transport of small molecules in polymers: overview...

27
Transport of Small Molecules in Polymers: Overview of Research Activities Overview of Research Activities and Available Projects Benny Freeman D t t f Ch i lE i i Department of Chemical Engineering University of Texas at Austin Office: CPE 3.404 and CEER 1.308B Tel.: (512)232-2803, e-mail: [email protected] http://www.che.utexas.edu/graduate_research/freeman.htm http://membrane.ces.utexas.edu September 2009 1

Upload: others

Post on 12-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Transport of Small Molecules in Polymers:Overview of Research ActivitiesOverview of Research Activities

and Available Projects

Benny FreemanD t t f Ch i l E i iDepartment of Chemical Engineering

University of Texas at Austin

Office: CPE 3.404 and CEER 1.308B

Tel.: (512)232-2803, e-mail: [email protected]

http://www.che.utexas.edu/graduate_research/freeman.htmp g _

http://membrane.ces.utexas.edu

September 2009

1

Septe be 009

Page 2: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Freeman Research Group Focus

Develop fundamental structure/function rules to guide the preparation of high performance polymers or polymer-based materials for gas and liquid separations as well as barrier q ppackaging applications.

Page 3: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

• 17 Ph D students:

Freeman Research Group Profile• 17 Ph.D. students:

– Gas Separations: Brandon Rowe, Grant Offord, Tom Murphy, Katrina Czenkusch, David Sanders, Zach Smith

– Liquid Separations: Bryan McCloskey, Hao Ju, Lauren Greenlee, Liz Van Wagner, Wei Xie, Dan Miller, Joe Cook, Geoff Geise, Michelle Oh

– Barrier Materials: Richard Li, Kevin Tung

• 2 Postdocs: Claudio Ribeiro, Victor Kusuma1 MS Student: Linda Passaniti• 1 MS Student: Linda Passaniti

• Sponsors:– NSF - 5 projectsp j– DOE – 2 projects– Office of Naval Research - 1 project– Sandia - 1 projectSandia 1 project

– Industrial sponsors: Air Liquide, Kuraray, Kraton Polymers, ConocoPhillips, Statkraft, Dow Water Solutions

Page 4: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

CollaborationsU i it f T• University of Texas:

– Don Paul (Chem. Eng.), Roger Bonnecaze (Chem. Eng.). Mukul Sharma (Petroleum Eng.), Des Lawler (Env. Eng.), Andy Ellington (Biochemistry)

• Prof. Eric Baer, Anne Hiltner, Dave Schiraldi (Case Western Reserve Univ.)

• Prof. Jim McGrath (Virginia Tech)

• Prof. Doug Kalika (Univ. of Kentucky)

• Prof. Todd Emrick (Univ. of MA, Amherst)

D A it Hill (CSIRO M lb A t li )• Dr. Anita Hill (CSIRO, Melbourne, Australia)

• Prof. Giulio Sarti (Univ. of Bologna, Italy)

• Prof Philippe Moulin (Univ Paul Cézanne Aix-en-Provence France)• Prof. Philippe Moulin (Univ. Paul Cézanne, Aix-en-Provence, France)

• Prof. Young Moo Lee (Hanyang Univ., Seoul, Korea)

• Prof. Toshio Masuda (Kyoto Univ., Kyoto, Japan)o os o asuda ( yoto U , yoto, Japa )

Page 5: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

2 New Ph.D. Projects

• National Science Foundation

• Collaborative Research: A Polymer Synthesis/Membrane Characterization Program on Fouling Resistant Coatings and Membranes

• Joint with Professor Todd Emrick at UMASS

• Broad, fundamental research program on strategies to make membranes fouling resistantg

• Research Partnership to Secure Energy for America

• Barnett and Appalachian Shale Water Management and Reuse Technologies

• Joint with Professor Mukul Sharma in Petroleum Engineering (co-advisor)

• Specific, fundamental research related to purification of water produced as a byproduct of fossil fuel production.

Page 6: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Spreading Water Shortage

6Science 313, 1088-1090, 2006

Page 7: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Magnitude of the Problem

• Over 1 billion people live without access to p preliable drinking water.

• 2 3 billion people (41% of the Earth’s population)• 2.3 billion people (41% of the Earth s population) live in water stressed areas; expected to increase to 3.5 billion by 2025.y

• Annual global costs in excess of $100 billion in medical costs and loss of productivitymedical costs and loss of productivity.

Science 313, 1088-1090, 2006

Page 8: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Research in Water Purification Appears to be Gaining Traction in the Scientific Community

Page 9: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Produced Water Statistics

• Produced water is the largest waste stream of oil and gas production.

• Each barrel of oil produced generates 7-10 barrels of water

• Estimated 18 billion bbl/year generated in the US• Composition of produced water depends on

geographical location, but primary components of produced water often include:

– Dispersed oils, soluble organics, salts, emulsions, heavy metals, organic solids, etc.

C t di l t ti t d t $0 50• Current disposal costs estimated at $0.50-1.75/bbl.

• RO treatment could cost only $0.08-0.10/bbl. M b f li i j

9

• Membrane fouling is a major concernJ. A. Veil, M. G. J. A. Veil, M. G. PuderPuder, D. , D. ElcockElcock and R. J. and R. J. RedweikRedweik, U.S. DOE:  NETL, (2004)., U.S. DOE:  NETL, (2004).Arthur, D., Arthur, D., LanghusLanghus, B. & , B. & RawnRawn‐‐SchatzingerSchatzinger, V. DOE , V. DOE GasTIPSGasTIPS, 9(4), 20, 9(4), 20‐‐24 (2003). 24 (2003). Eye on Environment, 7(2), Summer 2002, US DOE, NETL.Eye on Environment, 7(2), Summer 2002, US DOE, NETL.

Page 10: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Fouling is a Critical Concern for Membranes

100Feed floFeed flo

10

1 kPa

-1]

1 g/L BSA solution, pH=7.4 0.3 gpm crossflow, P=10.2 atm

0.2 m PVDF membrane

2000

Feed flowFeed flow

External External foulingfouling

1

ance

[L

m-2

h-1 2000x

decreaseInternal Internal foulingfouling

0.1Pe

rmea

MembraneMembrane

F li lt i l fl d l

0.010 5 10 15 20

Time [h]

10

Fouling results in a large flux decrease, large operating cost increase

Page 11: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Focus on Surface Modification

Hydrophilic grafts Hydrophilic coating layerHydrophilic coating layery p g

SupportSupport SupportSupport

• Increase surface hydrophilicity

11• Decrease surface charge and roughness

Page 12: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Mimicking Mussel Adhesion

HO NH2

N N N

HO NH2

N N N

HO OHHO OHHO HO OH

Dopamine Polydopamine

HO OHHO OHHO HO OH

Dopamine Polydopamine

12Lee, H., et al., Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science, 2007. 318(5849): p. 426-430.

Page 13: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Polydopamine – Bioinspired Surface Treatment

HO NH

N N N

HO NH

N N N

HO

HO

NH2

OHHO OHHO HO OH

Dopamine Polydopamine

HO

HO

NH2

OHHO OHHO HO OH

Dopamine Polydopamine

13Lee, H., et al., Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science, 2007. 318(5849): p. 426-430.

Page 14: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Versatile Platform for Molecular Conjugation

NH N

OHHO HO OH

Michael Addition/Michael Addition/Schiff Base ReactionSchiff Base ReactionO

CH3H2NnPolydopaminePolydopamine

PEG adPEG ad‐‐layerlayer

HN OH

HN OH

N (CH2CH2O)nCH3

14OH

NH(CH2CH2O)nCH3

Page 15: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

PTFE Microfiltration Membrane Exhibits Significant Fouling Resistance Following

160

PTFE MFPDOPA PEG difi d

g g gDopamine Treatment

140

PTFE MFPDOPA-g-PEG modified(94.5% rejection)

120

ux [

Lm-2

h-1]

80

100Flu

d f d (8 % )80

0 0.2 0.4 0.6 0.8 1

Time [h]

Unmodified (85.4% rejection)

15

Time [h]

Conditions: Conditions: P=P=0.30.3 atmatm, , crossflowcrossflow==120120 L/h (Re=L/h (Re=252500)1500 00)1500 ppmppm soybean oil/DC193soybean oil/DC193‐‐water emulsionwater emulsion (non(non‐‐ionic)ionic)Modification: 60m PDOPA deposition time followed by 60m 5KDa PEGModification: 60m PDOPA deposition time followed by 60m 5KDa PEG‐‐NH2 (1mg/mL, 60 NH2 (1mg/mL, 60 °°C)C)

Page 16: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Modification Roadmap

I iI i

Unmodified Unmodified membranemembrane

Immerse in: Immerse in: Dopamine, 2mg/mL, r.t.Dopamine, 2mg/mL, r.t.

tris buffer (pH=8.8)tris buffer (pH=8.8)t 10t 10 16 h16 h

PDOPA modified PDOPA modified membranemembrane

t=10 mt=10 m‐‐16 h16 h

PDOPAPDOPA‐‐gg‐‐PEGPEG

OCH3H2N

n

5 kDa, 1 mg/mL, 60 5 kDa, 1 mg/mL, 60 °°CCi b ff ( H 8 8)i b ff ( H 8 8)PDOPAPDOPA gg PEG PEG 

modified modified membranemembrane

tris buffer (pH=8.8)tris buffer (pH=8.8)t=30t=30‐‐60m60m

16

Page 17: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Versatility of this Approach

• Polydopamine can adhere to virtually any surface:Classification Membrane polymer Manufacturer Pore size Flux [LMH/bar] Study ID

RO Polyamide Dow (XLE RO) N/A 7.7 XLE RONF Polyamide Dow (NF‐90) N/A 12.3 NF‐90UF Polysulfone GE (A1 support) ~100 kDa MWCO 300 PSf A1 UFUF Polysulfone Sepro (PS‐20) ~20 kDa MWCO 1000 PS‐20 UFUF Polyethersulfone Sepro (PES‐30) ~20 kDa MWCO 300 PES UFMF Polyvinylidene fluoride Mill ipore  0.22 m 5500 PVDF MF

• Dopamine could provide an effective method to achieve

MF Polytetrafluoroethylene GE 0.22 m 6500 PTFE MFMF Polypropylene GE 0.1m 2500 PP MF

Dopamine could provide an effective method to achieve efficient anti-fouling coating layers on virtually any membrane.

17

Page 18: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Polydopamine (PDOPA) Thickness and Contact Angle

MembraneMembrane2 mg/ml dopamine, pH=8.8 buffer 2 mg/ml dopamine, pH=8.8 buffer solutionsolution

DecaneDecane WaterWater

250

300

80

100

atm

-1] D

epos

PDOPA dep time [h] Contact angle (°)

150

200

40

60

e [L

m-2

h-1a sition thick

time [h] g ( )

0 109 ± 50.16 49 ± 71 49 ± 42 58 ± 2

50

100

20

40

Perm

eanc

kness [nm]

2 58 ± 24 47 ± 58 47 ± 112 53 ± 416 55± 7

0 00 4 8 12 16

PDOPA deposition time [h]

18UF polysulfone membraneUF polysulfone membrane (GE A1 support)(GE A1 support)Deposition thickness measured on Deposition thickness measured on PSfPSf ((UdelUdel) thin) thin‐‐films using films using ellipsometryellipsometry

Page 19: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Ultrafiltration Fouling Resistance Enhanced

80

100

PS-20 UF

PDOPA-g-PEG modified

60

80

x [L

m-2

h-1]

PDOPA modified (98.3% rejection)

g(98.1% rejection)

40

Flux

Unmodified (98.1% rejection)

200 0.2 0.4 0.6 0.8 1

Time [h]

Membrane typePure water flux [Lm‐2h‐1] (before fouling test)

Unmodified 2559PDOPA 1405

PDOPA g PEG 880

19

PDOPA‐g‐PEG 880

P=P=2.12.1 atm, crossflow=atm, crossflow=4848 L/h (Re=L/h (Re=101000)00) 1500 ppm soybean oil/DC1931500 ppm soybean oil/DC193‐‐water emulsionwater emulsion (non(non‐‐ionic)ionic)Modification: 45m PDOPA deposition time followed by 60m 5KDa PEGModification: 45m PDOPA deposition time followed by 60m 5KDa PEG‐‐NH2 (1mg/mL, 60 NH2 (1mg/mL, 60 °°C)C)

Page 20: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Membrane Module Modification

Peristaltic pump

Membrane module

TW30 1812 36

Dopamine 

p p TW30‐1812‐36 (Dow Filmtec RO module)

psolution

Benefits: Easily scalable modifies all wetted module parts including housing and spacersBenefits: Easily scalable, modifies all wetted module parts, including housing and spacers

20

Page 21: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Membrane Module Fouling Resistance

1.2

1

1.1

1 bar

-1]

PDOPA (97 2% j i ) Before AfterWater Throughput [L h‐1 bar‐1]

0 7

0.8

0.9

roug

hput

[L

h-1 PDOPA (97.2% rejection)

Unmodified (98.4% rejection)

Module type (TW30)

250 ppm NaCl rejection

Before oil/water 

filtration, PBF

After oil/water 

filtration, PAF PAF/PBFUnmodified 96.5 1.65 0.73 0.44

DOPA 96.1 1.42 0.96 0.68

0.5

0.6

0.7

0 4 8 12 16 20 24

Th

PDOPA-g-Jeffamine (97.5% rejection)

Jeffamine 96.9 0.78 0.77 0.99

H CO

ONH2

0 4 8 12 16 20 24

Time [h]

H3C O

CH3

19 3

JeffamineJeffamineModification: 30m PDOPA deposition time followed by 30mModification: 30m PDOPA deposition time followed by 30m JeffamineJeffamine (0 1mg/(0 1mg/mLmL 4545 °°C)C)

21

P=P=3.33.3 atmatm, , Feed Feed flowrateflowrate==225225 L/h 1500 L/h 1500 ppmppm soybean oil/DC193soybean oil/DC193‐‐water emulsionwater emulsion (non(non‐‐ionic)ionic)Modification: 30m PDOPA deposition time followed by 30m Modification: 30m PDOPA deposition time followed by 30m JeffamineJeffamine (0.1mg/(0.1mg/mLmL, 45 , 45  C)C)

Page 22: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Adhesion of Bovine Serum AlbuminAdhesion of Bovine Serum Albumin

•• Polydopamine deposition on Polydopamine deposition on membrane surface for 1 hrmembrane surface for 1 hrmembrane surface for 1 hrmembrane surface for 1 hr

•• 5000 MW PEG grafted to 5000 MW PEG grafted to polydopamine surface for 1 hourpolydopamine surface for 1 hour

0.1 mg/mL BSA in0.1 mg/mL BSA inpure water solutionpure water solution

•• Bovine serum albumin tagged with Bovine serum albumin tagged with NHSNHS‐‐rhodaminerhodamine

•• Unmodified polydopamineUnmodified polydopamine modifiedmodified•• Unmodified, polydopamineUnmodified, polydopamine‐‐modified, modified, and PDOPAand PDOPA‐‐gg‐‐PEGPEG‐‐modified modified membranes exposed to 0.1 mg/mL membranes exposed to 0.1 mg/mL BSA solution for 1 hourBSA solution for 1 hourBSA solution for 1 hourBSA solution for 1 hour

•• Gently rinse membranes and measure Gently rinse membranes and measure fluorescence fluorescence 

Page 23: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Protein Adhesion is Reduced in Protein Adhesion is Reduced in Modified MembranesModified Membranes

Unmodified PDOPA PODPA‐g‐PEG

S

NormalizedFluorescent Intensity(I /I )

PSF, 5 ms exposure times (insets are 500 ms) PSF, 5 ms exposure times (insets are 500 ms) 

PES UF

PSF, 5 ms exposure times (insets are 500 ms) PSF, 5 ms exposure times (insets are 500 ms) 

Membrane type Unmodified  PDOPA modified

PDOPA‐g‐PEG modified

XLE RO 0.22 0.10 0.02

Normalized Fluorescent Intensity (In/IPSf)

NF‐90 1.5 0.79 0.05PSf UF 100 0.71 0.11PES UF 56 1.79 0.01PPMF 97 328 042

23

PP MF 97 3.28 0.42PTFE MF 4.3 0.003 0.05PVDF MF 64 3.64 0.70

Page 24: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Adhesion of Adhesion of Pseudomonas Pseudomonas aeruginosaaeruginosa

•• Ubiquitous in natural and artificial environmentsUbiquitous in natural and artificial environments–– Freshwater drinking reservesFreshwater drinking reservesgg

–– Medical equipmentMedical equipment

–– Water treatment facilitiesWater treatment facilities

GG titi•• GramGram‐‐negativenegative

•• Opportunistic pathogenOpportunistic pathogen

•• Forms robust biofilmsForms robust biofilmsForms robust biofilmsForms robust biofilms

•• PA14 strainPA14 strain

•• lux operon from lux operon from Photorabdus luminescensPhotorabdus luminescens cloned onto pQF50 cloned onto pQF50 pp ppplasmidplasmid–– provides bioluminescent capabilitiesprovides bioluminescent capabilities

–– provides resistance to carbenicillinprovides resistance to carbenicillin–– provides resistance to carbenicillinprovides resistance to carbenicillin

http://jazzroc.files.wordpress.com/2008/10/paeruginosa.jpg

Page 25: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Adhesion of Adhesion of Pseudomonas Pseudomonas aeruginosaaeruginosa

•• Polydopamine deposition on membrane Polydopamine deposition on membrane surface for 1 hrsurface for 1 hr

•• 5000 MW PEG grafted to polydopamine 5000 MW PEG grafted to polydopamine surface for 1 hoursurface for 1 hour

P. aeruginosaP. aeruginosasuspension (O D =suspension (O D =

•• Plate from freezer stock onto LB agar Plate from freezer stock onto LB agar plate containing 100 plate containing 100 μμg/mL carbenicillin, g/mL carbenicillin, grow overnight at 37grow overnight at 37°°CC

suspension (O.D. = suspension (O.D. = 0.1) in LB broth0.1) in LB broth

g gg g•• Pick colony, inoculate liquid LB broth Pick colony, inoculate liquid LB broth 

culture containing 100 culture containing 100 μμg/mL g/mL carbenicillin, grow overnight at 37carbenicillin, grow overnight at 37°°CC, g g, g g

•• Dilute to O.D. = 0.1 with fresh media, Dilute to O.D. = 0.1 with fresh media, dispense onto membranes and incubate dispense onto membranes and incubate for one hour at 37for one hour at 37°°CC

•• Gently rinse membranes and measure Gently rinse membranes and measure luminescence luminescence 

Page 26: Transport of Small Molecules in Polymers: Overview …che.utexas.edu/students/graduate/documents/Freeman...Unmodified 2559 PDOPA 1405 PDOPA g PEG 880 19 ‐‐ P=P=2.12.1 atm,atm,

Bacteria Adhesion Reduction in Bacteria Adhesion Reduction in Modified MembranesModified Membranes

500

Unmodified

400

UnmodifiedPDOPAPDOPA-g-PEG

ence

300

lum

ines

ce

200

Rel

ativ

e

0

100

26

0PES PVDF PTFE PS-20 XLE RO NF-90 PP