trajectory%simulalon%of%meteors%assuming%mass%loss%and ... 2_b case 2_c case 2_d heat transfer coef....

1
TRAJ, an established trajectory simula4on tool successfully modified for meteor entries Improvements include: Simple mass loss equa4on of meteor physics Timevarying heat transfer coefficient based on detailed flow computa4ons Ability to specify fragmenta4on events Updated version of TRAJ tested against Chelyabinsk observa4ons TRAJ can now be used to establish sensi4vity of trajectories to various meteor parameters Leaves open the issue of verifica4on/valida4on of TRAJ and addi4onal test cases are needed Could tek4tes [4] be used as addi4onal test cases? Advantages of simula4ng tek4te entries into Earth’s atmosphere Exoatmospheric shapes are definitely spherical Small sizes and (sub)orbital entry veloci4es Problem is dominated by convec4ve hea4ng and mel4ng Melted shapes are aerodynamically stable Chemical composi4on of australite tek4tes is sta4s4cally well defined Serve as a good founda4on for the tougher meteor entry problem 0 0.02 0.04 0.06 0.08 0.1 0 20 40 60 80 100 Ch Alt, km Ch vs. Altitude V = 16 km/sec, Base Diameter = 10 m raw data f(x) 40 50 60 70 80 90 1.29e+07 1.292e+07 1.294e+07 1.296e+07 1.298e+07 1.3e+07 1.302e+07 Altitude, km Mass, kg Mass vs. Altitude 20 30 40 50 60 70 80 90 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 Altitude, km Mass, kg Mass vs. Altitude 20 30 40 50 60 70 80 90 0 1 2 3 4 5 6 7 8 9 10 Altitude, km Meteor Radius, m Meteor Radius vs. Altitude 20 30 40 50 60 70 80 90 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 Altitude, km Ch, Heat Transfer Coefficient Heat Transfer Coefficient vs. Altitude 15 20 25 30 35 40 45 50 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 Altitude, km Radiative Heat Flux, watts/cm^2 Stagnation Point Radiative Heat Flux versus Altitude 0 20 40 60 80 100 0 5 10 15 20 25 Altitude, km Velocity, km/sec Altitude versus Velocity for Chelyabinsk Fragmented Meteor Compared to Heat Transfer Coefficient Data Points Chelyabinsk Observed Case 2_A Case 2_B Case 2_C Case 2_D Heat Transfer Coef. 0 20 40 60 80 100 0 5 10 15 20 25 Altitude, km Velocity, km/sec Altitude versus Velocity Chelyabinsk Single Body Meteor Compared to Heat Transfer Coefficient Data Points Stardust Aeroshell Chelyabinsk Observed Case 1_A Case 1_B Case 1_C Heat Transfer Coef. Gary A. Allen, Jr., Dinesh K. Prabhu, and David A. Saunders ERC, Inc. at NASA Ames Research Center, MoffeC Field, CA 94035, USA 1st InternaLonal Workshop on PHA CharacterizaLon, Atmospheric Entry and Risk Assessment 7 – 9 July 2015, NASA Ames Research Center, California Trajectory SimulaLon of Meteors Assuming Mass Loss and FragmentaLon Trajectory Simulation Process with Meteor Physics Equations Entry State (t = 0) (Velocity, Entry AlLtude, Entry Angles, Geographic LocaLon, Meteor Shape, Size and Mass) Meteor Shape(s) (Tabulated or Newtonian Aerodynamic Model, Surface Recession, Fracture and Breakup) Heat Flux Environment (ConvecLve and RadiaLve Heat Flux Modeled as Heat Transfer Coefficient, C H ) Mass Loss (AblaLon, SublimaLon and MelLng) Trajectory (Single or MulLple Bodies traversing over an Oblate Earth with J 2 harmonic and tabulated atmospheric model) dm m dt = 1 2 ρ a u m 3 C H A m Q A m A 0 = m m m 0 ! " # $ % & 2/3 Sensitivity to Basic Assumptions: Entry Mass, Fragmentation, Heat Transfer Coefficient and Heat-of-Ablation Mass Change EquaLon Shape Change EquaLon (assuming spherical meteor) Case 2_A: Single fragmenta4on event at 40 km, and C H = 0.1 Case 2_B: Two fragmenta4on events at 40 & 30 km, and C H = 0.1 Case 2_C: Single fragmenta4on event at 40 km, and C H 4me varying Case 2_D: Two fragmenta4on events at 40 and 30 km, and C H 4me varying For Cases 2_A – 2_D: Meteor radius: 3.5 m at 40 km alt. Revised mass: 5.93 x10 5 kg For Cases 2_B & 2_D: Meteor radius: 0.7 m at 30 km alt. Revised mass: 4.74 x10 3 kg Conclusions, Future Work and References References: 1. Gary A. Allen, Jr., Michael J. Wright, and Peter Gage, “The Trajectory Program (Traj): Reference Manual and User's Guide,” NASA TM2004212847, 2005. 2. Michael E. Tauber, Paul Wercinski, Lily Yang, and YihKanq Chen, “A Fast Code for Jupiter Atmospheric Entry Analysis,” NASA/TM1999208796, September 1999. 3. Jiri Borovicka, et al., “The trajectory, structure and origin of the Chelyabinsk asteroidal impactor,” Nature, 503, 235237, 14 November 2013. 4. George Baker, “Structures of Well Preserved Australite Bunons from Port Campbell, Victoria, Australia,” Meteori2cs, 3(4), December 1967. Introduction and Objective NASA’s Galileo probe to Jupiter only one that experienced significant mass loss Entry capsule was a 45° spherecone with fullydense carbon phenolic as heatshield material M. Tauber et al. [2] developed JAE code for simula4on of Galileo probe (Jupiter entry) JAE logic incorporated into Traj Spherecone shape replaced by sphere Mass loss equa4on of meteor physics used Allow input specifica4on of heat of abla4on, Q Allow heat transfer coefficient to vary in 4me Timevarying heat transfer coefficients from detailed flow computa4ons curve fit as a func4on of al4tude, velocity, and size Modifications Made to TRAJ for Meteor Simulation TRAJ Features: Program used to simulate atmospheric flight trajectories of entry capsules [1] Includes models of atmospheres of different planetary des4na4ons – Earth, Mars, Venus, Jupiter, Saturn, Uranus, Titan, … Solves 3degrees of freedom (3DoF) equa4ons for a single body treated as a point mass Also supports 6DoF trajectory simula4on and Monte Carlo analyses Uses FehlbergRungeKuna (4 th –5 th order) 4me integra4on with automa4c step size control Includes rota4ng spheroidal planet with gravita4onal field having a J 2 harmonic Includes a variety of engineering aerodynamic and heat flux models Capable of specifying events – heatshield jeuson, parachute deployment, etc. – at predefined al4tudes or Mach number Has material thermal response models of typical aerospace materials integrated Modify trajectory simulaLon tool, TRAJ, to make it suitable for meteor entries including mass loss & fragmentaLon t = Time A 0 = Cross sec4onal area at entry m m = Mass at 4me t u m = Rela4ve velocity at 4me t ρ a = Atmospheric density 4me t Q = Heat of abla4on C H = Heat transfer coefficient Heat Transfer Coefficient, C H , Model Curve fit expressions are to be used for z > 15. 5 km C H for different veloci4es and diameters obtained through linear interpola4on C H ( z ) = a + bz - c ( ) d ! " # $ exp - z - c f % & ' ( ) * An example “quality of fit” plot generated with curve fit . Test Case: Chelyabinsk [3] Basic AssumpLons: Hyperbolic excess velocity: 15.0 km/s Al4tude at entry: 95.0 km Rela4ve velocity at entry: 19.0 km/s Rela4ve entry angle: 18.5 deg Rela4ve heading angle: 76.6 deg Geographic la4tude at entry: 54.5 deg Oblate rota4ng Earth Gravita4onal model includes J 2 term US1976 atmospheric model Meteoroid AssumpLons: Shape: Sphere Density of meteoric material: 3300 kg/m 3 Aerodynamic model: Sphere SensiLvity study to entry mass, heat transfer coefficient, heat of ablaLon, and fragmentaLon Case 1_A: Single body with C H = 0.1 Case 1_B: Single body with 4me varying C H Case 1_C: Time varying C H for a single body. Entry mass and heat of abla4on tuned to overlay Chelyabinsk observa4ons Entry mass: 13 x10 6 kg Meteor radius at entry: 9.8 m HeatofAbla4on: 8 MJ/kg Entry mass: 6.8 x10 4 kg Meteor radius at entry: 1.7 m HeatofAbla4on: 0.85 MJ/kg Basic Plots for Variable C H and Double Fragmentation (Case 2_D) For Case 2_D simula4on fragmenta4on at 40 & 30 km al4tudes assumed to occur instantly Fragment masses tuned to overlay simulated trajectory on Chelyabinsk observa4ons. On a scale of 40 to 90 km al4tude, mass vs al4tude trace appears to be a straight line over the en4re mass range Trace is actually parabolic when mass scale is expanded Influence of C H model is insignificant if large changes occur in meteor mass due to fragmenta4on. Recovered australite tek4te The present work was supported by NASA contract NNA10DE12C to ERC, Inc. Myriad ways to fit observa4ons by choice of model parameters and fragmenta4on events Problem compounded by the fact that exoatmospheric dynamical mass not known precisely https://ntrs.nasa.gov/search.jsp?R=20150022896 2018-06-30T03:20:09+00:00Z

Upload: vuthu

Post on 25-May-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Trajectory%SimulaLon%of%Meteors%Assuming%Mass%Loss%and ... 2_B Case 2_C Case 2_D Heat Transfer Coef. 0 20 40 60 80 100 0 5 10 15 20 25 Altitude, km Velocity, km/sec ... Prabhu, Dinesh

•  TRAJ,  an  established  trajectory  simula4on  tool  successfully  modified  for  meteor  entries  •  Improvements  include:  

•  Simple  mass  loss  equa4on  of  meteor  physics  •  Time-­‐varying  heat  transfer  coefficient  based  on  detailed  flow  computa4ons  •  Ability  to  specify  fragmenta4on  events  

•  Updated  version  of  TRAJ  tested  against  Chelyabinsk  observa4ons  •  TRAJ  can  now  be  used  to  establish  sensi4vity  of  trajectories  to  various  meteor  parameters  •  Leaves  open  the  issue  of  verifica4on/valida4on  of  TRAJ  and  addi4onal  test  cases  are  needed  

•  Could  tek4tes  [4]  be  used  as  addi4onal  test  cases?  •  Advantages  of  simula4ng  tek4te  entries  into  Earth’s  atmosphere  

•  Exo-­‐atmospheric  shapes  are  definitely  spherical  •  Small  sizes  and  (sub)orbital  entry  veloci4es  •  Problem  is  dominated  by  convec4ve  hea4ng  and  mel4ng  •  Melted  shapes  are  aerodynamically  stable  •  Chemical  composi4on  of  australite  tek4tes  is  sta4s4cally  well  defined  •  Serve  as  a  good  founda4on  for  the  tougher  meteor  entry  problem    

   

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100

Ch

Alt, km

Ch vs. AltitudeV = 16 km/sec, Base Diameter = 10 m

raw dataf(x)

40

50

60

70

80

90

1.29e+07 1.292e+07 1.294e+07 1.296e+07 1.298e+07 1.3e+07 1.302e+07

Altit

ude,

km

Mass, kg

Mass vs. Altitude

20

30

40

50

60

70

80

90

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

Alti

tude

, km

Mass, kg

Mass vs. Altitude

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10

Altit

ude,

km

Meteor Radius, m

Meteor Radius vs. Altitude

20

30

40

50

60

70

80

90

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Alti

tude

, km

Ch, Heat Transfer Coefficient

Heat Transfer Coefficient vs. Altitude

15

20

25

30

35

40

45

50

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06

Altit

ude,

km

Radiative Heat Flux, watts/cm^2

Stagnation Point Radiative Heat Flux versus Altitude

0

20

40

60

80

100

0 5 10 15 20 25

Altit

ude,

km

Velocity, km/sec

Altitude versus Velocity for Chelyabinsk Fragmented MeteorCompared to Heat Transfer Coefficient Data PointsChelyabinsk Observed

Case 2_ACase 2_BCase 2_CCase 2_D

Heat Transfer Coef.

0

20

40

60

80

100

0 5 10 15 20 25

Altit

ude,

km

Velocity, km/sec

Altitude versus Velocity Chelyabinsk Single Body MeteorCompared to Heat Transfer Coefficient Data Points

Stardust AeroshellChelyabinsk Observed

Case 1_ACase 1_BCase 1_C

Heat Transfer Coef.

Gary  A.  Allen,  Jr.,  Dinesh  K.  Prabhu,  and  David  A.  Saunders  ERC,  Inc.  at  NASA  Ames  Research  Center,  MoffeC  Field,  CA  94035,  USA  

1st  InternaLonal  Workshop  on  PHA  CharacterizaLon,  Atmospheric  Entry  and  Risk  Assessment  7  –  9  July  2015,  NASA  Ames  Research  Center,  California    

 

Trajectory  SimulaLon  of  Meteors  Assuming  Mass  Loss  and  FragmentaLon  

Trajectory Simulation Process with Meteor Physics Equations

Entry  State  (t  =  0)  (Velocity,  Entry  AlLtude,  Entry  Angles,  Geographic  LocaLon,  Meteor  Shape,  Size  and  Mass)  

Meteor  Shape(s)  (Tabulated  or  Newtonian  

Aerodynamic  Model,  Surface  Recession,  Fracture  and  Breakup)  

Heat  Flux  Environment  (ConvecLve  and  RadiaLve  Heat  Flux  Modeled  as  Heat  Transfer  

Coefficient,  CH  )  

Mass  Loss  (AblaLon,  SublimaLon  and  

MelLng)  

Trajectory  (Single  or  MulLple  Bodies  

traversing  over  an  Oblate  Earth  with  J2  harmonic  and  tabulated  

atmospheric  model)  

dmm

dt= −

12ρaum

3 CHAmQ

AmA0

=mm

m0

!

"#

$

%&

2/3

Sensitivity to Basic Assumptions: Entry Mass, Fragmentation, Heat Transfer Coefficient and Heat-of-Ablation

Mass  Change  EquaLon            Shape  Change  EquaLon  (assuming  spherical  meteor)  

Case  2_A:  Single  fragmenta4on  event  at  40  km,  and  CH  =  0.1  Case  2_B:  Two  fragmenta4on  events  at  40  &  30  km,  and    CH  =  0.1  Case  2_C:  Single  fragmenta4on  event  at  40  km,  and    CH  4me  varying  Case  2_D:  Two  fragmenta4on  events  at  40  and  30  km,  and    CH  4me  varying    For  Cases  2_A  –  2_D:    Meteor  radius:  3.5  m  at  40  km  alt.  Revised  mass:  5.93  x105  kg    For  Cases  2_B  &  2_D:  Meteor  radius:  0.7  m  at  30  km  alt.  Revised  mass:    4.74  x103  kg  

Conclusions, Future Work and References

 

 

References:  1.  Gary  A.  Allen,  Jr.,  Michael  J.  Wright,  and  Peter  Gage,  “The  Trajectory  Program  (Traj):  Reference  Manual  and  User's  Guide,”  NASA  TM-­‐2004-­‐212847,  2005.    2.  Michael  E.  Tauber,  Paul  Wercinski,  Lily  Yang,  and  Yih-­‐Kanq  Chen,  “A  Fast  Code  for  Jupiter  Atmospheric  Entry  Analysis,”  NASA/TM-­‐1999-­‐208796,  September  1999.    3.  Jiri  Borovicka,  et  al.,  “The  trajectory,  structure  and  origin  of  the  Chelyabinsk  asteroidal  impactor,”  Nature,  503,  235-­‐237,  14  November  2013.  4.  George  Baker,  “Structures  of  Well  Preserved  Australite  Bunons  from  Port  Campbell,  Victoria,  Australia,”    Meteori2cs,  3(4),  December  1967.  

Introduction and Objective

•  NASA’s  Galileo  probe  to  Jupiter  only  one  that  experienced  significant  mass  loss  •  Entry  capsule  was  a  45°  sphere-­‐cone  with  fully-­‐dense  carbon  phenolic  as  heatshield  material  •  M.  Tauber  et  al.  [2]    developed  JAE  code  for  simula4on  of  Galileo  probe  (Jupiter  entry)  •  JAE  logic  incorporated  into  Traj  

–  Sphere-­‐cone  shape  replaced  by  sphere  – Mass  loss  equa4on  of  meteor  physics  used  –  Allow  input  specifica4on  of  heat  of  abla4on,  Q  –  Allow  heat  transfer  coefficient  to  vary  in  4me  –  Time-­‐varying  heat  transfer  coefficients  from  detailed  flow  computa4ons  curve  fit  as  a  func4on  of  al4tude,  velocity,  and  size  

 

Modifications Made to TRAJ for Meteor Simulation

TRAJ  Features:  •  Program  used  to  simulate  atmospheric  flight  trajectories  of  entry  capsules  [1]  •  Includes  models  of  atmospheres  of  different  planetary  des4na4ons  –  Earth,  Mars,  Venus,  Jupiter,  Saturn,  Uranus,  Titan,  …  •  Solves  3-­‐degrees  of  freedom  (3DoF)  equa4ons  for  a  single  body  treated  as  a  point  mass  •  Also  supports  6-­‐DoF  trajectory  simula4on  and  Monte  Carlo  analyses  •  Uses  Fehlberg-­‐Runge-­‐Kuna  (4th–5th  order)  4me  integra4on  with  automa4c  step  size  control  •  Includes  rota4ng  spheroidal  planet  with  gravita4onal  field  having  a  J2  harmonic  •  Includes  a  variety  of  engineering  aerodynamic  and  heat  flux  models  •  Capable  of  specifying  events  –  heatshield  jeuson,  parachute  deployment,  etc.  –  at  predefined  al4tudes  or  Mach  number  •  Has  material  thermal  response  models  of  typical  aerospace  materials  integrated    

Modify  trajectory  simulaLon  tool,  TRAJ,  to  make  it  suitable  for  meteor  entries  including  mass  loss  &  fragmentaLon  

t =   Time  A0 =   Cross  sec4onal  area  at  entry  mm =   Mass  at  4me  t um =   Rela4ve  velocity  at  4me  t ρa =   Atmospheric  density  4me  t Q =   Heat  of  abla4on CH =   Heat  transfer  coefficient  

Heat Transfer Coefficient, CH, Model

•  Curve  fit  expressions  are  to  be  used  for  z  >  15.  5  km  •  CH  for  different  veloci4es  and  diameters  obtained  through  linear  interpola4on!

CH (z) = a+ b z - c( )d!"

#$ exp - z - c

f%

&'

(

)*

An  example  “quality  of  fit”  plot  generated  with  curve  fit  .  

Test Case: Chelyabinsk [3]

Basic  AssumpLons:    

Hyperbolic  excess  velocity:                15.0  km/s    Al4tude  at  entry:                                                    95.0  km    Rela4ve  velocity  at  entry:                      19.0  km/s    Rela4ve  entry  angle:                                    -­‐18.5  deg    Rela4ve  heading  angle:                          -­‐76.6  deg    Geographic  la4tude  at  entry:        54.5  deg    

Oblate  rota4ng  Earth  Gravita4onal  model  includes  J2  term    

US-­‐1976  atmospheric  model    Meteoroid  AssumpLons:    

Shape:  Sphere  Density  of  meteoric  material:        3300  kg/m3  Aerodynamic  model:  Sphere    SensiLvity  study  to  entry  mass,  heat  transfer    coefficient,  heat  of  ablaLon,  and  fragmentaLon  

Case  1_A:      Single  body  with  CH  =  0.1  Case  1_B:      Single  body  with  4me  varying  CH          Case  1_C:    Time  varying  CH  for  a  single  body.  Entry  mass  and  heat  of  abla4on  tuned  to  overlay  Chelyabinsk  observa4ons  

Entry  mass:     13  x106  kg  Meteor  radius  at  entry:     9.8  m  Heat-­‐of-­‐Abla4on:     8  MJ/kg  

Entry  mass:     6.8  x104  kg  Meteor  radius  at  entry:     1.7  m  Heat-­‐of-­‐Abla4on:     0.85  MJ/kg  

Basic Plots for Variable CH and Double Fragmentation (Case 2_D)

•  For  Case  2_D  simula4on  fragmenta4on  at  40  &  30  km  al4tudes  assumed  to  occur  instantly  

•  Fragment  masses  tuned  to  overlay  simulated  trajectory  on  Chelyabinsk  observa4ons.        

•  On  a  scale  of  40  to  90  km  al4tude,  mass  vs  al4tude  trace  appears  to  be  a  straight  line  over  the  en4re  mass  range  

•  Trace  is  actually  parabolic  when  mass  scale  is  expanded  

•  Influence  of  CH  model  is  insignificant  if  large  changes  occur  in  meteor  mass  due  to  fragmenta4on.    

Recovered  australite  tek4te  

The  present  work  was  supported  by  NASA  contract  NNA10DE12C  to  ERC,  Inc.  

•  Myriad  ways  to  fit  observa4ons  by  choice  of  model  parameters  and  fragmenta4on  events  •  Problem  compounded  by  the  fact  that  exo-­‐atmospheric  dynamical  mass  not  known  precisely  

https://ntrs.nasa.gov/search.jsp?R=20150022896 2018-06-30T03:20:09+00:00Z