towards microwave entanglement generation for quantum simulation and computing

56
TOWARDS MICROWAVE ENTANGLEMENT GENERATION FOR QUANTUM SIMULATION AND COMPUTING Seb Weidt IQT group, University of Sussex IQsim13, Brighton

Upload: creola

Post on 22-Mar-2016

39 views

Category:

Documents


3 download

DESCRIPTION

towards microwave entanglement generation for quantum simulation and computing. Seb Weidt. IQsim13, Brighton. IQT group, University of Sussex. Experimental setup. Linear Paul trap. Drive frequency: 2 π x 20 MHz Ion-electrode separation: 310 μ m MHz MHz. Experimental setup. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: towards microwave entanglement generation for quantum simulation and computing

TOWARDS MICROWAVE ENTANGLEMENT

GENERATION FOR QUANTUM SIMULATION

AND COMPUTING

Seb Weidt

IQT group, University of SussexIQsim13, Brighton

Page 2: towards microwave entanglement generation for quantum simulation and computing

Linear Paul trap

Experimental setup

Drive frequency: 2π x 20 MHzIon-electrode separation: 310 μm MHz MHz

Page 3: towards microwave entanglement generation for quantum simulation and computing

Cooling 171Yb+

Experimental setup

2P1/2

2S1/2

3D[3/2]1/2

2D3/2

F=0

F=1

F=1

F=0

F=1

F=0

F=2

F=1369nm

935nm

2 GHz

1 GHz

12.6 GHz

Page 4: towards microwave entanglement generation for quantum simulation and computing

Cooling 171Yb+

Experimental setup

2P1/2

2S1/2

3D[3/2]1/2

2D3/2

F=0

F=1

F=1

F=0

F=1

F=0

F=2

F=1369nm

935nm

2 GHz

1 GHz

12.6 GHz

Page 5: towards microwave entanglement generation for quantum simulation and computing

State preparation

Experimental setup

2P1/2

2S1/2

F=0

F=1

F=1

F=0

F=1

F=0

F=2

F=1369nm

2 GHz 935nm

2 GHz

1 GHz

Optical pumping to 2S1/2 F=0 in ~ 20 μs

3D[3/2]1/2

2D3/2

Page 6: towards microwave entanglement generation for quantum simulation and computing

Coherent manipulation

Experimental setup

2P1/2

2S1/2

F=0

F=1

F=1

F=0

F=1

F=0

F=2

F=1

12.6 GHz

3D[3/2]1/2

2D3/2

Page 7: towards microwave entanglement generation for quantum simulation and computing

State detection

Experimental setup

2P1/2

2S1/2

3D[3/2]1/2

2D3/2

F=0

F=1

F=1

F=0

F=1

F=0

F=2

F=1369nm

935nm

2 GHz

1 GHz

Page 8: towards microwave entanglement generation for quantum simulation and computing

State detection

Experimental setup

2P1/2

2S1/2

3D[3/2]1/2

2D3/2

F=0

F=1

F=1

F=0

F=1

F=0

F=2

F=1369nm

935nm

2 GHz

1 GHz

Page 9: towards microwave entanglement generation for quantum simulation and computing

State detection

Experimental setup

2P1/2

2S1/2

3D[3/2]1/2

2D3/2

F=0

F=1

F=1

F=0

F=1

F=0

F=2

F=1369nm

935nm

2 GHz

1 GHz

Page 10: towards microwave entanglement generation for quantum simulation and computing

State detection

Experimental setup

Threshold technique

Detection fidelity ~ 0.93

Increase collection efficiency for improvement

Page 11: towards microwave entanglement generation for quantum simulation and computing

Ground state

GHz

𝜔𝐵±=

𝜇𝐵

ℏ 𝐵

Typical applied B ~ 10 Gauss MHz

2S1/2

F=1, mF = -1

F=1, mF = 0

F=1, mF = +1

F=0, mF = 0

𝜔0

𝜔𝐵+¿ ¿

𝜔𝐵−

Experimental setup

Page 12: towards microwave entanglement generation for quantum simulation and computing

Ground state

𝜔0

𝜔𝐵+¿ ¿

𝜔𝐵−

𝜔𝐵±=

𝜇𝐵

ℏ 𝐵

Experimental setup

2S1/2

GHz

Typical applied B ~ 10 Gauss MHz

Page 13: towards microwave entanglement generation for quantum simulation and computing

Ground state

𝜔0

𝜔𝐵+¿ ¿

𝜔𝐵−

𝜔𝐵±=

𝜇𝐵

ℏ 𝐵

Experimental setup

2S1/2

GHz

Typical applied B ~ 10 Gauss MHz

Page 14: towards microwave entanglement generation for quantum simulation and computing

Motional coupling with a magnetic field gradient Add a magnetic field gradient

Gives a state dependent forceEffective Lamb-Dicke parameter

= 20 T/m, /2π = 100 kHz ⇒ = 0.04

Requires the use of magnetic field sensitive states

F. Mintert and C. Wunderlich, Phys. Rev. Lett. 87, 257904 (2001)A. Kromova et al., Phys. Rev. Lett. 108, 220502

𝜂𝑒𝑓𝑓 =(1.19×106𝑚𝑠− 32𝑇 −1)𝜕𝑧 𝐵

𝑣𝑧

32

Experimental setup

Page 15: towards microwave entanglement generation for quantum simulation and computing

𝜔0

𝜔𝐵+¿ ¿

𝜔𝐵−

Fluctuations in the magnetic field causes dephasing

Gives rise to short coherence times

Experimental setup

Page 16: towards microwave entanglement generation for quantum simulation and computing

Fluctuations in the magnetic field causes dephasing

coherence time of ~ 500 μs

Rabi oscillations using magnetic field sensitive state

Experimental setup

Page 17: towards microwave entanglement generation for quantum simulation and computing

Dressed-states

Microwave dressed-states

Two microwave dressing fields

Ω𝜇𝑤❑ +¿¿

Ω𝜇𝑤❑ −

When = = :

N. Timoney, I. Baumgart, M. Johanning, A. F. Varon, M. B. Plenio, A. Retzker, and C. Wunderlich, Nature 476, 185 (2011)

Three eigenstates:𝜔0

𝜔𝐵+¿ ¿

𝜔𝐵−

Page 18: towards microwave entanglement generation for quantum simulation and computing

Dressed qubit

Microwave dressed-states

N. Timoney, I. Baumgart, M. Johanning, A. F. Varon, M. B. Plenio, A. Retzker, and C. Wunderlich, Nature 476, 185 (2011)

Three eigenstates:√2  Ω𝜇𝑤

Page 19: towards microwave entanglement generation for quantum simulation and computing

Dressed qubit

√2  Ω𝜇𝑤❑

Insensitive to magnetic field fluctuations apart from at the splitting frequency

Insensitive to microwave power fluctuations

Form a qubit using and

Microwave dressed-states

N. Timoney, I. Baumgart, M. Johanning, A. F. Varon, M. B. Plenio, A. Retzker, and C. Wunderlich, Nature 476, 185 (2011)

Page 20: towards microwave entanglement generation for quantum simulation and computing

Preparation

Microwave dressed-states

Optical pumping to prepare

Prep

S. C. Webster, S. Weidt, K. Lake, J. J. McLoughlin and W. K. Hensinger, Phys. Rev. Lett. 111, 140501 (2013)

Page 21: towards microwave entanglement generation for quantum simulation and computing

π to Preparation

Microwave dressed-states

Microwave π-pulse to

Prep

S. C. Webster, S. Weidt, K. Lake, J. J. McLoughlin and W. K. Hensinger, Phys. Rev. Lett. 111, 140501 (2013)

Page 22: towards microwave entanglement generation for quantum simulation and computing

Preparation

Microwave dressed-states

Partial STIRAP - Bare states mapped to dressed-states

Ω𝜇𝑤❑ +¿¿

Ω𝜇𝑤❑ −

π to Prep STIRAP

Ω𝜇𝑤❑

𝑡 th

S. C. Webster, S. Weidt, K. Lake, J. J. McLoughlin and W. K. Hensinger, Phys. Rev. Lett. 111, 140501 (2013)

Page 23: towards microwave entanglement generation for quantum simulation and computing

Preparation

Microwave dressed-states

Partial STIRAP - Bare states mapped to dressed-states

Ω𝜇𝑤❑ +¿¿

Ω𝜇𝑤❑ −

Ω𝜇𝑤❑

𝑡

π to Prep STIRAP

th

S. C. Webster, S. Weidt, K. Lake, J. J. McLoughlin and W. K. Hensinger, Phys. Rev. Lett. 111, 140501 (2013)

Page 24: towards microwave entanglement generation for quantum simulation and computing

Preparation

Microwave dressed-states

Partial STIRAP - Bare states mapped to dressed-states

Ω𝜇𝑤❑ +¿¿

Ω𝜇𝑤❑ −

Ω𝜇𝑤❑

𝑡

π to Prep STIRAP

th

Peak 25 kHzPulse width 450 μsPulse separation

356 μs

during hold 16 kHzS. C. Webster, S. Weidt, K. Lake, J. J. McLoughlin and W. K. Hensinger, Phys. Rev. Lett. 111, 140501 (2013)

Page 25: towards microwave entanglement generation for quantum simulation and computing

Detection

Microwave dressed-states

Partial STIRAP - Bare states mapped to dressed-states

Ω𝜇𝑤❑ +¿¿

Ω𝜇𝑤❑ −

π to Prep STIRAP

th

Ω𝜇𝑤❑

𝑡

S. C. Webster, S. Weidt, K. Lake, J. J. McLoughlin and W. K. Hensinger, Phys. Rev. Lett. 111, 140501 (2013)

Page 26: towards microwave entanglement generation for quantum simulation and computing

Detection

Microwave dressed-states

Microwave π-pulse tofollowed by state detection

π to Prep STIRAP π to

S. C. Webster, S. Weidt, K. Lake, J. J. McLoughlin and W. K. Hensinger, Phys. Rev. Lett. 111, 140501 (2013)

Page 27: towards microwave entanglement generation for quantum simulation and computing

Lifetime measurement

Microwave dressed-states

Lifetime of = 550 ms

Ω𝜇𝑤❑ +¿¿

Ω𝜇𝑤❑ −

Ω𝜇𝑤❑

𝑡 th

S. C. Webster, S. Weidt, K. Lake, J. J. McLoughlin and W. K. Hensinger, Phys. Rev. Lett. 111, 140501 (2013)

Page 28: towards microwave entanglement generation for quantum simulation and computing

Qubit manipulation

Microwave dressed-states

𝜔0

𝜔𝐵+¿ ¿

𝜔𝐵−

One rf field coupling to will drive to as long as <<

Ω𝑟𝑓❑ Significant non-linear

Zeeman shift for small B-fields )

10 Gauss – 31 kHzΩ𝜇𝑤❑ +¿¿

Ω𝜇𝑤❑ −

Second order Zeeman shift

S. C. Webster, S. Weidt, K. Lake, J. J. McLoughlin and W. K. Hensinger, Phys. Rev. Lett. 111, 140501 (2013)

Page 29: towards microwave entanglement generation for quantum simulation and computing

Rabi oscillations

Microwave dressed-states

S. C. Webster, S. Weidt, K. Lake, J. J. McLoughlin and W. K. Hensinger, Phys. Rev. Lett. 111, 140501 (2013)

1.4 kHzDressed coherence time 500 msBare coherence time 500 μs

Page 30: towards microwave entanglement generation for quantum simulation and computing

Ramsey experiment

Microwave dressed-states

Arbitrary qubit rotations are possible

Detuned π/2 pulse

Freeprecession

Detuned π/2 pulse

S. C. Webster, S. Weidt, K. Lake, J. J. McLoughlin and W. K. Hensinger, Phys. Rev. Lett. 111, 140501 (2013)

Page 31: towards microwave entanglement generation for quantum simulation and computing

Creating a magnetic field gradient

Microwave entanglement

6 mm

Four Samarium Cobalt permanent magnets

Page 32: towards microwave entanglement generation for quantum simulation and computing

Microwave entanglement Individual addressing in frequency space

𝜔0

∆𝜔

∆𝜔

Magnetic field strength

Page 33: towards microwave entanglement generation for quantum simulation and computing

2.03 MHzIon 1 Ion 2

Individual addressing in frequency space

Microwave entanglement

s 6 μm/2π 437 kHz

T/m0.004

∆𝜔

∆𝜔

Page 34: towards microwave entanglement generation for quantum simulation and computing

2.03 MHzIon 1 Ion 2

Individual addressing in frequency space

Microwave entanglement

s 6 μm/2π 437 kHz

T/m0.004

∆𝜔

∆𝜔

Page 35: towards microwave entanglement generation for quantum simulation and computing

2.03 MHzIon 1 Ion 2

Individual addressing in frequency space

Microwave entanglement

s 6 μm/2π 437 kHz

T/m0.004

∆𝜔

∆𝜔

Page 36: towards microwave entanglement generation for quantum simulation and computing

Resolving motional sidebands

Microwave entanglement

(carrier) / (sideband) 50 kHz / 8 kHz/2π 168 kHz

24 T/m0.019

𝑣

Page 37: towards microwave entanglement generation for quantum simulation and computing

Creation of Schrödinger cat state

Microwave entanglement

Re(α)

Im(α)

𝛼 (𝑡 )=𝜂𝑒𝑓𝑓 Ω𝜇𝜔

2𝛿(1−𝑒−𝑖 𝛿 𝑡 )

𝛿-

First demonstrated by Monroe et al. Science 272, 1131

𝑃 (0 )=12(1−𝑒− 12 |𝛼 ( 𝑡 )|

2

)

Apply Mølmer-Sørensen type spin operator

¿Coherent states will be displaced in phase space

¿

|− ⟩

K. Mølmer and A. Sørensen, Phys. Rev. Lett, 82:1835-1838, 1999

Driving detuned red and blue sideband

Page 38: towards microwave entanglement generation for quantum simulation and computing

Creation of Schrödinger cat state

Microwave entanglement

t 120 μs41 kHz

/2π 267 kHz0.009

𝛿-

Page 39: towards microwave entanglement generation for quantum simulation and computing

Creation of Schrödinger cat state

Microwave entanglement

Re(α)

Im(α)

No interference betweenwave packets

t 120 μs41 kHz

/2π 267 kHz0.009

Page 40: towards microwave entanglement generation for quantum simulation and computing

Creation of Schrödinger cat state

Microwave entanglement

Interference betweenwave packets

t 120 μs41 kHz

/2π 267 kHz0.009

Im(α)

Re(α)

Page 41: towards microwave entanglement generation for quantum simulation and computing

Creation of Schrödinger cat state

Microwave entanglement

Two-ion gate time ~ 15 ms

Coherence time ~ 500 μs

Combine magnetic field gradientwith dressed-state setup

t 120 μs41 kHz

/2π 267 kHz0.009

Page 42: towards microwave entanglement generation for quantum simulation and computing

Dressed-state motional coupling

Microwave entanglement

𝜔0

𝜔𝐵+¿ ¿

𝜔𝐵−

Ω𝑟𝑓❑

Use rf field to drive motional sidebands in dressed-state qubit

Ω𝜇𝑤❑ +¿¿

Ω𝜇𝑤❑ −

Page 43: towards microwave entanglement generation for quantum simulation and computing

Dressed-state motional coupling

Microwave entanglement

Ω𝑟𝑓❑

Ω𝜇𝑤❑ +¿¿

Ω𝜇𝑤❑ −

(carrier) / (sideband) 7 kHz / 1 kHz/2π 267 kHzGradient 24 T/m

0.009

|𝐷 ⟩ ❑→

|0 ′ ⟩

Page 44: towards microwave entanglement generation for quantum simulation and computing

|𝑛⟩❑→

|𝑛+1

Microwave entanglement

Ω𝜇𝑤❑ +¿¿

Ω𝜇𝑤❑ −

Ω𝑟𝑓❑

Dressed-state motional coupling

(carrier) / (sideband) 7 kHz / 1 kHz/2π 267 kHzGradient 24 T/m

0.009

|𝐷 ⟩ ❑→

|0 ′ ⟩

Page 45: towards microwave entanglement generation for quantum simulation and computing

|𝑛⟩❑→

|𝑛+1

⟩|𝑛

⟩❑→|𝑛−1

Microwave entanglement

Ω𝜇𝑤❑ +¿¿

Ω𝜇𝑤❑ −

Ω𝑟𝑓❑

Dressed-state motional coupling

(carrier) / (sideband) 7 kHz / 1 kHz/2π 267 kHzGradient 24 T/m

0.009

|𝐷 ⟩ ❑→

|0 ′ ⟩

Page 46: towards microwave entanglement generation for quantum simulation and computing

|𝑛⟩❑→

|𝑛+1

⟩|𝑛

⟩❑→|𝑛−1

|𝑛 ⟩ ❑→|𝑛 ⟩

Microwave entanglement

Ω𝜇𝑤❑ +¿¿

Ω𝜇𝑤❑ −

Ω𝑟𝑓❑

Dressed-state motional coupling

(carrier) / (sideband) 7 kHz / 1 kHz/2π 267 kHzGradient 24 T/m

0.009

|𝐷 ⟩ ❑→

|0 ′ ⟩

Page 47: towards microwave entanglement generation for quantum simulation and computing

|𝑛⟩❑→

|𝑛+1

⟩|𝑛

⟩❑→|𝑛−1

|𝑛 ⟩ ❑→|𝑛 ⟩

Microwave entanglement

Ω𝜇𝑤❑ +¿¿

Ω𝜇𝑤❑ −

Ω𝑟𝑓❑

Dressed-state motional coupling

(carrier) / (sideband) 7 kHz / 1 kHz/2π 267 kHzGradient 24 T/m

0.009

|𝐷 ⟩ ❑→

|0 ′ ⟩

Page 48: towards microwave entanglement generation for quantum simulation and computing

|𝑛⟩❑→

|𝑛+1

⟩|𝑛

⟩❑→|𝑛−1

|𝑛 ⟩ ❑→|𝑛 ⟩

|𝑛⟩❑→

|𝑛−1

Microwave entanglement

Ω𝜇𝑤❑ +¿¿

Ω𝜇𝑤❑ −

Ω𝑟𝑓❑

Dressed-state motional coupling

(carrier) / (sideband) 7 kHz / 1 kHz/2π 267 kHzGradient 24 T/m

0.009

|𝐷 ⟩ ❑→

|0 ′ ⟩

Page 49: towards microwave entanglement generation for quantum simulation and computing

|𝑛⟩❑→

|𝑛+1

⟩|𝑛

⟩❑→|𝑛−1

|𝑛 ⟩ ❑→|𝑛 ⟩

|𝑛⟩❑→

|𝑛−1

⟩|𝑛

⟩❑→|𝑛

+1

Microwave entanglement

Ω𝜇𝑤❑ +¿¿

Ω𝜇𝑤❑ −

Ω𝑟𝑓❑

Dressed-state motional coupling

(carrier) / (sideband) 7 kHz / 1 kHz/2π 267 kHzGradient 24 T/m

0.009

|𝐷 ⟩ ❑→

|0 ′ ⟩

Page 50: towards microwave entanglement generation for quantum simulation and computing

|𝑛⟩❑→

|𝑛+1

⟩|𝑛

⟩❑→|𝑛−1

|𝑛 ⟩ ❑→|𝑛 ⟩

|𝑛⟩❑→

|𝑛−1

⟩|𝑛

⟩❑→|𝑛

+1

Microwave entanglement

Ω𝜇𝑤❑ +¿¿

Ω𝜇𝑤❑ −

Ω𝑟𝑓❑

Resilient to magnetic field fluctuationsBUT sensitive to magnetic field gradient

Dressed-state motional coupling|𝐷 ⟩ ❑

→|0 ′ ⟩

Page 51: towards microwave entanglement generation for quantum simulation and computing

Arbitrary manipulation of magnetic field noise resilient dressed-state qubit

Creation of a strong magnetic field gradient Individual addressing and motional coupling using

bare states Creation of Schrödinger cat state Motional coupling using dressed-state qubit

Conclusion

Page 52: towards microwave entanglement generation for quantum simulation and computing

The IQT GroupHead of Group:Dr. Winfried Hensinger

Postdocs:Dr. Simon WebsterDr. Gouri Giri

Research Assistants:Dr. Marcus HughesDr. James Siverns

PhD Students:Seb WeidtBjo LekitschKim LakeDarren De MotteJoe RandallEamon StandingDavid MurgiaTomas NavickasWe gratefully acknowledge funding from:

Page 53: towards microwave entanglement generation for quantum simulation and computing
Page 54: towards microwave entanglement generation for quantum simulation and computing

Ground state

𝜔0

𝜔𝐵+¿ ¿

𝜔𝐵−

Ω𝜇𝑤❑

Magnetic field insensitivequbit

Experimental setup

Page 55: towards microwave entanglement generation for quantum simulation and computing

Rabi oscillations

Ω𝜇𝑤❑ =2𝜋×333 𝑘𝐻𝑧

Coherence time > 1s

Experimental setup

Page 56: towards microwave entanglement generation for quantum simulation and computing

Creating a magnetic field gradient

Microwave entanglement

Four Samarium Cobalt permanent magnets

10 mm