transverse stability of periodic waves in water-wave models...transverse stability of periodic waves...

63
Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´ e Bourgogne Franche-Comt´ e, France ICERM, April 28, 2017

Upload: others

Post on 25-Jul-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Transverse stability of periodic

waves in water-wave models

Mariana Haragus

Institut FEMTO-ST and LMB

Universite Bourgogne Franche-Comte, France

ICERM, April 28, 2017

Page 2: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Water-wave problem

gravity/gravity-capillary waves

� three-dimensional inviscid fluid layer

� constant density

� gravity/gravity and surface tension

� irrotational flow

Page 3: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Water-wave problem

x

y

z

y = 0 (flat bottom)

y = h + η(x , z, t)

(free surface)

Domain

Dη = {(x , y , z) : x , z ∈ R, y ∈ (0, h + η(x , z, t))}

� depth at rest h

Page 4: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Euler equations

Laplace’s equation

φxx

+ φyy

+ φzz

= 0 in Dη

boundary conditions

φy

= 0 on y = 0

ηt

= φy

− ηx

φx

− ηz

φz

on y = h + η

φt

= −1

2(φ2

x

+ φ2y

+ φ2z

) − gη +σ

ρK on y = h + η

� velocity potential φ; free surface h + η

� mean curvature K =

[ηx√

1+η2x+η2

z

]

x

+

[ηz√

1+η2x+η2

z

]

z� parameters ρ, g , σ, h

Page 5: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Euler equations

moving coordinate system, speed −

dimensionless variables

� characteristic length h

� characteristic velocity

parameters

� inverse square of the Froude number α =gh

2

� Weber number β =σ

ρh 2

Page 6: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Euler equations

φxx

+ φyy

+ φzz

= 0 for 0 < y < 1 + η

φy

= 0 on y = 0

φy

= ηt

+ ηx

+ ηx

φx

+ ηz

φz

on y = 1 + η

φt

+ φx

+ 12

(φ2x

+ φ2y

+ φ2z

)+ αη − βK = 0 on y = 1 + η

Page 7: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Euler equations

φxx

+ φyy

+ φzz

= 0 for 0 < y < 1 + η

φy

= 0 on y = 0

φy

= ηt

+ ηx

+ ηx

φx

+ ηz

φz

on y = 1 + η

φt

+ φx

+ 12

(φ2x

+ φ2y

+ φ2z

)+ αη − βK = 0 on y = 1 + η

difficulties

� variable domain (free surface)

� nonlinear boundary conditions

very rich dynamics

� symmetries, Hamiltonian structures

� many particular solutions

Page 8: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Focus on . . .

traveling periodic 2D waves

transverse stability/instability

analytical results

long-wave models

Page 9: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Two-dimensional periodic waves

exist in different parameter regimes

β13

1

α

Page 10: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Two-dimensional periodic waves

transverse (in)stability

β13

1

α

Page 11: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Large surface tension

transverse linear instability

� longitudinal co-periodic perturbations

� transverse periodic perturbations

Euler equations

[H., 2015]

Page 12: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Transverse instability problem

Transverse spatial dynamics

U

z

= DU

t

+ F (U)

�U(x , z, t), D linear operator, F nonlinear map

� a periodic wave U∗(x) is an equilibrium

z

x

Page 13: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Transverse linear instability

Transverse spatial dynamics

U

z

= DU

t

+ F (U)

U∗(x) is transversely linearly unstable if the linearized system

U

z

= DU

t

+ LU , L = F

′(U∗)

possesses a solution of the form U(x , z, t) = eλtVλ(x , z)

with λ ∈ C, Reλ > 0, Vλ bounded function.

Page 14: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Hypotheses

1 the system U

z

= DU

t

+ F (U) is reversible/Hamiltonian;

2 the linear operator L = F

′(U∗) possesses a pair of

simple purely imaginary eigenvalues ±iκ∗;

3 the operators D and L are closed in X with D(L) ⊂ D(D);

Page 15: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Main result

Theorem

1 For any λ ∈ R sufficiently small, the linearized system

U

z

= DU

t

+ LU

possesses a solution of the form U(·, z, t) = eλtVλ(·, z)

with Vλ(·, z) ∈ D(L) a periodic function in z .

2 U∗ is transversely linearly unstable.

[Godey, 2016; see also Rousset & Tzvetkov, 2010]

Page 16: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Euler equations

Hamiltonian formulation of the 3D problem:

U

z

= DU

t

+ F (U)

� boundary conditions

φy

= b(U)t

+ g(U) on y = 0, 1

(e.g. [Groves, H., Sun, 2002])

Page 17: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Periodic waves

β >1

3, α = 1 + ǫ , ǫ small

model: Kadomtsev-Petviashvili-I equation instability

∂x∂tu =∂x∂x(∂2xu + u +

1

2u2)−∂2

yu

[H.; Johnson & Zumbrun; Hakkaev, Stanislavova & Stefanov, . . . ]

Page 18: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Periodic waves

β >1

3, α = 1 + ǫ , ǫ small

model: Kadomtsev-Petviashvili-I equation instability

∂x∂tu =∂x∂x(∂2xu + u +

1

2u2)−∂2

yu

[H.; Johnson & Zumbrun; Hakkaev, Stanislavova & Stefanov, . . . ]

The Euler equations possess a one-parameter family of

symmetric periodic waves

ηǫ,a(x) = εpa

(ε1/2x, ε), ϕǫ,a(x) = ε1/2

q

a

(ε1/2x, ε)

p

a

(ξ, 0) = ∂ξqa(ξ, 0), pa(ξ, 0) satisfies the Korteweg de

Vries equation[Kirchgassner, 1989]

Page 19: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Linearized system

linearized system (rescaled)

U

z

= DεUt

+ DFε(ua)U

� boundary conditions

φy

=Dbε(ua)Ut

+ Dgε(ua)U on y = 0, 1

Page 20: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Linearized system

linearized system (rescaled)

U

z

= DεUt

+ DFε(ua)U

� boundary conditions

φy

=Dbε(ua)Ut

+ Dgε(ua)U on y = 0, 1

linear operator Lε := DFε(ua)

� boundary conditions

φy

= Dgε(ua)U on y = 0, 1

� space of symmetric functions (x → −x)

Xs = H1e (0, 2π)× L

2e(0, 2π)× H

1o ((0, 2π)× (0, 1))× L

2o((0, 2π)× (0, 1))

Page 21: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Linear operator Lε

Lε = L0ε + L1

ε L0ε

η

ω

φ

ξ

=

ω

β−εk

2aβηxx + (1 + ǫ)η − kaφx |y=1

ξ

−εk2aφxx − φyy

, L1ε

η

ω

φ

ξ

=

g1

g2

G1

G2

g1 =(1 + εk2a η

2ax )

1/2

β

(ω +

1

1 + εηa

∫1

0yφay ξ dy

)−

ω

β

g2 =

∫ 1

0

{εk

2aφaxφx −

φayφy

(1 + εηa)2+

εφ2ayη

(1 + εηa)3−

ε3k2a y2η2

axφayφy

(1 + εηa)2−

ε3k2a y2ηaxφ

2ayηx

(1 + εηa)2+

ε3k2a y2η2

axφ2ayη

(1 + εηa)3

+

[εk

2a yφayφx + εk

2a yφaxφy −

2ε2k2a y2ηaxφayφy

1 + εηa−

ε2k2a y2φ2

ayηx

1 + εηa+

ε3k2a y2ηaxφ

2ayη

(1 + εηa)2

]

x

}dy

+ εk2aβηxx − εk

2aβ

[ηx

(1 + ε3k2aη2ax )

3/2

]

x

G1 = −εηaξ

1 + εηa+

(1 + ε3k2aη2ax )

1/2

β(1 + εηa)

(ω +

1

1 + εηa

∫1

0yφay ξ dy

)yφay

G2 =

[εηaφ

(1 + εηa)+

εφaη

(1 + ηa)2

]

yy

− ε2k2a [ηaφx + φaxη − yφay ηx − yηaxφy ]x

+ ε2k2a

[yηaxφx + yφaxηx +

ε2y2η2axφayη

(1 + εηa)2−

εy2η2axφy

1 + εηa−

2εy2ηaxφayηx

1 + εηa

]

y

Page 22: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Check hypotheses . . .

Main difficulty: spectrum of Lε . . .

operator with compact resolvent −→ pure point spectrum

spectral analysis

|λ| ≥ λ∗

|λ| ≤ λ∗

|λ| ≤ εℓ∗

Page 23: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Key step

Reduction to a scalar operator Bε,ℓ in L2o(0, 2π)

� scaling λ = εℓ, ω = εω, ξ = εξ

� decomposition φ(x , y) = φ1(x) + φ2(x , y)

� λ = εℓ eigenvalue iff Bε,ℓφ1 = 0

Bε,ℓφ1 =

(β −

1

3

)k

4a

φ1xxxx − k

2a

φ1xx + ℓ2(1 + ǫ)φ1 − 3k2a

(Pa

φ1x)x + . . .

Page 24: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

. . . . . . . . .

ω =β

(1 + ǫ3η⋆2x )1/2

(η†+ ikη) −

1

1 + ǫη⋆

∫ 1

0yΦ

⋆y ξdy,

ξ = (1 + ǫη⋆)(Φ

†+ ikΦ) − ǫyΦ

⋆y (η

†+ ikη)

(1 + ǫ)

ǫ2η −

1

ǫ2Φx |y=1 −

1

ǫβηxx − ikβ(h

ǫ1 + ikη) = h

ǫ2

−1

ǫΦxx −

1

ǫ2Φyy − ik(H

ǫ1 + ikΦ) = H

ǫ2 ,

hǫ2 = ω

†− g

ǫ2 ,

Hǫ2 = ξ

†− G

ǫ2

hǫ1 =

ω

β− ikη

= −1

β(1 + ǫη⋆)

∫ 1

0yΦ

⋆y [−ǫyΦ

⋆y (ikη + η

†) + (1 + ǫη

⋆)(ikΦ + Φ

†)]dy

+

(1

(1 + ǫ3η⋆2x )1/2

− 1

)ikη +

η†

(1 + ǫ3η⋆2x )1/2

,

Hǫ1 = ξ − ikΦ

= (1 + ǫη⋆)Φ

†+ ikǫη

⋆Φ − ǫyΦ

⋆y (η

†+ ikη).

Bǫ(η,Φ) = −ǫηx + B

ǫ0 + B

ǫ1 ,

Bǫ0 =

ǫη⋆Φy

1 + ǫη⋆+

ǫΦ⋆y η

(1 + ǫη⋆)2

∣∣∣∣∣y=1

,

Bǫ1 = ǫ

2η⋆x Φx + ǫ

2Φ⋆x ηx +

ǫ4η⋆2x Φ⋆

y η

(1 + ǫη⋆)2−

ǫ3η⋆2x Φy

1 + ǫη⋆−

−Φyy + q2Φ = ǫ2(Hǫ2 + ikHǫ

1 ), 0 < y < 1

Φy = 0, y = 0

Φy −ǫµ2Φ

1 + ǫ + βq2= −

ǫ3iµ(hǫ2 + ikβhǫ1 )

1 + ǫ + βq2+ B

ǫ0 + B

ǫ1 , y = 1

G(y, ζ) =

cosh qy

cosh q

(1 + ǫ + βq2) cosh q(1 − ζ) + (ǫµ2/q)

q2 − (1 + ǫ + βq2)q tanh q − ǫ

cosh qζ

cosh q

(1 + ǫ + βq2) cosh q(1 − y) + (ǫµ2/q)

q2 − (1 + ǫ + βq2)q tanh q −

Page 25: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

. . . . . . . . .

Φ1 =1 + ǫ

ǫ2(k2(1 + ǫ) + µ2 + (β − 1/3)µ4)×

{∫ 1

0ǫ2(ξ

†− iµG

ǫ2,2 + ikH

ǫ1 )dζ − ǫq

2∫ 1

0pǫ2 dζ

−ǫ3iµ(hǫ2 + ikβhǫ1 )

1 + ǫ + βq2+

ǫ2µ2 pǫ2 |ζ=1

1 + ǫ + βq2

},

Φ2 = −

∫1

0G1(ξ

†− iµG

ǫ2,2 + ikH

ǫ1 )dζ −

∫1

0G1ζ G

ǫ2,1dζ +

∫1

0(ǫk

2+ µ

2)G1p

ǫ2 dζ + ǫp

ǫ2

− G1|ζ=1

(−

ǫiµ(hǫ2 + ikβhǫ1 )

1 + ǫ + βq2+

µ2pǫ2 |ζ=1

1 + ǫ + βq2

),

Φ = −

∫ 1

0Gǫ

2(ξ

†− ıµG

ǫ2,2 + ıkH

ǫ1 )dζ −

∫ 1

0Gζǫ

2Gǫ2,1dζ +

ǫ3 ıµG |ζ=1(hǫ2 + ıkβhǫ1 )

1 + ǫ + βq2+

∫ 1

0ǫq

2Gp

ǫ2 dζ + ǫp

ǫ2 −

ǫ2µ2

1

∫1

0ǫq

2Gp

ǫ2 dζ + ǫp

ǫ2 −

ǫ2µ2G |ζ=1 pǫ2 |ζ=1

1 + ǫ + βq2

=

∫ 1

0Gǫp

ǫ2ζζdζ − ǫG |ζ=1 p

ǫ2ζ |ζ=1 =

∫ 1

0Gǫ

2(G

ǫ2,0)ζζdζ − G |ζ=1B

ǫ0 ,

Φ1 + Φ2 = −

∫1

0Gǫ

2(ξ

†− ıµG

ǫ2,2 + ıkH

ǫ1 )dζ −

∫1

0Gζǫ

2Gǫ2,1dζ

+ǫ3 ıµG |ζ=1(h

ǫ2 + ıkβhǫ1 )

1 + ǫ + βq2+

∫1

0ǫq

2Gp

ǫ2 dζ + ǫp

ǫ2 −

ǫ2µ2G |ζ=1pǫ2 |ζ=1

1 + ǫ + βq2,

Page 26: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

. . . . . . . . .

ıµhǫ2 = ıµω

†+ ıµF

[−

1

ǫ2

∫1

0

{ǫΦ

⋆x Φx −

Φ⋆y Φy

(1 + ǫη⋆)2+

ǫΦ⋆2y η

(1 + ǫη⋆)3−

ǫ3y2η⋆2x Φ⋆

y Φy

(1 + ǫη⋆)2−

ǫ3y2η⋆x Φ⋆2

y ηx

(1 + ǫη⋆)2+

ǫ4y

(1

+µ2

ǫF

[∫1

0

{yΦ

⋆y Φx + yΦ

⋆x Φy −

2ǫy2η⋆x ΦyΦ

⋆y

1 + ǫη⋆−

ǫy2Φ⋆2y ηx

1 + ǫη⋆+

ǫ2y2η⋆x Φ⋆2

y η

(1 + ǫη⋆)2

}dy

]−

βµ2

ǫF

[

(1 +

F−1

[ǫıµhǫ2

1 + ǫ + βq2

]= −F

−1[

1

1 + ǫ + βq2F [(Φ

⋆1xΦ1x )x ]

]+ F

−1

[µ2

1 + ǫ + βq2F

[∫1

0yΦ

⋆x Φ2y dy

]]

+

{F

−1

[−

1

1 + ǫ + βq2F

[∫ 1

0

(Φ⋆2xΦ1x + Φ

⋆x Φ2x −

Φ⋆y Φy

ǫ(1 + ǫη⋆)2+

Φ⋆2y η

(1 + ǫη⋆)3

−ǫ2y2η⋆2

x Φ⋆y Φy

(1 + ǫη⋆)2−

ǫ2y2η⋆x Φ

⋆2y ηx

(1 + ǫη⋆)2+

ǫ3y2η⋆x Φ⋆2

y η

(1 + ǫη⋆)3

)dy

]

−ıµ

1 + ǫ + βq2F

[∫1

0

(yΦ

⋆y Φx −

2ǫy2η⋆x Φ

⋆y Φy

1 + ǫη⋆−

ǫy2Φ⋆2y ηx

1 + ǫη⋆+

ǫ2y2η⋆x Φ

⋆2y η

(1 + ǫη⋆)2

)dy

]

+βıµ

1 + ǫ + βq2F

[ηx

(1 + ǫ3η⋆2x )3/2

− ηx

]]}

x

+ F−1

[ǫıµω†

1 + ǫ + βq2

]

= −F−1[

1

1 + ǫ + βq2F [(Φ

⋆1xΦ1x )x ]

]+ F

−1

[µ2

1 + ǫ + βq2F

[∫1

0yΦ

⋆x Φ2y dy

]]

+ (L(ǫΦ1x ,Φ2x ,Φ2y , ǫ2η, ǫ

4ηx ))x + ǫ

−1/2(L(ǫΦx , ǫ

2Φ2y , ǫ

4η, ǫ

3ηx ))x + ǫ

1/2L(ω

†),

Page 27: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

. . . . . . . . .

F−1

[µ2

1 + ǫ + βq2F

[∫1

0yΦ

⋆x Φ2y dy

]]= F

−1

[µ2

1 + ǫ + βq2F

[Φ⋆1xΦ2|y=1 −

∫1

0Φ⋆1xΦ2dy +

∫1

0yΦ

⋆2xΦ2y

=

[F

−1

[µ1/2

1 + ǫ + βq2µ1/2

F [Φ⋆1xΦ2|y=1 ] −

1

1 + ǫ + βq2

∫1

0(Φ

⋆1xΦ2)xdy +

µ

1 + ǫ + βq2

∫1

0yΦ

⋆2xΦ2y dy

]]

x

= ǫ−1/4

(L(Φ2))x + (L(Φ2,Φ2x , ǫ1/2

Φ2y ))x ,

F−1

[ǫıµhǫ2

1 + ǫ + βq2

]= −F

−1[

1

1 + ǫ + βq2F [(Φ

⋆1xΦ1x )x ]

]+ ǫ

−1/4(L(Φ2))x

+ ǫ−1/2

(L(ǫΦx , ǫ2Φ2y , ǫ

4η, ǫ

3ηx )x + (L(ǫΦ1x ,Φ2,Φ2x ,Φ2y , ǫ

2η, ǫ

4ηx )x + H.

F−1

[ǫıµ.ıkhǫ1

1 + ǫ + βq2

]= (L(Φ2, ǫ

2η))x + ǫ

2k2(L(Φ1))x + H, F

−1

[µ2 pǫ2 |ζ=1

1 + ǫ + βq2

]= ǫ

−1/4(L(Φ2, ǫη))x

F−1[(ǫk

2+ µ

2)

∫ 1

0pǫ2 dζ

]= k

2L(ǫΦ2, ǫ

2η) + (L(Φ2,Φ2x , ǫη, ǫηx ))x

∫ 1

0(ξ

†− (G

ǫ2,2)x + ıkH

ǫ1 )dζ = (η

⋆Φ1x )x + (Φ

⋆1xη)x + (L(Φ2x ,Φ2y , ǫη, ǫηx ))x +

(β − 1/3)Φ1xxxx − Φ1xx + k2(1 + ǫ)Φ1 = (η

⋆Φ1x )x + (Φ

⋆1xη)x + F

−1[

1

1 + ǫ + βq2F [(Φ

⋆1xΦ1x )x ]

]

+ (L(ǫ1/2

Φ1x , ǫ−1/4

Φ2,Φ2x ,Φ2y , ǫ3/4

η, ǫηx ))x + k2[L(ǫΦ1, ǫΦ2, ǫ

2η) + ǫ

2L(Φ1)x ] + H,

η = F−1

[ıµΦ1

1 + ǫ + βq2

]+ L(ǫΦ1x , ǫ

3/4Φ2,Φ2x ,Φ2y , ǫ

3η, ǫ

7/2ηx ) + k

2ǫ3L(Φ1) + H.

Page 28: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Locate eigenvalues

|λ| ≤ εℓ∗

two simple eigenvalues ±iεκε

� Bε,ℓ small relatively bounded perturbation of B0,ℓ

B0,ℓ = k

2a

∂x

A ∂x

+ ℓ2 A =

(β −

1

3

)k

2a

∂xx

− 1 − 3Pa

Page 29: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Locate eigenvalues

|λ| ≤ εℓ∗

two simple eigenvalues ±iεκε

� Bε,ℓ small relatively bounded perturbation of B0,ℓ

B0,ℓ = k

2a

∂x

A ∂x

+ ℓ2 A =

(β −

1

3

)k

2a

∂xx

− 1 − 3Pa

� spectrum of ∂x

A∂x

is known (KP-I):

one simple negative eigenvalue −ω2a

� perturbation arguments . . . . . .

Page 30: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Critical surface tension

transverse linear instability

� longitudinal co-periodic perturbations

� transverse periodic perturbations

5th order KP model

[H. & Wahlen, 2017]

Page 31: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

A 5th order KP model

∂t

∂x

u = ∂2x

(∂4x

u + ∂2x

u +1

2u

2

)+ ∂2

y

u

traveling generalized solitary waves

� solutions of the Kawahara equation

∂t

u = ∂x

(∂4x

u + ∂2x

u − u +1

2u

2

)

Page 32: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Periodic traveling waves

small periodic traveling waves: a two-parameter family

ϕa, (x) = p

a, (ka, x)

� depend analytically upon (a, c) ∈ (−a0, a0)× (−c0, c0)

� ka,c = k0(c) + ck(a, c),

k0(c) =(

1+√

1+4c2

)1/2, k(a, c) =

∑n≥1 k2n(c)a

2n

� pa,c(z) = ac cos(z) + c∑

m,n pn,m(c)ei(n−m)zan+m,

(n,m ≥ 0, n + m ≥ 2, n − m 6= ±1)

� explicit Taylor expansions for k(a, c), pn,m(c)

[Lombardi, 2000]

Page 33: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Transverse instability problem

one-dimensional periodic wave u∗

u∗ is transversely linearly unstable if the linearized equation

∂t

∂x

u = ∂2x

(∂4x

u + ∂2x

u − u + u∗u

)+ ∂2

y

u

possesses a solution of the form u(t, x , y) = eλtv(x , y) ,

for some Reλ > 0

(v belongs to the set of the allowed perturbations)

Page 34: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Transverse instability problem

linearized equation

∂t

∂x

u = A∗u + ∂2y

u , A∗ = ∂2x

(∂4x

+ ∂2x

− + u∗

)

� Fourier transform in y

∂t

∂x

u = A∗u − ω2u

Page 35: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Transverse instability problem

linearized equation

∂t

∂x

u = A∗u + ∂2y

u , A∗ = ∂2x

(∂4x

+ ∂2x

− + u∗

)

� Fourier transform in y

∂t

∂x

u = A∗u − ω2u

u∗ is transversely unstable if there exists a solution of the

form u(t, x) = eλtv(x) , for some Reλ > 0, and ω ∈ R

�v ∈ H , a space of functions depending upon the longitudinal

spatial variable x , e.g., H = L

2(R) or H = L

2(0, L), and

λ∂x

v = A∗v − ω2v

Page 36: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Transverse instability problem

for some Reλ > 0 and ω ∈ R∗ , there exists a solution

λ∂x

v = A∗v − ω2v , v ∈ H

�u∗ is transversely spectrally unstable if the linear operator

λ∂x

− A∗ + ω2 is not invertible in H

u∗ is transversely spectrally unstable if the spectrum of

the linear operator λ∂x

− A∗ contains a negative value

−ω2 < 0 for some Reλ > 0.

Page 37: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Transverse instability problem

u∗ is transversely spectrally unstable if the spectrum

of the linear operator λ∂x

− A∗ contains a negative value

−ω2 < 0 for some Reλ > 0.

� if −ω2 is an isolated eigenvalue then u∗ is transversely

linearly unstable

� if −ω2 belongs to the essential spectrum

σess(λ∂x−A∗) = {ν ∈ C ; λ∂x−A∗−ν is not Fredholm with index 0}

then u∗ is transversely essentially unstable

Page 38: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Periodic waves

small periodic waves: ϕa, (x) = p

a, (ka, x)

� scaling: z = k

a, x , λ = k

a, Λ

rescaled operator

Λ∂z

− Ba, , B

a, = ∂2z

(k4a, ∂

4z

+ k

2a, ∂

2z

− + p

a, )

with 2π-periodic coefficients

Page 39: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Co-periodic perturbations

Λ∂z

− Ba, , B

a, = ∂2z

(k4a, ∂

4z

+ k

2a, ∂

2z

− + p

a, )

closed operator in H = L

2(0, 2π)

Theorem

1 the linear operator Λ∂z

− Ba, acting in L2(0, 2π) has a

simple negative eigenvalue.

2 the periodic wave ϕa, is transversely linearly unstable

with respect to co-periodic longitudinal perturbations.

Page 40: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Proof

Λ∂z

− Ba, , B

a, = ∂2z

(k4a, ∂

4z

+ k

2a, ∂

2z

− + p

a, )

show that Ba, has a simple positive eigenvalue

� the operator Λ∂z

− Ba, is real

� perturbation argument: the negative eigenvalue of −Ba,

persists for small real Λ

(point) spectrum of Ba, ?

Page 41: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Proof

Spectrum of Ba, = ∂2

z

(k4a, ∂

4z

+ k

2a, ∂

2z

− + p

a, )

use perturbation arguments: small a and

Page 42: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Proof

Spectrum of Ba, = ∂2

z

(k4a, ∂

4z

+ k

2a, ∂

2z

− + p

a, )

use perturbation arguments: small a and

a = 0, = 0

B0,0 = ∂2z

(∂4z

+ ∂2z

), σ(B0,0) = {−n

2(n4 − n

2), n ∈ Z}

� 0 is a triple eigenvalue

� all other eigenvalues are negative

Page 43: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Proof

Spectrum of Ba, = ∂2

z

(k4a, ∂

4z

+ k

2a, ∂

2z

− + p

a, )

use perturbation arguments: small a and

a = 0, = 0

B0,0 = ∂2z

(∂4z

+ ∂2z

), σ(B0,0) = {−n

2(n4 − n

2), n ∈ Z}

� 0 is a triple eigenvalue

� all other eigenvalues are negative

spectral decomposition for small a and

σ(Ba, ) = σ1(Ba, ) ∪ σ2(Ba, )

� σ1(Ba, ) ⊂ V , V neighborhood of 0

� σ2(Ba, ) ⊂ {ν ∈ C ; Re ν < −m}

Page 44: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Proof

Spectrum of Ba, = ∂2

z

(k4a, ∂

4z

+ k

2a, ∂

2z

− + p

a, ) :

locate the small eigenvalues

Page 45: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Proof

Spectrum of Ba, = ∂2

z

(k4a, ∂

4z

+ k

2a, ∂

2z

− + p

a, ) :

locate the small eigenvalues

a = 0

σ(B0, ) = {−n

2(k20n

4 − k

20n

2 − ), n ∈ Z}

� 0 is a triple eigenvalue

� all other eigenvalues are negative

Page 46: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Proof

Spectrum of Ba, = ∂2

z

(k4a, ∂

4z

+ k

2a, ∂

2z

− + p

a, ) :

locate the small eigenvalues

a = 0

σ(B0, ) = {−n

2(k20n

4 − k

20n

2 − ), n ∈ Z}

� 0 is a triple eigenvalue

� all other eigenvalues are negative

a 6= 0

� use symmetries and show that 0 is a double eigenvalue

� third eigenvalue: compute an expansion for small a, . . .

. . . , νa, = a

2

2

(1

4X2

+ O(a2 +

2)

)> 0

Page 47: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Consequences

implies essential transverse instability of periodic waves

with respect to localize perturbations

implies essential transverse instability of generalized

solitary waves with respect to localize perturbations

extend to Euler equations . . . ?

Page 48: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Zero surface tension

transverse spectral stability

� fully localized/bounded perturbations

KP-II equation

[H., Li, & Pelinovsky, 2017]

Page 49: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Count unstable eigenvalues

Hamiltonian structure: linear operator of the form JL

� J skew-adjoint operator

� L self-adjoint operator

Under suitable conditions:

n

u

(JL) ≤ n

s

(L)

�n

u

(JL) = number of unstable eigenvalues of JL

�n

s

(L) = number of negative eigenvalues of L

[well-known result, extensively used in stability problems . . . ]

[does not work very well for periodic waves . . . ]

Page 50: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

An extended eigenvalue count

Hamiltonian structure: linear operator of the form JL

� J skew-adjoint operator

� L self-adjoint operator

There exists a self-adjoint operator K such that

(JL)(JK) = (JK)(JL)

Under suitable conditions:

n

u

(JL) ≤ n

s

(K)

�n

u

(JL) = number of unstable eigenvalues of JL

�n

s

(K) = number of negative eigenvalues of K

Page 51: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Stability of periodic waves

classical result: allows to show (orbital) stability of periodic

waves with respect to co-periodic perturbations

particular case n

s

(K) = 0: used to show nonlinear (orbital)

stability of periodic waves with respect to subharmonic

perturbations (for the KdV and NLS equations)

[Deconinck, Kapitula, 2010; Gallay, Pelinovsky, 2015]

Page 52: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Stability of periodic waves

classical result: allows to show (orbital) stability of periodic

waves with respect to co-periodic perturbations

particular case n

s

(K) = 0: used to show nonlinear (orbital)

stability of periodic waves with respect to subharmonic

perturbations (for the KdV and NLS equations)

[Deconinck, Kapitula, 2010; Gallay, Pelinovsky, 2015]

key step: construction of a nonnegative operator K

� relies upon the existence of a conserved higher-order energy

functional (due to integrability)

Page 53: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

KP-II equation

Kadomtsev-Petviashivili equation

(ut

+ 6uux

+ u

xxx

)x

+ u

yy

= 0

one-parameter family of one-dimensional periodic

traveling waves (up to symmetries)

u(x , t) = φ

(x + t)

� speed > 1

� 2π-periodic, even profile φ

satisfying the KdV equation

v

′′(x) + v(x) + 3v2(x) = 0

� known explicitly!

Page 54: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Linearized equation

linearized KP-II equation

(wt

+ w

xxx

+ w

x

+ 6(φ

(x)w)x

)x

+ w

yy

= 0

� 2π-periodic coefficients in x

� Ansatz

w(x , y , t) = e

λt+ipy

W (x), λ ∈ C, p ∈ R

linearized equation for W (x)

λWx

+W

xxxx

+ W

xx

+ 6(φ

(x)W )xx

− p

2W = 0

Page 55: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Spectral stability problem

linearized equation for W (x)

λWx

+W

xxxx

+ W

xx

+ 6(φ

(x)W )xx

− p

2W = 0

the periodic wave φ

is spectrally stable iff the linear

operator

A ,p(λ) = λ∂

x

+ ∂4x

+ ∂2x

+ 6∂2x

(x) ·) − p

2

is invertible for Reλ > 0.

� 2D bounded perturbations: space Cb

(R) and p ∈ R.

� continuous spectrum . . .

Page 56: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Floquet/Bloch decomposition

A ,p(λ) is invertible in C

b

(R) iff the operators

A ,p(λ, γ) = λ(∂

x

+ iγ) + (∂x

+ iγ)4 + (∂x

+ iγ)2 + 6(∂x

+ iγ)2(φ

(x) ·) − p

2

are invertible in L2per

(0, 2π), for any γ ∈ [0, 1).

� γ ∈ (0, 1) : study the spectrum of the operator

B ,p(γ) = −(∂

x

+ iγ)3 − (∂x

+ iγ) − 6(∂x

+ iγ)(φ

(x) ·) + p

2(∂x

+ iγ)−1

� γ = 0 : restrict to functions with zero mean

Page 57: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Counting criterion

apply the counting criterion to

B ,p(γ) = J (γ)L

,p(γ)

� skew-adjoint operator J (γ) = (∂x

+ iγ)

� self-adjoint operator

L ,p(γ) = −(∂

x

+ iγ)2 − − 6φ

(x) + p

2(∂x

+ iγ)−2

construct positive commuting operators K ,p(γ)

� find commuting operators M ,p(γ)

� show that suitable linear combination of M ,p(γ) and

L ,p(γ) is a positive operator

Page 58: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Commuting operators

natural candidate: use a higher-order conserved functional

� resulting operator satisfies the commutativity relation

� cannot obtain positive operators . . .

Page 59: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Commuting operators

natural candidate: use a higher-order conserved functional

� resulting operator satisfies the commutativity relation

� cannot obtain positive operators . . .

second option: use the operators from the KdV equation

�p = 0 corresponds to the KdV equation

� decompose:

L ,p = LKdV + p

2LKP, M ,p = MKdV + p

2MKP

� MKdV is obtained from a higher order conserved functional:

MKdV = ∂4x

+ 10∂x

φ

(x)∂x

− 10 φ

(x)−

2

� compute MKP directly from the commutativity relation:

MKP =5

3

(1 + ∂−2

x

)

Page 60: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Main result

Transverse spectral stability of periodic waves (with

respect to bounded perturbations):

� there exist constants b such that the operators

K ,p,b(γ) = M

,p(γ)− bL ,p(γ) are positive1

� the commutativity relation holds

� the general counting criterion implies that the spectra of

B ,p(γ) = J (γ)L

,p(γ) are purely imaginary

Page 61: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Main result

Transverse spectral stability of periodic waves (with

respect to bounded perturbations):

� there exist constants b such that the operators

K ,p,b(γ) = M

,p(γ)− bL ,p(γ) are positive1

� the commutativity relation holds

� the general counting criterion implies that the spectra of

B ,p(γ) = J (γ)L

,p(γ) are purely imaginary

Consequence: transverse linear stability of the periodic

waves with respect to doubly periodic perturbations

Page 62: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

Many open problems . . .

• water waves: other parameter regimes, other types of waves

(solitary waves, three-dimensional waves) . . .

• periodic waves: nonlinear stability with respect to localized

perturbations (KdV equation?) . . .

Page 63: Transverse stability of periodic waves in water-wave models...Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´e Bourgogne

50