trieste print2

Upload: sule-oezdilek

Post on 17-Feb-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 Trieste Print2

    1/52

    Lecture 2: Linear Perturbation Theory

    Wayne Hu

    Trieste, June 2002

    Structure Formation

    and the

    Dark Sector

  • 7/23/2019 Trieste Print2

    2/52

    Outline Covariant Perturbation Theory

    Scalar, Vector, Tensor Decomposition

    Linearized Einstein-Conservation Equations

    Dark (Multi) Components

    Gauge Applications:

    Bardeen Curvature Baryonic wiggles

    Scalar Fields Parameterizing dark components

    Transfer function Massive neutrinos

    Sachs-Wolfe Effect Dark energy

    COBE normalization

  • 7/23/2019 Trieste Print2

    3/52

    Covariant Perturbation Theory Covariant= takes sameformin all coordinate systems

    Invariant= takes the samevaluein all coordinate systems Fundamental equations:Einstein equations, covariantconservation

    of stress-energy tensor:

    G = 8GT

    T = 0 Preserve general covariance by keeping alldegrees of freedom: 10

    for each symmetric 4

    4 tensor

    1 2 3 4

    5 6 7

    8 9

    10

  • 7/23/2019 Trieste Print2

    4/52

    Metric Tensor Expand the metric tensor around thegeneral FRW metric

    g00= a2, gij =a2ij.where the 0 component isconformal time =dt/aandij is a

    spatial metric of constant curvatureK=H20(tot 1). Add in a general perturbation (Bardeen 1980)

    g00 = a2(1 2A) ,g0i = a2Bi ,gij = a2(ij 2HLij 2HijT) .

    (1)A a scalarpotential;(3)B i a vectorshift,(1)HLaperturbation to the spatialcurvature;(6)HijT atrace-freedistortion

    to spatial metric =(10)

  • 7/23/2019 Trieste Print2

    5/52

    Matter Tensor Likewise expand the matterstress energytensor around a

    homogeneous density and pressurep:

    T00 = ,T0i = (+p)(vi Bi) ,

    T i

    0 = (+p)vi

    ,Tij = (p+p)

    ij+p

    ij,

    (1)adensity perturbation; (3)vi a vectorvelocity, (1)papressure perturbation; (5)ij ananisotropic stressperturbation

    So far this isfully generaland applies to any type of matter orcoordinate choice including non-linearities in the matter, e.g.

    cosmological defects.

  • 7/23/2019 Trieste Print2

    6/52

    Counting DOFs

    20 Variables (10 metric; 10 matter)

    10 Einstein equations4 Conservation equations+4 Bianchi identities

    4 Gauge (coordinate choice 1 time, 3 space)

    6 Degrees of freedom

    Without loss of generality these can be taken to be the6componentsof thematter stress tensor

    For the background, specifyp(a)or equivalentlyw(a)

    p(a)/(a)theequation of stateparameter.

  • 7/23/2019 Trieste Print2

    7/52

    Scalar, Vector, Tensor Inlinear perturbation theory, perturbations may be separated by

    theirtransformation propertiesunder rotation and translation. The eigenfunctions of theLaplacian operatorform a complete set

    2Q(0) = k2Q(0) S ,

    2

    Q

    (1)

    i = k2

    Q

    (1)

    i V ,2Q(2)ij = k2Q(2)ij T ,and functions built out of covariant derivatives and the metric

    Q(0)

    i = k1

    iQ(0)

    ,Q

    (0)ij = (k

    2ij 13

    ij)Q(0) ,

    Q(1)ij =

    1

    2k[iQ(1)j + jQ(1)i ] ,

  • 7/23/2019 Trieste Print2

    8/52

    Spatially Flat Case For a spatially flat background metric, harmonics are related to

    plane waves:

    Q(0) = exp(ik x)Q

    (1)i =

    i2

    (e1 ie2)iexp(ik x)

    Q(2)ij =

    3

    8(e1 ie2)i(e1 ie2)jexp(ik x)

    wheree3 k.

    For vectors, the harmonic points in a direction orthogonal to ksuitable for thevortical componentof a vector

    For tensors, the harmonic is transverse and traceless as appropriatefor the decompositon ofgravitational waves

  • 7/23/2019 Trieste Print2

    9/52

    Perturbationk-Modes For thekth eigenmode, thescalar componentsbecome

    A(x) = A(k) Q(0) , HL(x) = HL(k) Q(0) ,

    (x) = (k) Q(0) , p(x) = p(k) Q(0) ,

    thevectors componentsbecome

    Bi(x) =1

    m=1

    B(m)(k) Q(m)i , vi(x) =

    1m=1

    v(m)(k) Q(m)i ,

    and thetensors components

    HT ij(x) =2

    m=2

    H(m)T (k) Q(m)ij ,

    ij(x) =2

    m=2(m)(k) Q

    (m)ij ,

  • 7/23/2019 Trieste Print2

    10/52

    Homogeneous Einstein Equations Einstein (Friedmann) equations:

    1

    a

    da

    dt

    2

    = 8G

    3

    1

    a

    d2a

    dt2 =

    4G

    3 (+ 3p)

    so thatw p/ < 1/3for acceleration

    Conservation equation T= 0implies

    = 3(1 + w)

    a

    a

  • 7/23/2019 Trieste Print2

    11/52

    Homogeneous Einstein Equations Counting exercise:

    20 Variables (10 metric; 10 matter)

    17 Homogeneity and Isotropy

    2 Einstein equations

    1 Conservation equations+1 Bianchi identities

    1 Degree of freedom

    without loss of generality choose ratio of homogeneous & isotropic

    component of thestress tensorto the densityw(a) =p(a)/(a).

  • 7/23/2019 Trieste Print2

    12/52

    Covariant Scalar Equations Einstein equations(suppressing0) superscripts (Hu & Eisenstein 1999):

    (k2 3K)[HL+ 13HT+

    aa

    1k2

    (kB HT)]

    = 4Ga2+ 3

    a

    a(+p)(v B)/k

    , Poisson Equation

    k2

    (A+HL+

    1

    3HT) + dd + 2

    a

    a

    (kB HT)

    = 8Ga2p ,

    a

    aA HL 1

    3HT K

    k2(kB HT)

    = 4Ga2(+p)(vB)/k ,

    2a

    a 2

    a

    a

    2+

    a

    a

    d

    d k

    2

    3

    A

    d

    d+

    a

    a

    (HL+

    1

    3kB)

    = 4Ga2(p+1

    3) .

  • 7/23/2019 Trieste Print2

    13/52

    Covariant Scalar Equations Conservation equations:continuityandNavier Stokes

    dd

    + 3aa

    + 3

    aap = (+p)(kv+ 3 HL) ,

    d

    d+ 4

    a

    a

    (+p)

    (v B)k

    = p 2

    3(1 3K

    k2)p+ (+p)A ,

    Equations are not independent since G

    = 0via theBianchiidentities.

    Related to the ability to choose acoordinate systemor gauge torepresent the perturbations.

  • 7/23/2019 Trieste Print2

    14/52

    Covariant Scalar Equations DOF counting exercise

    8 Variables (4 metric; 4 matter)

    4 Einstein equations2 Conservation equations

    +2 Bianchi identities2 Gauge (coordinate choice 1 time, 1 space)

    2 Degrees of freedom

    without loss of generality choose scalar components of thestresstensorp, .

  • 7/23/2019 Trieste Print2

    15/52

    Covariant Vector Equations Einstein equations

    (1 2K/k2)(kB(1) H(1)T )= 16Ga2(+p)(v(1) B(1))/k ,

    d

    d+ 2

    a

    a

    (kB(1) H(1)T )

    = 8Ga2p(1) . Conservation Equations

    d

    d

    + 4a

    a [(+p)(v(1)

    B(1))/k]

    = 12

    (1 2K/k2)p(1) ,

    Gravity providesno sourceto vorticity decay

  • 7/23/2019 Trieste Print2

    16/52

    Covariant Vector Equations DOF counting exercise

    8 Variables (4 metric; 4 matter)

    4 Einstein equations2 Conservation equations

    +2 Bianchi identities2 Gauge (coordinate choice 1 time, 1 space)

    2 Degrees of freedom

    without loss of generality choose vector components of thestresstensor(1).

  • 7/23/2019 Trieste Print2

    17/52

    Covariant Tensor Equation Einstein equation

    d2d2

    + 2aadd

    + (k2 + 2K)H(2)T = 8Ga

    2p(2) .

    DOF counting exercise

    4 Variables (2 metric; 2 matter)

    2 Einstein equations0 Conservation equations+0 Bianchi identities

    0 Gauge (coordinate choice 1 time, 1 space)

    2 Degrees of freedom

    wlog choose tensor components of thestress tensor(2).

  • 7/23/2019 Trieste Print2

    18/52

    Arbitrary Dark Components Total stress energy tensor can be broken up intoindividual pieces

    Dark componentsinteract only through gravity and so satisfyseparate conservation equations

    Einstein equation source remains the sum of components.

    To specify an arbitrary dark component, give the behavior of the

    stress tensor:6 components:p,(i), wherei = 2, ..., 2. Many types of dark components (dark matter, scalar fields,

    massive neutrinos,..) havesimple formsfor their stress tensor in

    terms of the energy density, i.e. described byequations of state.

    An equation of state for the backgroundw =p/is notsufficientto determine the behavior of the perturbations.

  • 7/23/2019 Trieste Print2

    19/52

    Gauge Metric and matter fluctuations take ondifferent valuesin different

    coordinate system No such thing as a gauge invariant density perturbation! Generalcoordinate transformation:

    = +Txi = xi +Li

    free to choose(T, Li) to simplify equations or physics.

    Decompose these into scalar and vector harmonics.

    G andTtransform astensors, so components in differentframes can be related

  • 7/23/2019 Trieste Print2

    20/52

    Gauge Transformation Scalar Metric:

    A = A T aaT,

    B = B + L+kT,

    HL = HL k

    3L

    a

    aT,

    HT =

    HT+kL ,

    Scalar Matter (Jth component):

    J = J JT,

    pJ = pJ pJT,

    vJ = vJ+ L,

    Vector:

    B(1)

    = B(1)

    + L(1)

    , H(1)T

    =H(1)T

    +kL(1)

    , v(1)J

    =v(1)J

    + L(1)

    ,

  • 7/23/2019 Trieste Print2

    21/52

    Gauge Dependence of Density

    Background evolution of the density induces a density fluctuation

    from a shift in the time coordinate

  • 7/23/2019 Trieste Print2

    22/52

    Common Scalar Gauge Choices A coordinate system isfully specifiedif there is an explicit

    prescription for(T, L

    i

    ) or for scalars(T, L) Newtonian:

    B = HT = 0

    A (Newtonian potential)

    HL (Newtonian curvature)L = HT/kT = B/k + HT/k2

    Good:intuitive Newtonian like gravity; matter and metricalgebraically related; commonly chosen foranalytic CMBand

    lensingwork

    Bad:numericallyunstable

  • 7/23/2019 Trieste Print2

    23/52

    Example: Newtonian Reduction In the general equations, setB =HT = 0:

    (k2 3K) = 4Ga2+ 3a

    a(+p)v/k

    k2(+) = 8Ga2p

    so = if anisotropic stress = 0and

    d

    d+ 3

    a

    a

    + 3

    a

    ap = (+p)(kv+ 3) ,

    d

    d+ 4

    a

    a

    (+p)v = kp

    2

    3(1 3

    K

    k2)p k+ (+p) k ,

    Competition betweenstress(pressure and viscosity) andpotential

    gradients

  • 7/23/2019 Trieste Print2

    24/52

    Relativistic Term in Continuity Continuity equation contains relativistic termfrom changes in the spatial curvature perturbation to the scale factor

    For w=0 (matter), simply density dilution; for w=1/3 (radiation) density dilution plus (cosmological) redshift

    a.k.a.ISW effect photon redshift from change in grav. potential

  • 7/23/2019 Trieste Print2

    25/52

    Common Scalar Gauge Choices Comoving:

    B = v (T0i = 0)

    HT = 0

    = A

    = HL (Bardeen curvature)

    T = (v B)/kL = HT/k

    Good:is conservedif stress fluctuations negligible, e.g. above

    the horizon if|K| H2

    +Kv/k=a

    a

    p+p

    +2

    3

    1 3K

    k2

    p

    +p

    0

    Bad:explicitly relativistic choice

  • 7/23/2019 Trieste Print2

    26/52

    Common Scalar Gauge Choices Synchronous:

    A = B= 0

    L HL 13HT

    hT = HT or h= 6HL

    T = a

    1 daA+c1a

    1

    L = d(B+kT) +c2

    Good:stable, the choice of numerical codes

    Bad:residualgauge freedomin constantsc1,c2must bespecified as an initial condition, intrinsically relativistic.

  • 7/23/2019 Trieste Print2

    27/52

    Common Scalar Gauge Choices Spatially Unperturbed:

    HL = HT = 0

    L = HT/kA , B = metric perturbations

    T = aa

    1

    HL

    +1

    3H

    T

    Good:eliminates spatial metric in evolution equations; useful in

    inflationary calculations(Mukhanov et al)

    Bad:intrinsically relativistic.

    Caution:perturbation evolution is governed by the behavior ofstress fluctuations and an isotropic stress fluctuationpis gauge

    dependent.

  • 7/23/2019 Trieste Print2

    28/52

    Hybrid Gauge Invariant Approach With the gauge transformation relations, express variables ofone

    gaugein terms of those inanother allows a mixture in the

    equations of motion

    Example:Newtonian curvature above the horizon. Conservation ofthe Bardeen-curvature=const. implies:

    =3 + 3w

    5 + 3w

    e.g. calculatefrom inflation determines for any choice of

    matter content or causal evolution.

    Example:Scalar field (quintessence dark energy) equations incomoving gauge imply asound speedp/= 1independent of

    potentialV(). Solve in synchronous gauge (Hu 1998).

  • 7/23/2019 Trieste Print2

    29/52

    Transfer Function Example Example:Transfer functiontransfers the initial Newtonian

    curvature to its value today (linear response theory)

    T(k)=(k, a= 1)

    (k, ainit)

    Conservation of Bardeen curvature: Newtonian curvature is a

    constantwhenstress perturbations are negligible: above thehorizon during radiation and dark energy domination, on all scales

    during matter domination

    When stress fluctuations dominate, perturbations are stabilized by

    theJeans mechanism

    HybridPoisson equation: Newtonian curvature, comoving density

    perturbation (/)comimplies decays

    (k2 3K)= 4G 2

  • 7/23/2019 Trieste Print2

    30/52

    Transfer Function Example Freezingof stops ateq

    (keq)2H (keq)2init Transfer function has ak2 fall-offbeyondkeq 1eq

    1

    0.1

    0.0001 0.001 0.01 0.1 1

    0.01

    T(k)

    k (h1Mpc)

    wiggles

    k2

  • 7/23/2019 Trieste Print2

    31/52

    Gauge and the Sachs-Wolfe Effect Going fromcomoving gauge, where the CMB temperature

    perturbation is initially negligible by the Poisson equation, to the

    Newtoniangauge involves a temporal shift

    t

    t =

    Temporal shift implies a shift in thescale factorduring matterdomination

    a

    a =

    2

    3

    t

    t

    CMB temperature iscoolingasT a Inducedtemperature fluctuation

    T

    T =

    a

    a =

    2

    3

  • 7/23/2019 Trieste Print2

    32/52

    Gauge and the Sachs-Wolfe Effect Add thegravitational redshifta photon suffers climbing out of the

    gravitational potential

    T

    T

    obs

    = +T

    T =

    1

    3

  • 7/23/2019 Trieste Print2

    33/52

    COBE Normalization

    Sachs-WolfeEffect relates the COBEdetection to the gravitational

    potential on the last scattering surface

    Decompose the angular and spatial information into normal modes: spherical harmonicsfor angular, plane wavesfor spatial

    Gm (n,x,k) = (i) 4

    2+ 1Ym

    (n)eikx .

    x,

    D

    jl(kD)Yl0

    [+ ](n,x

    ) =

    1

    3 x

    +Dn,

    )D=0

    (

    Last Scattering Surface

    0

  • 7/23/2019 Trieste Print2

    34/52

    COBE Normalization cont.

    Multipole momentdecomposition for each k

    Power spectrumis the integral overkmodes

    Fourier transformSachs-Wolfe source

    Decompose plane wave

    (n,x) = d3k

    (2)3m

    (m)

    (k)Gm (x,k,n)

    C = 4 d

    3

    k(2)3

    m

    (m)

    (m)

    (2+ 1)2

    [+](n,x) =1

    3 d3k

    (2)3 k, )e

    ik(D n+x)(

    exp(ikDn) =

    (i)

    4(2+ 1)j(kD)Y0(n) ,

  • 7/23/2019 Trieste Print2

    35/52

    COBE Normalization cont.

    Extract multipole moment,assume a constantpotential

    Construct angular power spectrum

    For scale invariant potential(n=1), integral reduces to

    Log power spectrum = Log potential spectrum / 9

    (0)2+ 1

    = 13

    k, )j(kD)

    = 1

    3 k, 0)j(kD)

    (

    (

    C= 4 dk

    kj2

    (kD)

    1

    92

    0

    dxxj2

    (x) = 1

    2(+ 1)

    (+ 1)

    2 C

    =

    1

    9

    2

    (n= 1)

  • 7/23/2019 Trieste Print2

    36/52

    COBE Normalization cont.

    Relate to density fluctuations: Poisson equation and Friedmann eqn.

    Power spectra relation

    In terms of density fluctuation at horizon and transfer function

    For scale invariant potential

    k2 4Ga2

    = 3

    2H20

    2

    m

    2=94

    H0

    k

    42m

    2

    2

    2

    H

    k

    H0

    n+3

    T2

    (k)

    (+ 1)

    2

    C = 1

    4

    2m

    2

    H (n= 1)

    =

  • 7/23/2019 Trieste Print2

    37/52

    COBE Normalization cont.

    Some numbers

    Detailed calculation from Bunn & White (1997)including decay of

    potential in low density universe and tilt

    (+ 1)2

    C = 14

    2m2H

    (n= 1)=

    28K

    2.726 106K

    2 1010

    H (2 105)1

    m

    H= 1.94 1050.7850.05lnm

    m e0.95(n1)0.169(n1)

    2

  • 7/23/2019 Trieste Print2

    38/52

    Matter Power Spectrum

    Combine the transfer functionwith the COBE normalization

    k (hMpc-1)

    2(k)[=k3P(k)/22]

    0.1 10.01

    1

    10-2

    101

    10-1

    10-3

    non-linear

    scale

  • 7/23/2019 Trieste Print2

    39/52

    Matter Power Spectrum

    Usually plotted asthepower spectrum, not log-power spectrum

    k (hMpc-1)

    P(k)(h-1Mp

    c)3

    0.1 10.01

    103

    104

    105

  • 7/23/2019 Trieste Print2

    40/52

    Galaxy Power Spectrum Data

    Galaxy clusteringtracks the dark matter but as a biased tracer

    k (hMpc-1)

    P(k)(h-1Mp

    c)3

    0.1 10.01

    103

    104

    105

    2dF

    PSCz

  • 7/23/2019 Trieste Print2

    41/52

    Galaxy Power Spectrum Data

    Each galaxy population has different linear biasin linear regime

    k (hMpc-1)

    P(k)(h-1Mp

    c)3

    0.1 10.01

    103

    104

    105

    2dF

    PSCz

  • 7/23/2019 Trieste Print2

    42/52

    Acoustic Oscillations Example:Stabilization accompanied byacoustic oscillations

    Photon-baryonsystem - under rapid scatteringd

    d+ 3

    a

    a

    b + 3

    a

    apb = (b +pb)(kvb + 3) ,

    d

    d+ 4

    a

    a [(b +pb)vb/k] = pb + (+p) ,or with =/andR = 3b/

    = k3vb

    vb = R

    1 +Rvb +

    1

    1 +Rk+k

    Forced oscillatorequation see Zaldarriagas talks Anisotropic stressesand entropy generation throughnon-adiabatic

    stressSilkdampsfluctuations Silk 1968

    Acoustic Peaks in the Matter

  • 7/23/2019 Trieste Print2

    43/52

    Acoustic Peaks in the Matter

    Baryon density & velocity oscillateswith CMB

    Baryons decouple at /R ~ 1, the end of Compton drag epoch

    Decoupling: b(drag) Vb(drag), but not frozen

    Continuity: b=kVb

    Velocity Overshoot Dominates: b Vb(drag) k>> b(drag)

    Oscillations /2 out of phasewith CMB

    Infall into potential wells (DC component)

    .

    End of Drag Epoch Velocity Overshoot + Infall

    Hu & Sugiyama (1996)

    Features in the Power Spectrum

  • 7/23/2019 Trieste Print2

    44/52

    Features in the Power Spectrum

    Featuresin the linear power spectrum

    Breakat sound horizon

    Oscillationsat small scales; washed out by nonlinearities

    k (hMpc-1)

    Eisenstein & Hu (1998)

    numerical

    P(k)

    (arbitrarynor

    m.)

    0.01 0.1

    0.1

    1

    nonlinear

    scale

    Combining Features in LSS + CMB

  • 7/23/2019 Trieste Print2

    45/52

    Combining Features in LSS + CMB

    Consistency check on thermal history and photonbaryon ratio

    Inferphysical scale lpeak(CMB) kpeak(LSS) in Mpc1

    Eisenstein, Hu & Tegmark (1998)Hu, Eisenstein, Tegmark & White (1998)

    k3P(k)

    k (Mpc1)0.05

    2

    4

    6

    8

    0.1

    Powe

    r(arbitrarynorm.)

    CDM

    Combining Features in LSS + CMB

  • 7/23/2019 Trieste Print2

    46/52

    Combining Features in LSS + CMB

    Consistency check on thermal history and photonbaryon ratio

    Inferphysical scale lpeak(CMB) kpeak(LSS) in Mpc1

    Measure in redshift survey kpeak(LSS) in hMpc1 h

    Eisenstein, Hu & Tegmark (1998)Hu, Eisenstein, Tegmark & White (1998)

    Pm(k)

    k3P(k)

    k (Mpc1)0.05

    2

    4

    6

    8

    0.1

    Powe

    r(arbitrarynorm.)

    h

    CDM

    P i i D k C

  • 7/23/2019 Trieste Print2

    47/52

    Parameterizing Dark Components

    Prototypes: Cold dark matter 0 0 0(WIMPs)

    Hot dark matter 1/30(light neutrinos)

    Cosmological constant 1 arbitrary arbitrary

    (vacuum energy)

    Exotica:

    Quintessence 1 0(slowly-rolling scalar field)

    Decaying dark matter 1/301/3(massive neutrinos)

    Radiation backgrounds 1/3

    0 0

    1/3

    scale

    dependent

    01/3

    (rapidly-rolling scalar field, NBR)

    Ultra-light fuzzy dark mat.

    equation of state

    wg

    sound speed

    ceff2

    viscosity

    cvis2

    variable

    Hu (1998)

    M i N t i

  • 7/23/2019 Trieste Print2

    48/52

    Massive Neutrinos Relativisticstressesof a light neutrinoslowthegrowthof structure

    Neutrino species withcosmological abundancecontribute to matterash

    2 =m/94eV, suppressing power asP/P 8/m

    M i N t i

  • 7/23/2019 Trieste Print2

    49/52

    Massive NeutrinosCurrent data from 2dF galaxy survey indicates m

  • 7/23/2019 Trieste Print2

    50/52

    Dark Energy Stress & Smoothness

    Raising equation of stateincreases redshift of dark energy

    domination and raises large scale anisotropies Lowering the sound speedincreases clustering and reduces

    ISW effect at large angles

    w=1

    w=2/3

    ceff=1

    ceff=

    1/3

    1010

    1011

    1012

    Power

    10 100l

    ISW Effect

    Total

    Hu (1998); Hu (2001)

    Coble et al. (1997)

    Caldwell et al. (1998)

    L i CMB T C l i

  • 7/23/2019 Trieste Print2

    51/52

    LensingCMB TemperatureCorrelation

    Any correlation is a direct detectionof a smooth energy

    densitycomponent through the ISW effect Show dark energy smooth >5-6 Gpcscale, test quintesence

    Hu (2001); Hu & Okamoto (2001)

    10 100 1000

    109

    1010

    1011

    "Perfect"

    Planck

    crosspower

    L

    S

  • 7/23/2019 Trieste Print2

    52/52

    Summary In linear theory, evolution of fluctuations is completely defined

    once thestressesin the matter fields are specified.

    Stresses and their effects take on simple forms in particular

    coordinate orgauge choices, e.g. the comoving gauge.

    Gaugecovariant equationscan be used to take advantage of these

    simplifications in an arbitrary frame.

    Curvature(potential) fluctuations remainconstantin the absence

    of stresses.

    Evolution can be used to test the nature of thedark components,

    e.g.massive neutrinosand thedark energyby measuring the

    matter power spectrum.

    Problem:luminous tracers of the matter clustering arebiased

    next lecture.