towards a g-factor determination of the electron bound in ... schabinger_hitrap_20...towards a...

16
Towards a g-factor determination of the electron bound in highly-charged calcium ions Hitrap Workshop GSI November 2006 Birgit Schabinger Joseba Alonso, Klaus Blaum, H.-Jürgen Kluge, Wolfgang Quint, Daniel Sevilla, Stefan Stahl, Manuel Vogel and Günther Werth What is the g-factor? Motivation How to measure the g-factor

Upload: others

Post on 30-Aug-2019

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Towards a g-factor determination of the electron bound in ... Schabinger_Hitrap_20...Towards a g-factor determination of the electron bound in highly-charged calcium ions Hitrap Workshop

Towards a g-factor determination of the electron bound in highly-charged calcium ions

Hitrap Workshop GSI November 2006

Birgit Schabinger

Joseba Alonso, Klaus Blaum, H.-Jürgen Kluge, Wolfgang Quint, Daniel Sevilla, Stefan Stahl, Manuel Vogel and Günther Werth

What is the g-factor?•Motivation•How to measure the g-factor

Page 2: Towards a g-factor determination of the electron bound in ... Schabinger_Hitrap_20...Towards a g-factor determination of the electron bound in highly-charged calcium ions Hitrap Workshop

www.quantum.physik.uni-mainz.de/mats

gg--factorfactor

NSNS N

SNS

B-field

μ

μ

Highenergy

Lowenergy

Smegs

rr

2−=μ

Lme

l

rr

2−=μ

• A particle with a magnetic moment experiences a torque in a magnetic field B

• Both the orbital and the spin angular momentum contribute to the magneticmoment:

BErr

⋅−=Δ μHighenergy

Lowenergy

Page 3: Towards a g-factor determination of the electron bound in ... Schabinger_Hitrap_20...Towards a g-factor determination of the electron bound in highly-charged calcium ions Hitrap Workshop

www.quantum.physik.uni-mainz.de/mats

The The gg--factor throughout historyfactor throughout history

Classical Electrodynamicsg-factor does not exist

Quantum MechanicsDirac’s equation predicts g = 2

Relativistic Quantum MechanicsBreit (1928)

for point-like nucleus

⎥⎥⎦

⎢⎢⎣

⎡ −+=

3)(121

22αZ

g

Recoil and nuclear correctionsMass, size and shape of

the nucleusBeier (2000) and Pachucki (2005)

Bound state – QEDInteraction with e.m.

field from nucleusSelf energy

Quantum ElectrodynamicsSchwinger (1947)

Vacuumpolarization

Vertexcorrection

O. Stern and W. Gerlach (1922)

Page 4: Towards a g-factor determination of the electron bound in ... Schabinger_Hitrap_20...Towards a g-factor determination of the electron bound in highly-charged calcium ions Hitrap Workshop

www.quantum.physik.uni-mainz.de/mats

Bound Bound -- state QEDstate QED

0 10 20 30 40 50 60 70 80 90 100

calculation: V.M. Shabaev, V.A. Yerokhin…10-1110-1010-910-810-710-610-510-410-310-210-1

BS-QED corrections1st order in α

relativistic L-S-coupling

nuclear recoil

BS-QED-corrections 2nd order in α

volume of nucleus

cont

ribut

ion

to th

e g-

fact

or

nuclear charge number Z

Ca

U

g = 2 + ae + ab + b + c

Dirac

QEDfree electron

BS-QED

Relativistic

Nuclearcorrection

0.000014414Bound-state QED only

1.9880569466 (100)Theory total

-Interelectronic interaction

+0.0000002973Recoil

+0.0000001130 (1)Finite-size correction

+0.002333332QED total

1.9857232037 (1)Dirac value (point)

40Ca19+Contribution

Why do we want to use Ca ions?

strong electric field ~ 1014 V/cm [Pachucki et al, PR (2005)]

Page 5: Towards a g-factor determination of the electron bound in ... Schabinger_Hitrap_20...Towards a g-factor determination of the electron bound in highly-charged calcium ions Hitrap Workshop

www.quantum.physik.uni-mainz.de/mats

AchievementsAchievements

12C5+

gexpt=2.001 041 596 3 (10)(44) H. Häffner et al. PRL 85 (2000) 5308

gtheo=2.001 041 590 18 (3) K. Pachucki et al. PRA 72 (2005) 022108

16O7+

gexpt=2.001 047 026 0 (15)(44) J. Verdú et al. PRL 92 (2004) 093002

gtheo=2.001 047 020 32 (11) K. Pachucki et al. PRA 72 (2005) 022108

Resulting electron mass

m=0.000 548 579 909 2 (4) u T. Beier et al, PRL 88 (2002) 011603

(which is the main contribution to the currently accepted CODATA value)

Next step: 40Ca17+, 40Ca19+, 48Ca17+, 48Ca19+

Page 6: Towards a g-factor determination of the electron bound in ... Schabinger_Hitrap_20...Towards a g-factor determination of the electron bound in highly-charged calcium ions Hitrap Workshop

www.quantum.physik.uni-mainz.de/mats

Single ion in a Penning trapSingle ion in a Penning trap

reduced cyclotron frequency:

magnetron drift frequency:

axial oscillation frequency:

BMq

c =ω

222

22zcc ωωωω −⎟

⎠⎞

⎜⎝⎛−=−

222

22zcc ωωωω −⎟

⎠⎞

⎜⎝⎛+=+

20

MdqU

z =ω

2222zc ωωωω ++= −+

invariance theorem:

cyclotron frequency:

ω+ = 25 MHz ω− = 16 kHz ωz = 1 MHz

(40Ca19+ @ B = 3.8 T; U0 = 10 V)

Page 7: Towards a g-factor determination of the electron bound in ... Schabinger_Hitrap_20...Towards a g-factor determination of the electron bound in highly-charged calcium ions Hitrap Workshop

www.quantum.physik.uni-mainz.de/mats

gg--factor measurementfactor measurement

z

Bz M

Bgω

μδω 22=

B2 = 10.06 (6) mT/mm2

Bmeg

eL 2=ω

Larmor frequency:

Mq

c=ω

cyclotron frequency:from literature

Mm

eqg e

c

L

ωω2=

Δωz = 180 mHzbetween spin ↑↓

[Verdú et al, PRL 92 (2004) 093002]

gth = 2.00104702128(35)gex = 2.0010470254(16)(44)

m(40Ca): [SMILETRAP: Nagy et al, EPJD (2006)]

BMq

c =ω

Cyclotron frequency:

Page 8: Towards a g-factor determination of the electron bound in ... Schabinger_Hitrap_20...Towards a g-factor determination of the electron bound in highly-charged calcium ions Hitrap Workshop

www.quantum.physik.uni-mainz.de/mats

The calcium triple Penning trapThe calcium triple Penning trap

• Electron gun and creation trap:– charge breeding

• Analysis trap:– inhomogeneous magnetic field

(B2 = 8,2(9) mT/mm2)– monitor spin direction

• Precision trap: – homogeneous magnetic field– high precision measurements of

ω+ , ω- , ωz of a single Ca ion+ microwave irradiation (spinflip)

General:– temperature in the trap T = 4K– pressure p < 10-16 mbar

Page 9: Towards a g-factor determination of the electron bound in ... Schabinger_Hitrap_20...Towards a g-factor determination of the electron bound in highly-charged calcium ions Hitrap Workshop

www.quantum.physik.uni-mainz.de/mats

Charge breedingCharge breeding

Target

Cathode

“mini-EBIS”

HyperbolicReflector

Creation Trap

B

40Ca16+ 40Ca17+ 40Ca18+ 40Ca19+

Electron Gun

z U = Umax

I = I max

Bmq

c =ω

FFT

Page 10: Towards a g-factor determination of the electron bound in ... Schabinger_Hitrap_20...Towards a g-factor determination of the electron bound in highly-charged calcium ions Hitrap Workshop

www.quantum.physik.uni-mainz.de/mats

gg--factor of factor of 238238UU91+91+ @ HITRAP@ HITRAP

Page 11: Towards a g-factor determination of the electron bound in ... Schabinger_Hitrap_20...Towards a g-factor determination of the electron bound in highly-charged calcium ions Hitrap Workshop

www.quantum.physik.uni-mainz.de/mats

Special Special ThanksThanks to:to:

VH-NG-037

• MATS group within QUANTUM at the institute of physics

• Funding

Thanks a lot for your attention!

Page 12: Towards a g-factor determination of the electron bound in ... Schabinger_Hitrap_20...Towards a g-factor determination of the electron bound in highly-charged calcium ions Hitrap Workshop

www.quantum.physik.uni-mainz.de/mats

[Werth et al, Adv. At. Mol. Opt. Phys. 48 (2002) 191]

Bound Bound -- state QEDstate QED

Why do we want to use Ca ions?

strong electric field ~ 1014 V/cm

0.00000173 0.000014414Bound-state QED only

1.99920224 (17)1.9880569466 (100)Theory total

+0.00045445 (14)-Interelectronic interaction

+0.000000061 (2)+0.0000002973Recoil

+0.000000014+0.0000001130 (1)Finite-size correction

+0.002321708 (17)+0.002333392QED total

1.9964260111.9857232037 (1)Dirac value (point)

40Ca17+40Ca19+Contribution

g = 2 + ae + ab + b + c

Dirac

QEDfree electron

BS-QED

Relativistic

Nuclearcorrection

for O7+: [Verdú et al, PRL 92 (2004) 093002]

gth = 2.00004702128(35)gex = 2.0000470254(16)(44)

Page 13: Towards a g-factor determination of the electron bound in ... Schabinger_Hitrap_20...Towards a g-factor determination of the electron bound in highly-charged calcium ions Hitrap Workshop

www.quantum.physik.uni-mainz.de/mats

Measurement sequenceMeasurement sequence

• Creation trap:– charged breeding until 40Ca17+ or 40Ca19+

• Precision trap:– clean the ion cloud until only one single Ca ion is

left in the trap– prepare the spin direction of the single ion

• Precision trap– measurement of + - z on a single ion with

well-defined spin direction + microwave irradiation

• Analysis trap:– detection of spinflip

• Precision trap:start a new sequence…

Page 14: Towards a g-factor determination of the electron bound in ... Schabinger_Hitrap_20...Towards a g-factor determination of the electron bound in highly-charged calcium ions Hitrap Workshop

www.quantum.physik.uni-mainz.de/mats

Detection of spin direction Detection of spin direction –– PhasePhase--sensitive methodsensitive method

• Magnetic field inhomogeneity of the analysis trap: B2 = 8,2(9) mT/mm2

• Δ z 180 mHz between spin ↑↓

– reducing the size of the analysis trap– materials with higher magnetic

susceptibilities– higher stability by voltage supplies and

detection techniques.

• Detection of spin flip:

– measurement of the axial frequency – measurement of the phase– phase-sensitive method ~30 faster than

measurement of z

No effect on the measurement of the frequencies in the precision trap

z, +, - c

Page 15: Towards a g-factor determination of the electron bound in ... Schabinger_Hitrap_20...Towards a g-factor determination of the electron bound in highly-charged calcium ions Hitrap Workshop

www.quantum.physik.uni-mainz.de/mats

ApparatusApparatus

Page 16: Towards a g-factor determination of the electron bound in ... Schabinger_Hitrap_20...Towards a g-factor determination of the electron bound in highly-charged calcium ions Hitrap Workshop

www.quantum.physik.uni-mainz.de/mats

CryoCryo-- ElectronicsElectronics

•• FTFT--ICR ICR boardboard ((insideinside thethe traptrap))

•• Old axial Old axial amplifieramplifier boardboard

•• New axial New axial amplifieramplifier boardboard

•• CyclotronCyclotron cryogeniccryogenic boardboard

•• Old Old filterfilter boardboard

•• New New filterfilter boardboard

Ca-Trap

}Anode (Graphite Target with vapour-deposited 10µm Ca-Layer)

Accel. Electrode ("Beschleunig.-Elektrode")

FEP (field emission point, made of tungsten)

Ele

ctro

nG

un

g-factor experiment Mainz

Details of Electrical Trap Connections and Electronic Componentsin the Cryogenic 4K-Region

T = 4K

Mounting Flange (UMF) is on ground potentialB

shieldedcopper detection coil

CyclotronDetectionTuning Unit

GaAs-switches, Varactor Diode

27...29MHzcyclotron circuit

Cyclotron CryoAmp

Cyclotron/Axial CryoAmp

Ca-Trap

up to -10kV

2x 47kOhm

22nF

"big"supercond.detection coil~350kHz

Axial Amplifier boards

N=4:1

“small” supercond.detection coil kHz~ 900

N=3:1

26

,5kO

hm

8,9

kO

hm

Q = 400, 3,2MHz

¼ mH ~ 2M~ 21nV/sq Hz

15p

100pF

3,5p

RC1

RC1

RC1

RC1

RC1

RC1

RC1

RC1

RC1

RC1

RC1

RC1

RC1

Fallenträger

C/CC/C

C/C C/C

dipolar excitation

quad. excitation

exc.LC

exc.LC

exc.LC

exc.LC

exc.LC(directly from hat)

Nickel

}

Pre

cisi

on

Tra

p

}

}

Anal

ysi

sT

rap

Cre

atio

nT

rap

220k @ 300K

220k @ 300K

100pF/ 630V

3.3k @ 300Kat

RC1

at

� �������������� ���� � �z z

Drain

SS-coaxialcable

buffer stagefirst stage

first stage

4K-Drain Resistor

Drain

cyclotron signal

Exc-Box

5.0pF

2.0pF

eff.: 10pF

RC1

FTb

ccb

insidevacuumchamber

100pF4x

33pF

100pF

47k

100k

1M

FTb

0,3p

0.3p

0,3p

RC1

RC1

39 M@300K

Q-switches

Drain Voltage

Output

U

U

G1 FT-ICR

G1 LC-FET

Biasing FET2 Gate1

Biasing FET1 Gate1

common drain supply

UGate Cycl. Amp.

Drain Supply Cycl.

5

I

L

H

A

B

C

D

F

J

K

T SQ

R

G’

B

C

D

G

G

H

H

G

B,C

B,C G H

A AIR

AIR

12

12

1 M

G

330p

330p

1M