C49—C50—C51—C52 9.9 (6) C43—N7—Ni2—N8 1.8 (3)C45—C50—C51—C52 −170.8 (3) O7—N7—Ni2—N8 177.1 (3)C56—C51—C52—C53 −0.1 (6) C43—N7—Ni2—N3 179.0 (3)C50—C51—C52—C53 178.7 (4) O7—N7—Ni2—N3 −5.7 (3)C51—C52—C53—C54 0.2 (6) C44—N8—Ni2—O4 −176.1 (3)C52—C53—C54—C55 −0.1 (6) O8—N8—Ni2—O4 1.1 (2)C53—C54—C55—C56 −0.1 (6) C44—N8—Ni2—N7 3.3 (2)C54—C55—C56—C51 0.2 (5) O8—N8—Ni2—N7 −179.5 (3)C54—C55—C56—C43 −178.5 (3) C15—N3—Ni2—O4 −10.2 (3)C52—C51—C56—C55 −0.1 (5) O3—N3—Ni2—O4 162.8 (2)C50—C51—C56—C55 −179.0 (3) C15—N3—Ni2—N7 170.8 (3)C52—C51—C56—C43 178.7 (3) O3—N3—Ni2—N7 −16.1 (2)

    Hydrogen-bond geometry (Å, º)

    D—H···A D—H H···A D···A D—H···A

    O1—H1A···O5 1.29 (6) 1.13 (6) 2.405 (4) 169 (6)O3—H2A···O7 1.17 (5) 1.23 (5) 2.402 (4) 176 (5)O9—H3A···N4 0.86 (6) 1.82 (6) 2.672 (4) 175 (7)O10—H4A···N6 1.04 (5) 1.63 (5) 2.657 (4) 168 (4)

    (2) Bis(µ2-bis{[10-(oxidoimino)-9,10-dihydrophenanthren-9-ylidene]amino}difluoroborato)(phenanthrene-9,10-

    dione dioxime)trinickel(II) dichloromethane trisolvate

    Crystal data

    [Ni3(C28H16BF2N4O4)2(C14H10N2O2)]·3CH2Cl2Mr = 1456.88Monoclinic, P21/ca = 15.6414 (8) Åb = 30.8358 (11) Åc = 14.7380 (8) Åβ = 112.411 (6)°V = 6571.5 (6) Å3

    Z = 4

    F(000) = 2968Dx = 1.473 Mg m−3

    Cu Kα radiation, λ = 1.54184 ÅCell parameters from 25728 reflectionsθ = 3.4–76.5°µ = 1.67 mm−1

    T = 100 KBlock, red0.29 × 0.07 × 0.04 mm

    Data collection

    Agilent SuperNova Dual Source diffractometer with an Atlas detector

    Radiation source: sealed X-ray tubeDetector resolution: 5.2940 pixels mm-1

    ω scans

    Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014)

    Tmin = 0.303, Tmax = 1.00025337 measured reflections13041 independent reflections8782 reflections with I > 2σ(I)

  • supporting information

    sup-18Acta Cryst. (2016). E72, 538-542

    Rint = 0.060θmax = 75.0°, θmin = 3.4°h = −19→19

    k = −26→38l = −18→18

    Refinement

    Refinement on F2

    Least-squares matrix: fullR[F2 > 2σ(F2)] = 0.077wR(F2) = 0.226S = 1.0313041 reflections896 parameters0 restraints

    Hydrogen site location: inferred from neighbouring sites

    H atoms treated by a mixture of independent and constrained refinement

    w = 1/[σ2(Fo2) + (0.108P)2 + 8.2009P] where P = (Fo2 + 2Fc2)/3

    (Δ/σ)max = 0.006Δρmax = 1.16 e Å−3

    Δρmin = −0.83 e Å−3

    Special details

    Experimental. CrysAlisPro. (Agilent, 2014). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.Three molecules of what appeared to be dichloromethane were found to be badly disordered. Attempts to model the disorder were unsatisfactory. The contributions to the scattering factors due to these solvent molecules were removed by use of the utility SQUEEZE (Sluis and Spek, 1990) in PLATON98 (Spek, 1998). PLATON98 was used as incorporated in WinGX (Farrugia, 1999).

    Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

    x y z Uiso*/Ueq

    C1 0.3411 (3) 0.33690 (15) 0.7321 (4) 0.0323 (10)C2 0.4326 (3) 0.33998 (16) 0.7254 (4) 0.0336 (11)C3 0.4765 (4) 0.29952 (16) 0.7127 (4) 0.0347 (11)C4 0.5720 (4) 0.29722 (18) 0.7393 (4) 0.0423 (12)H4 0.6093 0.3220 0.7661 0.051*C5 0.6130 (4) 0.25876 (18) 0.7267 (5) 0.0499 (14)H5 0.6781 0.2571 0.7446 0.060*C6 0.5574 (4) 0.22266 (18) 0.6875 (5) 0.0498 (15)H6 0.5847 0.1963 0.6785 0.060*C7 0.4637 (4) 0.22483 (17) 0.6619 (4) 0.0460 (14)H7 0.4274 0.1997 0.6361 0.055*C8 0.4198 (4) 0.26291 (15) 0.6727 (4) 0.0362 (11)C9 0.3201 (4) 0.26641 (15) 0.6448 (4) 0.0357 (11)C10 0.2594 (4) 0.23476 (16) 0.5841 (4) 0.0394 (12)H10 0.2844 0.2106 0.5627 0.047*C11 0.1655 (4) 0.23823 (18) 0.5555 (4) 0.0438 (13)H11 0.1267 0.2162 0.5158 0.053*

  • supporting information

    sup-19Acta Cryst. (2016). E72, 538-542

    C12 0.1264 (4) 0.27305 (18) 0.5831 (4) 0.0422 (12)H12 0.0611 0.2754 0.5620 0.051*C13 0.1837 (4) 0.30485 (16) 0.6426 (4) 0.0361 (11)H13 0.1571 0.3291 0.6619 0.043*C14 0.2797 (4) 0.30177 (15) 0.6744 (4) 0.0336 (11)C15 0.2126 (3) 0.36498 (16) 0.4672 (3) 0.0310 (10)C16 0.3085 (3) 0.37760 (15) 0.4870 (3) 0.0295 (10)C17 0.3700 (3) 0.34790 (16) 0.4634 (3) 0.0304 (10)C18 0.4630 (3) 0.35767 (17) 0.4827 (4) 0.0352 (11)H18 0.4869 0.3853 0.5083 0.042*C19 0.5208 (4) 0.32743 (18) 0.4649 (4) 0.0442 (13)H19 0.5832 0.3346 0.4770 0.053*C20 0.4864 (4) 0.28685 (19) 0.4294 (4) 0.0472 (14)H20 0.5261 0.2657 0.4196 0.057*C21 0.3950 (4) 0.27698 (18) 0.4081 (4) 0.0423 (12)H21 0.3725 0.2491 0.3827 0.051*C22 0.3341 (3) 0.30700 (16) 0.4230 (4) 0.0330 (10)C23 0.2352 (4) 0.29719 (16) 0.3911 (4) 0.0335 (10)C24 0.1973 (4) 0.25910 (18) 0.3381 (4) 0.0423 (12)H24 0.2378 0.2386 0.3275 0.051*C25 0.1044 (4) 0.25044 (19) 0.3013 (4) 0.0464 (13)H25 0.0816 0.2242 0.2667 0.056*C26 0.0436 (4) 0.28018 (19) 0.3149 (4) 0.0455 (13)H26 −0.0211 0.2750 0.2874 0.055*C27 0.0781 (4) 0.31762 (18) 0.3690 (4) 0.0380 (11)H27 0.0365 0.3376 0.3794 0.046*C28 0.1730 (3) 0.32636 (16) 0.4084 (4) 0.0341 (11)C29 0.3296 (3) 0.47670 (15) 0.9399 (4) 0.0325 (10)C30 0.3915 (3) 0.50074 (15) 0.9040 (3) 0.0316 (10)C31 0.4137 (3) 0.54622 (15) 0.9300 (3) 0.0322 (10)C32 0.4728 (4) 0.57048 (16) 0.8987 (4) 0.0386 (12)H32 0.4988 0.5573 0.8569 0.046*C33 0.4942 (4) 0.61279 (17) 0.9267 (4) 0.0448 (13)H33 0.5354 0.6284 0.9053 0.054*C34 0.4558 (5) 0.63252 (18) 0.9862 (5) 0.0557 (17)H34 0.4704 0.6618 1.0061 0.067*C35 0.3969 (4) 0.60974 (17) 1.0163 (4) 0.0454 (14)H35 0.3712 0.6239 1.0573 0.055*C36 0.3721 (4) 0.56675 (16) 0.9903 (3) 0.0340 (11)C37 0.3088 (4) 0.54261 (16) 1.0242 (4) 0.0360 (11)C38 0.2666 (4) 0.56390 (18) 1.0798 (4) 0.0418 (13)H38 0.2772 0.5941 1.0922 0.050*C39 0.2105 (4) 0.5425 (2) 1.1168 (4) 0.0497 (15)H39 0.1828 0.5579 1.1545 0.060*C40 0.1938 (4) 0.4987 (2) 1.0998 (4) 0.0443 (13)H40 0.1552 0.4838 1.1261 0.053*C41 0.2339 (4) 0.47662 (17) 1.0439 (4) 0.0372 (11)H41 0.2230 0.4464 1.0326 0.045*

  • supporting information

    sup-20Acta Cryst. (2016). E72, 538-542

    C42 0.2897 (4) 0.49811 (16) 1.0043 (3) 0.0355 (11)C43 0.1661 (3) 0.49600 (19) 0.6807 (4) 0.0400 (12)C44 0.2317 (3) 0.52960 (18) 0.6755 (4) 0.0392 (12)C45 0.2153 (4) 0.5756 (2) 0.6941 (4) 0.0511 (16)C46 0.2581 (4) 0.6091 (2) 0.6633 (5) 0.0581 (18)H46 0.2979 0.6023 0.6301 0.070*C47 0.2434 (5) 0.6522 (2) 0.6804 (7) 0.077 (3)H47 0.2730 0.6749 0.6597 0.093*C48 0.1844 (5) 0.6615 (3) 0.7286 (7) 0.094 (3)H48 0.1729 0.6908 0.7403 0.112*C49 0.1427 (5) 0.6285 (3) 0.7595 (6) 0.083 (3)H49 0.1032 0.6356 0.7928 0.100*C50 0.1571 (4) 0.5845 (2) 0.7429 (5) 0.061 (2)C51 0.1151 (4) 0.5488 (3) 0.7768 (4) 0.062 (2)C52 0.0734 (5) 0.5578 (3) 0.8439 (5) 0.073 (2)H52 0.0721 0.5866 0.8658 0.088*C53 0.0348 (5) 0.5250 (4) 0.8776 (5) 0.088 (3)H53 0.0047 0.5317 0.9209 0.105*C54 0.0385 (4) 0.4820 (4) 0.8502 (5) 0.077 (3)H54 0.0127 0.4596 0.8761 0.093*C55 0.0804 (4) 0.4722 (3) 0.7841 (4) 0.0604 (19)H55 0.0838 0.4430 0.7650 0.072*C56 0.1175 (4) 0.5059 (2) 0.7462 (4) 0.0500 (16)C57 0.6326 (3) 0.48466 (16) 0.6652 (4) 0.0315 (10)C58 0.5935 (3) 0.52870 (16) 0.6698 (3) 0.0315 (10)C59 0.6591 (3) 0.56487 (15) 0.7051 (3) 0.0304 (10)C60 0.6390 (4) 0.60134 (17) 0.7479 (4) 0.0395 (12)H60 0.5788 0.6050 0.7481 0.047*C61 0.7056 (4) 0.63235 (18) 0.7902 (5) 0.0463 (13)H61 0.6915 0.6570 0.8207 0.056*C62 0.7926 (4) 0.62788 (17) 0.7885 (4) 0.0436 (13)H62 0.8380 0.6496 0.8171 0.052*C63 0.8141 (4) 0.59185 (17) 0.7452 (4) 0.0363 (11)H63 0.8743 0.5889 0.7446 0.044*C64 0.7473 (3) 0.55957 (15) 0.7021 (3) 0.0298 (10)C65 0.7705 (3) 0.52067 (16) 0.6569 (3) 0.0320 (10)C66 0.8480 (3) 0.51969 (17) 0.6315 (4) 0.0346 (11)H66 0.8867 0.5445 0.6430 0.041*C67 0.8690 (3) 0.48300 (19) 0.5900 (4) 0.0390 (12)H67 0.9216 0.4828 0.5728 0.047*C68 0.8134 (4) 0.44667 (18) 0.5735 (4) 0.0409 (12)H68 0.8281 0.4215 0.5450 0.049*C69 0.7366 (3) 0.44671 (18) 0.5982 (4) 0.0389 (12)H69 0.6988 0.4216 0.5867 0.047*C70 0.7146 (3) 0.48316 (16) 0.6398 (4) 0.0332 (11)N1 0.3219 (3) 0.36493 (12) 0.7882 (3) 0.0321 (9)N2 0.4789 (3) 0.37504 (13) 0.7289 (3) 0.0339 (9)N3 0.1712 (3) 0.39220 (13) 0.5053 (3) 0.0316 (9)

  • supporting information

    sup-21Acta Cryst. (2016). E72, 538-542

    N4 0.3296 (3) 0.41530 (13) 0.5315 (3) 0.0290 (8)N5 0.3158 (3) 0.43671 (13) 0.9063 (3) 0.0337 (9)N6 0.4215 (3) 0.47684 (11) 0.8493 (3) 0.0288 (8)N7 0.1558 (3) 0.46191 (15) 0.6258 (3) 0.0364 (10)N8 0.3047 (3) 0.52333 (14) 0.6565 (3) 0.0359 (9)N9 0.5880 (3) 0.45401 (13) 0.6849 (3) 0.0346 (9)N10 0.5047 (3) 0.52610 (13) 0.6498 (3) 0.0378 (10)O1 0.2406 (3) 0.35856 (11) 0.8007 (3) 0.0397 (8)O2 0.4437 (2) 0.41270 (10) 0.7481 (3) 0.0329 (7)O3 0.0833 (2) 0.38339 (12) 0.4931 (3) 0.0436 (9)O4 0.4102 (2) 0.43359 (11) 0.5495 (2) 0.0319 (7)O5 0.2580 (3) 0.41112 (11) 0.9310 (3) 0.0422 (9)O6 0.4795 (2) 0.49203 (10) 0.8119 (3) 0.0324 (7)O7 0.0898 (3) 0.43277 (13) 0.6260 (3) 0.0448 (9)O8 0.3220 (2) 0.48291 (11) 0.6323 (3) 0.0347 (8)O9 0.6191 (2) 0.41229 (11) 0.6839 (3) 0.0373 (8)H1A 0.582 (4) 0.3945 (14) 0.694 (5) 0.056*O10 0.4608 (3) 0.56409 (12) 0.6526 (3) 0.0463 (9)H2A 0.395 (5) 0.5572 (5) 0.654 (5) 0.069*Ni1 0.37718 (6) 0.41976 (2) 0.82564 (6) 0.0306 (2)Ni2 0.23963 (5) 0.44031 (3) 0.57163 (6) 0.0301 (2)Ni3 0.45817 (5) 0.46682 (2) 0.67739 (6) 0.0277 (2)F1 0.3252 (3) 0.34124 (11) 0.9649 (3) 0.0556 (9)F2 0.1678 (3) 0.35125 (12) 0.9084 (3) 0.0601 (10)F3 −0.0369 (2) 0.39118 (12) 0.5394 (3) 0.0613 (10)F4 0.0009 (2) 0.44772 (11) 0.4612 (3) 0.0506 (8)B1 0.2493 (5) 0.3650 (2) 0.9034 (6) 0.0486 (16)B2 0.0335 (4) 0.4143 (2) 0.5275 (6) 0.0437 (15)

    Atomic displacement parameters (Å2)

    U11 U22 U33 U12 U13 U23

    C1 0.044 (3) 0.021 (2) 0.029 (2) 0.0022 (19) 0.011 (2) 0.0065 (19)C2 0.042 (3) 0.026 (2) 0.030 (3) 0.002 (2) 0.011 (2) 0.004 (2)C3 0.052 (3) 0.023 (2) 0.028 (2) 0.003 (2) 0.014 (2) 0.000 (2)C4 0.051 (3) 0.030 (3) 0.042 (3) 0.005 (2) 0.013 (2) −0.002 (2)C5 0.058 (3) 0.035 (3) 0.052 (4) 0.010 (3) 0.015 (3) −0.004 (3)C6 0.064 (4) 0.029 (3) 0.055 (4) 0.017 (3) 0.022 (3) −0.001 (3)C7 0.068 (4) 0.024 (3) 0.038 (3) 0.001 (2) 0.012 (3) −0.002 (2)C8 0.061 (3) 0.016 (2) 0.029 (3) 0.001 (2) 0.015 (2) 0.0017 (19)C9 0.058 (3) 0.020 (2) 0.028 (2) −0.002 (2) 0.014 (2) 0.006 (2)C10 0.065 (3) 0.019 (2) 0.032 (3) −0.006 (2) 0.016 (2) 0.002 (2)C11 0.059 (3) 0.033 (3) 0.035 (3) −0.016 (2) 0.014 (2) 0.001 (2)C12 0.054 (3) 0.036 (3) 0.036 (3) −0.010 (2) 0.015 (2) 0.002 (2)C13 0.049 (3) 0.028 (3) 0.031 (3) −0.005 (2) 0.015 (2) 0.003 (2)C14 0.049 (3) 0.023 (2) 0.024 (2) −0.006 (2) 0.010 (2) 0.0060 (19)C15 0.036 (2) 0.032 (3) 0.023 (2) 0.0051 (19) 0.0079 (18) 0.006 (2)C16 0.041 (2) 0.026 (2) 0.025 (2) 0.0059 (19) 0.0159 (19) 0.0028 (19)

  • supporting information

    sup-22Acta Cryst. (2016). E72, 538-542

    C17 0.041 (2) 0.029 (2) 0.022 (2) 0.0046 (19) 0.0133 (19) 0.0010 (19)C18 0.039 (2) 0.034 (3) 0.032 (3) 0.001 (2) 0.013 (2) −0.002 (2)C19 0.041 (3) 0.041 (3) 0.049 (3) 0.006 (2) 0.016 (2) −0.007 (3)C20 0.050 (3) 0.041 (3) 0.050 (3) 0.011 (2) 0.018 (3) −0.010 (3)C21 0.048 (3) 0.033 (3) 0.044 (3) 0.001 (2) 0.015 (2) −0.010 (2)C22 0.045 (3) 0.030 (3) 0.025 (2) 0.002 (2) 0.015 (2) −0.002 (2)C23 0.048 (3) 0.029 (3) 0.026 (2) 0.000 (2) 0.016 (2) 0.003 (2)C24 0.054 (3) 0.038 (3) 0.040 (3) −0.005 (2) 0.023 (3) −0.009 (2)C25 0.061 (3) 0.042 (3) 0.038 (3) −0.013 (3) 0.021 (3) −0.014 (3)C26 0.050 (3) 0.049 (3) 0.033 (3) −0.011 (3) 0.012 (2) −0.005 (3)C27 0.043 (3) 0.037 (3) 0.033 (3) 0.002 (2) 0.013 (2) 0.004 (2)C28 0.042 (3) 0.029 (2) 0.028 (2) 0.002 (2) 0.010 (2) 0.008 (2)C29 0.045 (3) 0.023 (2) 0.026 (2) 0.0069 (19) 0.011 (2) 0.0031 (19)C30 0.042 (2) 0.024 (2) 0.025 (2) 0.0043 (19) 0.0094 (19) 0.0014 (19)C31 0.048 (3) 0.021 (2) 0.021 (2) 0.0047 (19) 0.0066 (19) 0.0026 (19)C32 0.058 (3) 0.025 (2) 0.030 (3) 0.006 (2) 0.014 (2) −0.001 (2)C33 0.072 (4) 0.023 (3) 0.039 (3) −0.004 (2) 0.021 (3) −0.001 (2)C34 0.095 (5) 0.020 (3) 0.051 (4) −0.003 (3) 0.027 (3) −0.009 (3)C35 0.075 (4) 0.028 (3) 0.033 (3) 0.006 (3) 0.020 (3) −0.006 (2)C36 0.050 (3) 0.024 (2) 0.023 (2) 0.003 (2) 0.009 (2) −0.0012 (19)C37 0.045 (3) 0.032 (3) 0.021 (2) 0.009 (2) 0.002 (2) 0.001 (2)C38 0.053 (3) 0.038 (3) 0.028 (3) 0.009 (2) 0.008 (2) −0.009 (2)C39 0.065 (4) 0.054 (4) 0.030 (3) 0.014 (3) 0.018 (3) −0.008 (3)C40 0.054 (3) 0.054 (4) 0.023 (2) 0.011 (3) 0.011 (2) 0.004 (2)C41 0.046 (3) 0.031 (3) 0.033 (3) 0.004 (2) 0.013 (2) 0.004 (2)C42 0.052 (3) 0.028 (3) 0.019 (2) 0.010 (2) 0.006 (2) 0.0008 (19)C43 0.032 (2) 0.056 (3) 0.026 (2) 0.014 (2) 0.0044 (19) −0.007 (2)C44 0.032 (2) 0.046 (3) 0.031 (3) 0.011 (2) 0.003 (2) −0.010 (2)C45 0.036 (3) 0.057 (4) 0.045 (3) 0.017 (3) −0.002 (2) −0.021 (3)C46 0.043 (3) 0.039 (3) 0.074 (5) 0.008 (2) 0.002 (3) −0.024 (3)C47 0.052 (4) 0.056 (4) 0.103 (6) 0.009 (3) 0.006 (4) −0.036 (4)C48 0.054 (4) 0.070 (5) 0.123 (8) 0.019 (4) −0.005 (4) −0.062 (5)C49 0.053 (4) 0.093 (6) 0.082 (6) 0.024 (4) 0.001 (4) −0.048 (5)C50 0.037 (3) 0.080 (5) 0.048 (4) 0.018 (3) −0.003 (3) −0.034 (4)C51 0.043 (3) 0.104 (6) 0.028 (3) 0.023 (3) 0.002 (2) −0.024 (3)C52 0.045 (3) 0.129 (7) 0.036 (3) 0.022 (4) 0.005 (3) −0.028 (4)C53 0.041 (3) 0.186 (11) 0.031 (3) 0.028 (5) 0.007 (3) −0.022 (5)C54 0.045 (3) 0.155 (9) 0.028 (3) 0.007 (4) 0.009 (3) −0.001 (4)C55 0.037 (3) 0.115 (6) 0.025 (3) 0.006 (3) 0.007 (2) −0.010 (3)C56 0.031 (2) 0.087 (5) 0.027 (3) 0.013 (3) 0.006 (2) −0.012 (3)C57 0.034 (2) 0.031 (3) 0.027 (2) 0.0035 (19) 0.0096 (19) −0.003 (2)C58 0.037 (2) 0.034 (3) 0.026 (2) 0.000 (2) 0.0141 (19) −0.002 (2)C59 0.041 (2) 0.027 (2) 0.025 (2) 0.0019 (19) 0.0137 (19) 0.0026 (19)C60 0.054 (3) 0.032 (3) 0.037 (3) −0.002 (2) 0.023 (2) 0.001 (2)C61 0.065 (4) 0.031 (3) 0.048 (3) 0.000 (3) 0.028 (3) −0.007 (3)C62 0.061 (3) 0.027 (3) 0.042 (3) −0.012 (2) 0.018 (3) −0.004 (2)C63 0.044 (3) 0.034 (3) 0.030 (3) −0.004 (2) 0.012 (2) 0.005 (2)C64 0.041 (2) 0.028 (2) 0.018 (2) 0.0001 (19) 0.0091 (18) 0.0051 (19)

  • supporting information

    sup-23Acta Cryst. (2016). E72, 538-542

    C65 0.041 (2) 0.031 (3) 0.022 (2) 0.001 (2) 0.0104 (19) 0.0010 (19)C66 0.037 (2) 0.037 (3) 0.028 (2) 0.000 (2) 0.0108 (19) 0.006 (2)C67 0.033 (2) 0.052 (3) 0.031 (3) 0.009 (2) 0.011 (2) 0.005 (2)C68 0.044 (3) 0.042 (3) 0.038 (3) 0.002 (2) 0.017 (2) −0.011 (2)C69 0.039 (3) 0.041 (3) 0.036 (3) −0.004 (2) 0.013 (2) −0.009 (2)C70 0.032 (2) 0.034 (3) 0.030 (2) −0.0023 (19) 0.0083 (19) −0.003 (2)N1 0.042 (2) 0.0176 (18) 0.039 (2) −0.0029 (16) 0.0183 (18) 0.0038 (17)N2 0.047 (2) 0.020 (2) 0.034 (2) 0.0032 (17) 0.0156 (18) −0.0009 (17)N3 0.0329 (19) 0.029 (2) 0.032 (2) −0.0009 (16) 0.0119 (17) 0.0026 (17)N4 0.0354 (19) 0.027 (2) 0.026 (2) 0.0023 (16) 0.0130 (16) 0.0018 (16)N5 0.053 (2) 0.0196 (19) 0.032 (2) 0.0056 (17) 0.0206 (19) 0.0067 (17)N6 0.038 (2) 0.0146 (17) 0.032 (2) −0.0032 (15) 0.0109 (16) 0.0013 (16)N7 0.034 (2) 0.046 (3) 0.029 (2) 0.0027 (18) 0.0125 (17) 0.0015 (19)N8 0.038 (2) 0.032 (2) 0.033 (2) 0.0069 (17) 0.0086 (17) −0.0043 (18)N9 0.042 (2) 0.027 (2) 0.036 (2) −0.0039 (17) 0.0156 (18) −0.0092 (18)N10 0.052 (2) 0.025 (2) 0.040 (2) 0.0038 (18) 0.021 (2) −0.0010 (19)O1 0.049 (2) 0.0295 (18) 0.046 (2) −0.0043 (15) 0.0243 (17) −0.0047 (16)O2 0.055 (2) 0.0144 (15) 0.0378 (19) 0.0011 (13) 0.0274 (16) 0.0017 (14)O3 0.0344 (18) 0.039 (2) 0.058 (2) −0.0016 (15) 0.0185 (17) −0.0068 (19)O4 0.0332 (16) 0.0310 (17) 0.0326 (18) −0.0019 (13) 0.0137 (14) −0.0042 (15)O5 0.064 (2) 0.0268 (18) 0.047 (2) −0.0021 (16) 0.034 (2) 0.0006 (17)O6 0.0429 (18) 0.0201 (15) 0.0347 (18) −0.0032 (13) 0.0155 (15) −0.0033 (14)O7 0.043 (2) 0.054 (2) 0.043 (2) −0.0077 (17) 0.0235 (17) −0.0037 (19)O8 0.0345 (16) 0.0273 (17) 0.041 (2) 0.0049 (13) 0.0123 (15) −0.0044 (15)O9 0.0384 (18) 0.0263 (17) 0.048 (2) 0.0018 (14) 0.0167 (16) −0.0074 (16)O10 0.057 (2) 0.0255 (18) 0.059 (3) 0.0003 (16) 0.025 (2) 0.0035 (18)Ni1 0.0451 (5) 0.0169 (4) 0.0317 (4) 0.0006 (3) 0.0168 (4) 0.0009 (3)Ni2 0.0342 (4) 0.0274 (4) 0.0293 (4) 0.0031 (3) 0.0127 (3) −0.0014 (3)Ni3 0.0348 (4) 0.0182 (4) 0.0311 (4) 0.0013 (3) 0.0137 (3) 0.0008 (3)F1 0.071 (2) 0.0393 (18) 0.058 (2) 0.0011 (16) 0.0272 (18) 0.0146 (16)F2 0.072 (2) 0.048 (2) 0.072 (3) −0.0111 (17) 0.041 (2) −0.0011 (19)F3 0.053 (2) 0.056 (2) 0.083 (3) −0.0035 (16) 0.0350 (19) −0.004 (2)F4 0.0507 (18) 0.0436 (19) 0.049 (2) 0.0051 (15) 0.0097 (15) −0.0025 (16)B1 0.061 (4) 0.037 (4) 0.051 (4) −0.002 (3) 0.025 (3) −0.001 (3)B2 0.045 (3) 0.035 (3) 0.059 (4) −0.005 (3) 0.028 (3) −0.003 (3)

    Geometric parameters (Å, º)

    C1—N1 1.307 (6) C44—C45 1.485 (8)C1—C2 1.475 (7) C45—C50 1.385 (9)C1—C14 1.482 (7) C45—C46 1.399 (10)C2—N2 1.291 (6) C46—C47 1.388 (9)C2—C3 1.470 (7) C46—H46 0.9500C3—C4 1.394 (7) C47—C48 1.392 (12)C3—C8 1.418 (7) C47—H47 0.9500C4—C5 1.394 (7) C48—C49 1.375 (14)C4—H4 0.9500 C48—H48 0.9500C5—C6 1.396 (9) C49—C50 1.413 (10)

  • supporting information

    sup-24Acta Cryst. (2016). E72, 538-542

    C5—H5 0.9500 C49—H49 0.9500C6—C7 1.367 (8) C50—C51 1.464 (11)C6—H6 0.9500 C51—C52 1.403 (9)C7—C8 1.400 (7) C51—C56 1.405 (10)C7—H7 0.9500 C52—C53 1.364 (13)C8—C9 1.458 (8) C52—H52 0.9500C9—C14 1.410 (7) C53—C54 1.395 (13)C9—C10 1.417 (7) C53—H53 0.9500C10—C11 1.369 (8) C54—C55 1.399 (9)C10—H10 0.9500 C54—H54 0.9500C11—C12 1.372 (8) C55—C56 1.404 (10)C11—H11 0.9500 C55—H55 0.9500C12—C13 1.391 (7) C57—N9 1.273 (6)C12—H12 0.9500 C57—C70 1.466 (7)C13—C14 1.395 (7) C57—C58 1.502 (7)C13—H13 0.9500 C58—N10 1.308 (6)C15—N3 1.309 (6) C58—C59 1.470 (7)C15—C28 1.464 (7) C59—C60 1.383 (7)C15—C16 1.467 (7) C59—C64 1.407 (7)C16—N4 1.314 (6) C60—C61 1.376 (8)C16—C17 1.464 (6) C60—H60 0.9500C17—C18 1.404 (7) C61—C62 1.377 (8)C17—C22 1.416 (7) C61—H61 0.9500C18—C19 1.391 (7) C62—C63 1.385 (8)C18—H18 0.9500 C62—H62 0.9500C19—C20 1.384 (8) C63—C64 1.407 (7)C19—H19 0.9500 C63—H63 0.9500C20—C21 1.376 (8) C64—C65 1.483 (7)C20—H20 0.9500 C65—C66 1.398 (7)C21—C22 1.404 (7) C65—C70 1.414 (7)C21—H21 0.9500 C66—C67 1.384 (7)C22—C23 1.465 (7) C66—H66 0.9500C23—C24 1.410 (7) C67—C68 1.381 (8)C23—C28 1.418 (7) C67—H67 0.9500C24—C25 1.370 (8) C68—C69 1.382 (7)C24—H24 0.9500 C68—H68 0.9500C25—C26 1.389 (8) C69—C70 1.385 (7)C25—H25 0.9500 C69—H69 0.9500C26—C27 1.390 (8) N1—O1 1.367 (5)C26—H26 0.9500 N1—Ni1 1.883 (4)C27—C28 1.399 (7) N2—O2 1.360 (5)C27—H27 0.9500 N3—O3 1.346 (5)C29—N5 1.315 (6) N3—Ni2 1.872 (4)C29—C30 1.469 (7) N4—O4 1.312 (5)C29—C42 1.476 (7) N4—Ni2 1.887 (4)C30—N6 1.304 (6) N5—O5 1.350 (5)C30—C31 1.460 (7) N5—Ni1 1.865 (4)C31—C32 1.398 (8) N6—O6 1.314 (5)

  • supporting information

    sup-25Acta Cryst. (2016). E72, 538-542

    C31—C36 1.432 (7) N6—Ni1 1.875 (4)C32—C33 1.371 (7) N7—O7 1.370 (6)C32—H32 0.9500 N7—Ni2 1.897 (4)C33—C34 1.379 (8) N8—O8 1.352 (5)C33—H33 0.9500 N9—O9 1.378 (5)C34—C35 1.361 (9) N9—Ni3 2.029 (4)C34—H34 0.9500 N10—O10 1.367 (5)C35—C36 1.393 (7) N10—Ni3 2.064 (4)C35—H35 0.9500 O1—B1 1.480 (8)C36—C37 1.470 (8) O2—Ni1 1.829 (3)C37—C38 1.397 (7) O2—Ni3 2.025 (3)C37—C42 1.411 (7) O3—B2 1.440 (7)C38—C39 1.368 (9) O4—Ni3 2.022 (3)C38—H38 0.9500 O5—B1 1.471 (8)C39—C40 1.379 (9) O6—Ni3 2.036 (3)C39—H39 0.9500 O7—B2 1.493 (8)C40—C41 1.390 (8) O8—Ni2 1.819 (3)C40—H40 0.9500 O8—Ni3 2.036 (3)C41—C42 1.389 (8) O9—H1A 0.85 (7)C41—H41 0.9500 O10—H2A 1.06 (7)C43—N7 1.298 (7) F1—B1 1.395 (8)C43—C56 1.471 (7) F2—B1 1.372 (8)C43—C44 1.481 (8) F3—B2 1.378 (7)C44—N8 1.290 (7) F4—B2 1.377 (8)

    N1—C1—C2 117.6 (4) C48—C49—H49 119.1N1—C1—C14 126.3 (5) C50—C49—H49 119.1C2—C1—C14 116.2 (4) C45—C50—C49 117.4 (8)N2—C2—C3 115.7 (5) C45—C50—C51 119.8 (6)N2—C2—C1 126.5 (4) C49—C50—C51 122.8 (7)C3—C2—C1 117.8 (4) C52—C51—C56 119.2 (8)C4—C3—C8 120.7 (5) C52—C51—C50 118.9 (7)C4—C3—C2 120.7 (5) C56—C51—C50 121.9 (6)C8—C3—C2 118.7 (5) C53—C52—C51 120.0 (8)C3—C4—C5 120.3 (5) C53—C52—H52 120.0C3—C4—H4 119.9 C51—C52—H52 120.0C5—C4—H4 119.9 C52—C53—C54 121.7 (7)C4—C5—C6 119.2 (6) C52—C53—H53 119.1C4—C5—H5 120.4 C54—C53—H53 119.1C6—C5—H5 120.4 C53—C54—C55 119.2 (9)C7—C6—C5 120.6 (5) C53—C54—H54 120.4C7—C6—H6 119.7 C55—C54—H54 120.4C5—C6—H6 119.7 C54—C55—C56 119.5 (8)C6—C7—C8 122.0 (5) C54—C55—H55 120.2C6—C7—H7 119.0 C56—C55—H55 120.2C8—C7—H7 119.0 C55—C56—C51 120.2 (6)C7—C8—C3 117.3 (5) C55—C56—C43 120.3 (6)C7—C8—C9 123.3 (5) C51—C56—C43 119.3 (6)

  • supporting information

    sup-26Acta Cryst. (2016). E72, 538-542

    C3—C8—C9 119.4 (4) N9—C57—C70 130.1 (5)C14—C9—C10 117.2 (5) N9—C57—C58 113.1 (4)C14—C9—C8 121.8 (4) C70—C57—C58 116.8 (4)C10—C9—C8 121.0 (5) N10—C58—C59 131.6 (4)C11—C10—C9 121.5 (5) N10—C58—C57 110.5 (4)C11—C10—H10 119.3 C59—C58—C57 117.4 (4)C9—C10—H10 119.3 C60—C59—C64 120.4 (5)C10—C11—C12 121.1 (5) C60—C59—C58 121.9 (4)C10—C11—H11 119.4 C64—C59—C58 117.5 (4)C12—C11—H11 119.4 C61—C60—C59 120.5 (5)C11—C12—C13 119.0 (5) C61—C60—H60 119.8C11—C12—H12 120.5 C59—C60—H60 119.8C13—C12—H12 120.5 C60—C61—C62 120.3 (5)C12—C13—C14 121.1 (5) C60—C61—H61 119.8C12—C13—H13 119.5 C62—C61—H61 119.8C14—C13—H13 119.5 C61—C62—C63 120.3 (5)C13—C14—C9 120.0 (5) C61—C62—H62 119.9C13—C14—C1 121.5 (5) C63—C62—H62 119.9C9—C14—C1 118.3 (5) C62—C63—C64 120.4 (5)N3—C15—C28 127.5 (5) C62—C63—H63 119.8N3—C15—C16 112.3 (4) C64—C63—H63 119.8C28—C15—C16 120.1 (4) C59—C64—C63 118.1 (5)N4—C16—C17 127.5 (4) C59—C64—C65 121.3 (4)N4—C16—C15 112.2 (4) C63—C64—C65 120.6 (4)C17—C16—C15 120.2 (4) C66—C65—C70 118.4 (5)C18—C17—C22 119.4 (4) C66—C65—C64 121.5 (4)C18—C17—C16 122.8 (5) C70—C65—C64 120.0 (4)C22—C17—C16 117.7 (4) C67—C66—C65 120.8 (5)C19—C18—C17 121.0 (5) C67—C66—H66 119.6C19—C18—H18 119.5 C65—C66—H66 119.6C17—C18—H18 119.5 C68—C67—C66 120.1 (5)C20—C19—C18 119.4 (5) C68—C67—H67 119.9C20—C19—H19 120.3 C66—C67—H67 119.9C18—C19—H19 120.3 C67—C68—C69 120.3 (5)C21—C20—C19 120.4 (5) C67—C68—H68 119.9C21—C20—H20 119.8 C69—C68—H68 119.9C19—C20—H20 119.8 C68—C69—C70 120.4 (5)C20—C21—C22 121.8 (5) C68—C69—H69 119.8C20—C21—H21 119.1 C70—C69—H69 119.8C22—C21—H21 119.1 C69—C70—C65 120.0 (5)C21—C22—C17 117.9 (5) C69—C70—C57 121.9 (4)C21—C22—C23 120.6 (5) C65—C70—C57 118.1 (4)C17—C22—C23 121.3 (4) C1—N1—O1 116.1 (4)C24—C23—C28 117.1 (5) C1—N1—Ni1 126.1 (3)C24—C23—C22 121.3 (5) O1—N1—Ni1 115.8 (3)C28—C23—C22 121.6 (5) C2—N2—O2 117.3 (4)C25—C24—C23 122.7 (5) C15—N3—O3 117.4 (4)C25—C24—H24 118.6 C15—N3—Ni2 117.0 (3)

  • supporting information

    sup-27Acta Cryst. (2016). E72, 538-542

    C23—C24—H24 118.6 O3—N3—Ni2 125.6 (3)C24—C25—C26 119.7 (5) O4—N4—C16 121.4 (4)C24—C25—H25 120.2 O4—N4—Ni2 122.3 (3)C26—C25—H25 120.2 C16—N4—Ni2 116.2 (3)C25—C26—C27 119.6 (5) C29—N5—O5 118.5 (4)C25—C26—H26 120.2 C29—N5—Ni1 116.9 (4)C27—C26—H26 120.2 O5—N5—Ni1 124.6 (3)C26—C27—C28 121.1 (5) C30—N6—O6 121.7 (4)C26—C27—H27 119.5 C30—N6—Ni1 116.8 (3)C28—C27—H27 119.5 O6—N6—Ni1 121.5 (3)C27—C28—C23 119.7 (5) C43—N7—O7 116.4 (4)C27—C28—C15 123.0 (5) C43—N7—Ni2 127.2 (4)C23—C28—C15 117.3 (4) O7—N7—Ni2 114.4 (3)N5—C29—C30 112.0 (4) C44—N8—O8 118.6 (4)N5—C29—C42 127.8 (5) C57—N9—O9 117.6 (4)C30—C29—C42 120.3 (4) C57—N9—Ni3 117.9 (3)N6—C30—C31 126.9 (5) O9—N9—Ni3 122.1 (3)N6—C30—C29 112.3 (4) C58—N10—O10 116.3 (4)C31—C30—C29 120.9 (4) C58—N10—Ni3 115.7 (3)C32—C31—C36 118.8 (4) O10—N10—Ni3 122.3 (3)C32—C31—C30 123.2 (5) N1—O1—B1 113.0 (4)C36—C31—C30 118.0 (5) N2—O2—Ni1 127.1 (3)C33—C32—C31 121.8 (5) N2—O2—Ni3 117.6 (3)C33—C32—H32 119.1 Ni1—O2—Ni3 115.17 (16)C31—C32—H32 119.1 N3—O3—B2 118.8 (4)C32—C33—C34 119.7 (6) N4—O4—Ni3 113.1 (3)C32—C33—H33 120.1 N5—O5—B1 119.5 (4)C34—C33—H33 120.1 N6—O6—Ni3 112.9 (3)C35—C34—C33 119.5 (5) N7—O7—B2 114.4 (4)C35—C34—H34 120.2 N8—O8—Ni2 128.3 (3)C33—C34—H34 120.2 N8—O8—Ni3 115.4 (3)C34—C35—C36 123.6 (5) Ni2—O8—Ni3 116.21 (17)C34—C35—H35 118.2 N9—O9—H1A 109.5C36—C35—H35 118.2 N10—O10—H2A 109.5C35—C36—C31 116.6 (5) O2—Ni1—N5 170.30 (16)C35—C36—C37 122.7 (5) O2—Ni1—N6 88.27 (16)C31—C36—C37 120.7 (4) N5—Ni1—N6 82.07 (18)C38—C37—C42 118.0 (5) O2—Ni1—N1 90.96 (16)C38—C37—C36 119.4 (5) N5—Ni1—N1 98.53 (18)C42—C37—C36 122.6 (5) N6—Ni1—N1 173.25 (18)C39—C38—C37 121.8 (5) O8—Ni2—N3 170.42 (16)C39—C38—H38 119.1 O8—Ni2—N4 88.60 (16)C37—C38—H38 119.1 N3—Ni2—N4 81.88 (17)C38—C39—C40 120.3 (5) O8—Ni2—N7 90.78 (17)C38—C39—H39 119.8 N3—Ni2—N7 98.56 (19)C40—C39—H39 119.8 N4—Ni2—N7 173.36 (18)C39—C40—C41 119.4 (6) O4—Ni3—O2 89.28 (14)C39—C40—H40 120.3 O4—Ni3—N9 87.74 (15)

  • supporting information

    sup-28Acta Cryst. (2016). E72, 538-542

    C41—C40—H40 120.3 O2—Ni3—N9 96.72 (16)C42—C41—C40 120.9 (5) O4—Ni3—O6 165.12 (14)C42—C41—H41 119.6 O2—Ni3—O6 79.77 (13)C40—C41—H41 119.6 N9—Ni3—O6 103.43 (16)C41—C42—C37 119.6 (5) O4—Ni3—O8 81.29 (14)C41—C42—C29 123.0 (5) O2—Ni3—O8 93.48 (15)C37—C42—C29 117.4 (5) N9—Ni3—O8 164.91 (17)N7—C43—C56 127.1 (6) O6—Ni3—O8 89.28 (14)N7—C43—C44 117.3 (5) O4—Ni3—N10 107.36 (16)C56—C43—C44 115.5 (5) O2—Ni3—N10 161.43 (17)N8—C44—C43 126.5 (5) N9—Ni3—N10 76.28 (17)N8—C44—C45 114.4 (5) O6—Ni3—N10 85.12 (16)C43—C44—C45 119.1 (5) O8—Ni3—N10 97.08 (16)C50—C45—C46 120.8 (6) F2—B1—F1 112.4 (5)C50—C45—C44 118.7 (7) F2—B1—O5 105.9 (5)C46—C45—C44 120.5 (5) F1—B1—O5 111.2 (5)C47—C46—C45 121.0 (7) F2—B1—O1 106.8 (5)C47—C46—H46 119.5 F1—B1—O1 108.5 (5)C45—C46—H46 119.5 O5—B1—O1 112.0 (5)C46—C47—C48 118.5 (9) F4—B2—F3 112.3 (5)C46—C47—H47 120.7 F4—B2—O3 110.4 (5)C48—C47—H47 120.7 F3—B2—O3 105.4 (5)C49—C48—C47 120.5 (7) F4—B2—O7 109.1 (5)C49—C48—H48 119.7 F3—B2—O7 106.1 (5)C47—C48—H48 119.7 O3—B2—O7 113.4 (5)C48—C49—C50 121.7 (8)

    N1—C1—C2—N2 −33.6 (7) C54—C55—C56—C43 176.8 (5)C14—C1—C2—N2 146.8 (5) C52—C51—C56—C55 −1.5 (8)N1—C1—C2—C3 146.9 (5) C50—C51—C56—C55 176.8 (5)C14—C1—C2—C3 −32.8 (6) C52—C51—C56—C43 −176.3 (5)N2—C2—C3—C4 22.9 (7) C50—C51—C56—C43 2.0 (8)C1—C2—C3—C4 −157.5 (5) N7—C43—C56—C55 24.5 (8)N2—C2—C3—C8 −157.1 (5) C44—C43—C56—C55 −157.4 (5)C1—C2—C3—C8 22.6 (7) N7—C43—C56—C51 −160.7 (5)C8—C3—C4—C5 0.1 (8) C44—C43—C56—C51 17.4 (7)C2—C3—C4—C5 −179.8 (5) N9—C57—C58—N10 −28.2 (6)C3—C4—C5—C6 −0.2 (9) C70—C57—C58—N10 152.2 (4)C4—C5—C6—C7 −0.2 (10) N9—C57—C58—C59 145.3 (4)C5—C6—C7—C8 0.7 (10) C70—C57—C58—C59 −34.4 (6)C6—C7—C8—C3 −0.7 (8) N10—C58—C59—C60 17.3 (8)C6—C7—C8—C9 179.0 (5) C57—C58—C59—C60 −154.5 (5)C4—C3—C8—C7 0.3 (8) N10—C58—C59—C64 −168.3 (5)C2—C3—C8—C7 −179.7 (5) C57—C58—C59—C64 19.9 (6)C4—C3—C8—C9 −179.5 (5) C64—C59—C60—C61 −1.7 (8)C2—C3—C8—C9 0.5 (7) C58—C59—C60—C61 172.6 (5)C7—C8—C9—C14 166.8 (5) C59—C60—C61—C62 1.4 (9)C3—C8—C9—C14 −13.4 (7) C60—C61—C62—C63 −0.8 (9)

  • supporting information

    sup-29Acta Cryst. (2016). E72, 538-542

    C7—C8—C9—C10 −15.0 (8) C61—C62—C63—C64 0.3 (8)C3—C8—C9—C10 164.8 (5) C60—C59—C64—C63 1.2 (7)C14—C9—C10—C11 −0.2 (7) C58—C59—C64—C63 −173.3 (4)C8—C9—C10—C11 −178.5 (5) C60—C59—C64—C65 179.8 (4)C9—C10—C11—C12 1.3 (8) C58—C59—C64—C65 5.3 (6)C10—C11—C12—C13 −1.1 (8) C62—C63—C64—C59 −0.6 (7)C11—C12—C13—C14 −0.1 (8) C62—C63—C64—C65 −179.2 (5)C12—C13—C14—C9 1.2 (7) C59—C64—C65—C66 164.0 (5)C12—C13—C14—C1 175.8 (5) C63—C64—C65—C66 −17.5 (7)C10—C9—C14—C13 −1.0 (7) C59—C64—C65—C70 −17.0 (7)C8—C9—C14—C13 177.2 (5) C63—C64—C65—C70 161.6 (5)C10—C9—C14—C1 −175.8 (4) C70—C65—C66—C67 0.5 (7)C8—C9—C14—C1 2.5 (7) C64—C65—C66—C67 179.6 (4)N1—C1—C14—C13 26.0 (7) C65—C66—C67—C68 −0.3 (8)C2—C1—C14—C13 −154.4 (5) C66—C67—C68—C69 0.0 (8)N1—C1—C14—C9 −159.3 (5) C67—C68—C69—C70 0.0 (8)C2—C1—C14—C9 20.3 (6) C68—C69—C70—C65 0.2 (8)N3—C15—C16—N4 −5.2 (6) C68—C69—C70—C57 178.7 (5)C28—C15—C16—N4 173.2 (4) C66�