towards practical differentially private convex optimization · contributions • new algorithm for...

20
Towards Practical Differentially Private Convex Optimization ROGER IYENGAR CARNEGIE MELLON UNIVERSITY JOSEPH P. NEAR UNIVERSITY OF VERMONT DAWN SONG UNIVERSITY OF CALIFORNIA, BERKELEY ABHRADEEP THAKURTA UNIVERSITY OF CALIFORNIA, SANTA CRUZ LUN WANG UNIVERSITY OF CALIFORNIA, BERKELEY OM THAKKAR BOSTON UNIVERSITY

Upload: others

Post on 17-Mar-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

Towards Practical Differentially Private Convex Optimization

ROGER IYENGAR

CARNEGIE MELLON UNIVERSITY

JOSEPH P. NEAR UNIVERSITY OF

VERMONT

DAWN SONG UNIVERSITY OF

CALIFORNIA, BERKELEY

ABHRADEEP THAKURTA UNIVERSITY OF

CALIFORNIA, SANTA CRUZ

LUN WANG UNIVERSITY OF

CALIFORNIA, BERKELEY

OM THAKKAR BOSTON

UNIVERSITY

Page 2: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

Contributions • NewAlgorithmforDifferentiallyPrivateConvexOptimization:ApproximateMinimaPerturbation(AMP)• Canleverageanyoff-the-shelfoptimizer• Worksforallconvexlossfunctions• Hasacompetitivehyperparameter-freevariant

• BroadEmpiricalStudy• 6state-of-the-arttechniques• 2models:LogisticRegression,andHuberSVM• 13datasets:9public(4high-dimensional),4real-worldusecases• Open-sourcerepo:https://github.com/sunblaze-ucb/dpml-benchmark

Page 3: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

This Talk • WhyPrivacyforLearning?• Background• DifferentialPrivacy(DP)• ConvexOptimization

• ApproximateMinimaPerturbation(AMP)• BroadEmpiricalStudy

Page 4: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

Why Privacy for Learning? SensitiveData𝐷

TrainingAlgorithm𝐴TrainedModel 𝜃 Input Output

• Modelscanleakinformationabouttrainingdata• Membershipinferenceattacks[ShokriStronatiSongShmatikov’17,CarliniLiuKosErlingssonSong’18,

MelisSongCristofaroShmatikov’18]• Modelinversionattacks[FredriksonJhaRistenpart’15,WuFredriksonJhaNaughton’16]

• Solution?

Page 5: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

𝐏𝐫(𝑨(𝑫)= 𝜽 )

𝐷::

Differential Privacy [Dwork Mcsherry Nissim Smith ‘06]

Alice Bob Cathy Doug Emily Om

Randomized

Outcomes 𝜽 ∈𝚯

𝐴

Θ

Page 6: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

𝐏𝐫(𝑨(𝑫)= 𝜽 )

𝐷↑′ :

Differential Privacy [Dwork Mcsherry Nissim Smith ‘06]

Alice Bob Cathy Doug Emily Om

Randomized

Outcomes 𝜽 ∈𝚯

𝐴

Θ

Felix

Page 7: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

𝐏𝐫(𝑨(𝑫′)= 𝜽 )𝐷↑′ :

Differential Privacy [Dwork Mcsherry Nissim Smith ‘06]

Alice Bob Cathy Doug Emily Om

Randomized

Outcomes 𝜽 ∈𝚯

𝐴

ΘSmall

Felix

Page 8: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

Differential Privacy [Dwork Mcsherry Nissim Smith ‘06] • Privacyparameters:(𝜀,𝛿)• Arandomizedalgorithm𝐴:𝒟↑𝑛 →𝑇is(𝜀,𝛿)-DPif• forallneighboringdatasets𝐷, 𝐷↑′ ∈ 𝒟↑𝑛 ,i.e.,𝑑𝑖𝑠𝑡(𝐷, 𝐷↑′ )=1• forallsetsofoutcomes𝑆⊆Θ,wehave

Pr�(𝐴(𝐷)∈𝑆) ≤ 𝑒↑𝜀 Pr�(𝐴(𝐷↑′ )∈𝑆) + 𝛿

𝜀:Multiplicativechange.Typically,𝜀=𝑂(1)

𝛿:Additivechange.Typically,𝛿=𝑂(1/ 𝑛↑2 )

Page 9: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

Convex Optimization • Input:

• Dataset𝐷∈ 𝒟↑𝑛 • Lossfunction𝐿(𝜃,𝐷),where

• 𝜃∈ ℝ↑𝑝 isamodel• Loss𝐿isconvexinthefirstparameter𝜃

• Goal:Outputmodel𝜃 suchthat 𝜃 ∈ min┬𝜃∈ ℝ↑𝑝  �𝐿(𝜃,𝐷) 

• Applications:• MachineLearning,DeepLearning,CollaborativeFiltering,etc. 𝜃 

𝐿(𝜃,𝐷)

𝜃

Page 10: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

DP Convex Optimization - Prior Work SensitiveData𝐷

TrainingAlgorithm𝐴 TrainedModel 𝜃 Input Output

ObjectivePerturbation[ChaudhuriMonteleoniSarwate’11,KiferSmith

Thakurta’12,JainThakurta’14]

DPGD/SGD[SongChaudhuri

Sarwate’13,BassilySmithThakurta’14,AbadiChuGoodfellowMcMahan

MironovTalwarZhang’16]

DPFrankWolfe

[TalwarThakurtaZhang’14]

OutputPerturbation[CMS’11,KST’12,JT’14]

DPPermutation-basedSGD[WuLiKumarChaudhuri

JhaNaughton’17]

-Requiresminimaofloss-Requirescustomoptimizer

Page 11: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

• Input:• Dataset𝐷,Lossfunction:𝐿(𝜃,𝐷)• Privacyparameters:𝑏=(𝜖, 𝛿)• Gradientnormbound𝛾

• Algorithm(high-level):1.  Splitprivacybudgetinto2parts𝑏↓1 and 𝑏↓2 2.  Perturbloss: 𝐿↓𝑝𝑟𝑖𝑣 (𝜃,𝐷)=𝐿(𝜃,𝐷)+𝑅𝑒𝑔(𝜃, 𝑏↓1 )

𝐿↓𝑝𝑟𝑖𝑣 (𝜃

,𝐷)

𝐿(𝜃,𝐷)

Approximate Minima Perturbation (AMP)

𝜃𝜃↓𝑝𝑟𝑖𝑣 𝜃 SimilartostandardObjectivePerturbation[KST’12]

Page 12: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

• Input:• Dataset𝐷,Lossfunction:𝐿(𝜃,𝐷)• Privacyparameters:𝑏=(𝜖, 𝛿)• Gradientnormbound𝛾

• Algorithm(high-level):1.  Splitprivacybudgetinto2parts𝑏↓1 and 𝑏↓2 2.  Perturbloss: 𝐿↓𝑝𝑟𝑖𝑣 (𝜃,𝐷)=𝐿(𝜃,𝐷)+𝑅𝑒𝑔(𝜃, 𝑏↓1 )3.  Let 𝜃↓𝑎𝑝𝑝𝑟𝑜𝑥 =𝜃s.t. ‖∇𝐿↓𝑝𝑟𝑖𝑣 (𝜃,𝐷)‖↓2 ≤𝛾4.  Output𝜃↓𝑎𝑝𝑝𝑟𝑜𝑥 +𝑁𝑜𝑖𝑠𝑒(𝑏↓2 ,𝛾)

𝐿↓𝑝𝑟𝑖𝑣 (𝜃

,𝐷)

Approximate Minima Perturbation (AMP)

𝜃𝜃↓𝑝𝑟𝑖𝑣 

‖∇𝐿↓𝑝𝑟𝑖𝑣 (𝜃,𝐷)‖↓2 ≤𝛾

𝜃↓𝑎𝑝𝑝𝑟𝑜𝑥 

SimilartostandardObjectivePerturbation[KST’12]

Page 13: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

Utility guarantees • Let 𝜃 minimize𝐿(𝜃;𝐷),andtheregularizationparameterΛ= Θ (𝜉√�𝑝 /𝜖𝑛‖𝜃 ‖ ).

• ObjectivePerturbation[KST’12]:If𝜃↓𝑝𝑟𝑖𝑣 istheoutputofobj.pert.: 𝔼(𝐿(𝜃↓𝑝𝑟𝑖𝑣 ;𝐷)−𝐿(𝜃 ;𝐷))= 𝑂 (𝜉√�𝑝 ‖𝜃 ‖/𝜖𝑛 ).• AMP(adaptedfrom[KST’12]):Foroutput 𝜃↓𝐴𝑀𝑃 :

𝔼(𝐿(𝜃↓𝐴𝑀𝑃 ;𝐷)−𝐿(𝜃 ;𝐷))= 𝑂 (𝜉√�𝑝 ‖𝜃 ‖/𝜖𝑛 +‖𝜃 ‖𝛾𝑛).• For𝛾=𝑂(1/𝑛↑2  ),theutilityofAMPisasymptoticallythesameasthatofObj.Pert.

• PrivatePSGD[WLK↑+ 17]:Foroutput𝜃↓𝑃𝑆𝐺𝐷 ,andmodelspaceradius𝑅:𝔼(𝐿(𝜃↓𝑃𝑆𝐺𝐷 ;𝐷)−𝐿(𝜃 ;𝐷))= 𝑂 (𝜉√�𝑝  𝑅/𝜖√�𝑛  ).

• For𝛾=𝑂(1/𝑛↑2  ),theutilityofAMPhasabetterdependenceon𝑛thanPrivatePSGD.thanPrivatePSGD.

Page 14: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

AMP - Takeaways • Canleverageanyoff-the-shelfoptimizer• Worksforallstandardconvexlossfunctions• For𝛾=𝑂(1/𝑛↑2  ),theutilityofAMP:

•  isasymptoticallythesameasObjectivePerturbation[KST’12]• hasabetterdependenceon𝑛thanPrivatePSGD[WLK↑+ 17]

• 𝛾= 1/𝑛↑2  achievableusingstandardPythonlibraries

Page 15: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

Empirical Evaluation • Algorithmsevaluated:

• ApproximateMinimaPerturbation(AMP)• PrivateSGD[BST↑′ 14, ACG↑+ 17]

• PrivateFrank-Wolfe(FW)[TTZ↑′ 14]

• PrivatePermutation-basedSGD(PSGD)[WLK↑+ 17]

• PrivateStrongly-convex(SC)PSGD[WLK↑+ 17]

• Hyperparameter-free(HF)AMP• Splittingtheprivacybudget:Weprovideascheduleforlow-andhigh-dim.databyevaluatingAMPonlyonsyntheticdata

• Non-private(NP)Baseline

Page 16: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

Empirical Evaluation • Lossfunctionsconsidered:

• Logisticloss• HuberSVM

• Procedure:• 80/20train/testrandomsplit• Fix𝛿= 1/𝑛↑2  ,andvary𝜖from0.01to10• Measureaccuracyoffinaltuned*privatemodelovertestset• Reportthemeanaccuracyandstd.dev.over10independentruns

Thistalk

*DoesnotapplytoHyperparameter-freeAMP.

Page 17: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

Synthetic Datasets Synthetic-L(10k ×20)

LegendNPBaseline

AMP

HFAMP

PrivateSGD

PrivatePSGD

PrivateSCPSGD

PrivateFW

-  Synthetic-Hishigh-dimensional,butlow-rank-  PrivateFrank-WolfeperformsthebestonSynthetic-H

Synthetic-H(2k ×2k)

Page 18: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

High-dimensional Datasets Real-sim(72k×21k)

LegendNPBaseline

AMP

HFAMP

PrivateSGD

PrivatePSGD

PrivateSCPSGD

PrivateFW

-  BothvariantsofAMPalmostalwaysprovidethebestperformance

RCV-1(50k×47k)

Page 19: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

Real-world Use Cases (Uber) Dataset1(4m×23)

LegendNPBaseline

AMP

HFAMP

PrivateSGD

PrivatePSGD

PrivateSCPSGD

PrivateFW

-  DPasaregularizer[BST’14,DworkFeldmanHardtPitassiReingoldRoth’15]-  Evenfor𝜖= 10↑−2 ,accuracyofAMPisclosetonon-privatebaseline

Dataset2(18m×294)

Page 20: Towards Practical Differentially Private Convex Optimization · Contributions • New Algorithm for Differentially Private Convex Optimization: Approximate Minima Perturbation (AMP)

Conclusions • Forlargedatasets,costofprivacyislow

• Privatemodeliswithin4%accuracyofthenon-privateonefor𝜖=0.01,andwithin2%for𝜖=0.1

• AMPalmostalwaysprovidesthebestaccuracy,andiseasilydeployableinpractice

• Hyperparameter-freeAMPiscompetitivew.r.t.tunedstate-of-the-artprivatealgorithms

• Open-sourcerepo:https://github.com/sunblaze-ucb/dpml-benchmark

ThankYou!