transport processes – part 1 - startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · transport...

23
Transport processes (TRP) VST rz18 Transport processes – Part 1 Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering / Värme- och strömningsteknik tel. 3223 ; [email protected] 1/46 1 Transport processes (TRP) VST rz18 Introduction / re-wrap of concepts 2/46 1

Upload: phamhanh

Post on 05-Jul-2018

250 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Transport processes – Part 1

Ron ZevenhovenÅbo Akademi University

Thermal and Flow Engineering / Värme- och strömningstekniktel. 3223 ; [email protected]

1/46 1

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Introduction / re-wrap of concepts

2/46 1

Page 2: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Physical transport phenomena /1

• Transfer of mass and/or energy in a system that is not in thermodynamic equilibrium, towards such equilibrium.

• Systems are usually not very far away from equilbrium, which results in (practically) lineardriving forces:transport = coefficient × driving force– heat flux (W/m2)=

conductivity (W/m2.K)×temperature gradient (K/m)

et cetera.

Theat "

3/46 1

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Physical transport phenomena /2

• Continuum approach:

a small volume dV where system propertiesare constant– For example dx = 0.1 µm dV = 10-21 m3 still

contains in liquid water ~106 molecules

• Not considered here: cross-correlations suchas – Mass transfer = coefficient × temperature gradient

(“thermal diffusion”)

– For example Seebeck effect, Peltier effect

– See also so-called ”irreversible thermodynamics”

4/46 1

Page 3: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Fourier’s Law /1• In a non-moving medium (i.e. a solid, or

stagnant fluid) in the presence of a

temperature gradient, heat is transferred from

high to low temperature as a result of

molecular movement: heat conduction(sv: värmeledning)

• For a one-dimensional temperature gradient ΔT/Δx or dT/dx, Fourier’s Law gives the conductive heat transfer rate Q through a cross-sectional area A (m2). If λ is a constant:

with thermal conductivity λ, unit: W/(mK)

(sv: termisk konduktivitet eller värmeledningsförmåga)

)(W/m (W) 2

dx

dT

A

Q"Q

dx

dTAQ

Pictures: T06

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Fourier’s Law /2• For a general case with a 3-dimensional temperature

gradient T = (∂T/∂x,∂T/∂y,∂T/∂z), Fourier’s Law gives (for constant λ) for the heat flux Q” = - λ T

• The temperature field inside the conducting medium can be written as T = T(t, x) with time t and 3-dimensional location vector x

• For stationary (sv: stationärt, tidsinvariant)

heat transfer ∂T/∂t = 0 at each position x

• The heat transfer vector is perpendicular (sv: vinkelrätt) to the isothermal surfaces

• Note that material property λ is, in fact, a function of temperature:

more accurately Q” = - λ(T)T

∆∆.

Figure: KJ05

∆ Q is a vectorwith direction - T

∆..

Page 4: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Non-steady heat conduction

where in principle heat Q is a 3-dimensional vector Q that creates (or is the result of !) a vector temperature gradient:

(in Cartesian coordinates)

• Non-steady or transient (sv: övergående) heat conduction through a stagnant medium depends not only on heat conductivity λ but also on heat capacity c (or cp, cv). A general energy balance for mass m gives

t

TcmQQ outin

z

T,

y

T,

x

TT Picture: ÖS96

.

.

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Transient heat conduction 1-D /1

• For 1-dimensional transient heat conduction in a balance volume dV with mass dm = ρ·dV = ρ·A·dx :

2

2

2

2

x

Ta

t

T

x

TA

x

xT

A

t

TAc

x

TA

x

Q

t

TcA

dxx

Q

t

TcdmQQ outin

-

-Q Laws Fourier' with

Aρdm/dx with

x

w

L

dx

Q.

A = L·w

Page 5: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Transient heat conduction 1-D /2

• The initial and boundary conditions(sv: start- och randvillkor) determine a heat transfer process

• The three most important cases are:

0 t for t))T(0,- (Th x

t)T(0,- and0 t for T T(x,0)

:0t at h0 convection surface of change Sudden 3.

0t for Q x

t)T(0,- and0 t for T T(x,0)

:0t at Q0 flux heat surface of change Sudden 2.

0t for Tt)T(0, and0 t for T T(x,0)

:0t at T T etemperatur surface of change Sudden 1.

surr0

"0x0

"0x

10

10

x

w

L

dx

Q.

A = L·w

x

w

L

dx

Q.

Q.

A = L·w

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Transient heat conduction 1-D /3

• Case 1: Assume a material with flat boundary at x=0, infinite length in x-direction, with T=T0 at all x

• At time t≥0 the temperature at x=0 is increased to T=T1 and heat starts to enter (diffuse into) the material. At x→∞, T stays at T0.

conditions initial

and boundary

2

2

x

Ta

t

T

Picture: BMH99

Page 6: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Transient heat conduction 1-D /4

• With dimensionless variables

θ = (T-T0)/(T1-T0)

and

ξ = x / (4at)½

this gives the following solution:

)(yerfde

deTT

TT

y

at

x

0

4

001

1

2

2

2

21

with

ÖS96: erf(x) ≈ 1 - exp(- 1.128x - 0.655x2 - 0.063x3)

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Transient heat conduction 1-D /5

• At x = 0 the slope of the penetration profile lines equals

∂T/∂x = -(T1-T0)/(πat)½

where x = (πat)½

is referred to as penetration depth.

• Fourier number Fo is (for heat transfer) defined as

Fo = at/d2 = t /(d2/a)) for a medium with thickness d • Fo gives the ratio between time t and the penetration time d2/a

• The penetration depth concept is valid for Fo < 0.1 Picture: BMH99

Page 7: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Diffusion and heat conduction

• Heat conduction is in principle diffusion of heat

• Since a ”temperature balance” does not exist, an energy balance must be used: T → ρcpT (unit: J/m3)

Fick’s Law Fourier’s Law

p

pp

px,heat cρ

λa

dx

Tcρda

dx

Tcρd

λ"Φ ydiffusivit thermal with --

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Internal friction in fluid flow /1

• Diffusion of momentum subscript ”xy” means in y-direction in

plane of fixed x

• Kinematic viscosity = dynamic viscosity/density, ν = η/ρ

xyyyy

xymomentum dx

vd-

dx

vd-

dx

dv-

,"

Page 8: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Internal friction in fluid flow /2

• Concentration, c, temperature, T, and energy, E, are scalars, and their gradient is a vector dc/dx or c = (∂c/ ∂x, ∂c/ ∂y, ∂c/ ∂z), etc.

• Velocity is a vector v, for example v = (vx, vy, vz) and it’s gradient is a (second order) tensor: dvx/dy (gradient of vx in y-direction)

z

v

z

v

z

vy

v

y

v

y

vx

v

x

v

x

v

v

zyx

zyx

zyx

)(.z

v

y

v

x

vv

:note

zyx

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Internal friction in fluid flow /3

• v results in compressive stresses xx, yy and zz and shear stresses xy, xz, yz, zx, yx and zy:

etc. dy

vd

dy

dv

dy

vd

dy

dv zzyz

xxyx ;;

Page 9: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

17/46 1

The course book;Chapters 1 – 6

are used for thiscourse

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

18/46 1

Page 10: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

19/46 1

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

20/46 1

Page 11: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

21/46 1

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

22/46 1

Note here: W > 0 if work is doneBY the system.

Page 12: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

23/46 1

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

24/46 1

Page 13: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

25/46 1

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

26/46 1

Page 14: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

27/46 1

Note: mass = density · volumem = ρ·V dm = ρ·dV + dρ·V

thus: dm = 0 ≠ dV =0

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

28/46 1

Page 15: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

29/46 1

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

30/46 1

Page 16: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

31/46 1

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

32/46 1

Page 17: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

33/46 1

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

34/46 1

Page 18: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

35/46 1

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

36/46 1

Page 19: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

37/46 1

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

38/46 1

Page 20: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

39/46 1

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

40/46 1

Page 21: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

41/46 1

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

42/46 1

Page 22: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

43/46 1

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Left: Cartesian (x,y,z)

Centre: Cylindrical (r,θ,z)

with r2 = x2+y2

Right: Spherical (r,φ,θ)

with r2 = x2+y2+z2

44/46 1

Page 23: Transport processes – Part 1 - Startsidausers.abo.fi/rzevenho/trp-slides-1-2018.pdf · Transport processes(TRP) VST rz18 Physicaltransport phenomena/1 • Transfer of massand/or

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

45/46 1

Tra

nspo

rt p

roce

sses

(TR

P)

VST rz18

Sources used(besides course book Hanjalić et al.)

• Beek, W.J., Muttzall, K.M.K., van Heuven, J.W. ”Transport phenomena” Wiley, 2nd edition (1999)

• R.B. Bird, W.E. Stewart, E.N. Lightfoot ”Transport phenomena” Wiley, New York (1960)

• * C.J. Hoogendoorn ”Fysische Transportverschijnselen II”, TU Delft / D.U.M., the Netherlands 2nd. ed. (1985)

• * C.J. Hoogendoorn, T.H. van der Meer ”Fysische Transport-verschijnselen II”, TU Delft /VSSD, the Netherlands 3nd. ed. (1991)

• D. Kaminski, M. Jensen ”Introduction to Thermal and Fluids Engineering”, Wiley (2005)

• S.R. Turns ”Thermal – Fluid Sciences”, Cambridge Univ. Press (2006)• R. Zevenhoven ”Principles of process engineering” (Processteknikens

grunder), course material ÅA (compendium Aug. 2013, 214 pp.):http://users.abo.fi/rzevenho/PTG%20Aug2013.pdf

• R. Zevenhoven ”Massöverföring & separationsteknik” (2016), ”Processteknik” (2017) course material ÅA

* Earlier versions of Hanjalić et al. book but in Dutch

46/46 1