total simulation of iter plasmas kozo yamazaki nagoya univ., chikusa-ku, nagoya 464-8603, japan 1

23
TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

Upload: nickolas-bryan

Post on 28-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

TOTAL Simulation of

ITER Plasmas

Kozo YAMAZAKI

Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan

1

Page 2: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

OUTLINE

1. Introduction

2. TOTAL Transport Benchmark

3. Pellet Injection and ITB

Formation

4. Impurity Injection and Edge

Control

5. NTM Evolution and ECCD

Stabilization

6. Summary

2

Page 3: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

● Start (~1980)● Tokamak (2nd stability) 2D+1D   K.Yamazaki et al., Nuclear Fusion Vol.25 (1985) 1543.

● Helical Analysis 3D+1D K.Yamazaki et al., Nuclear Fusion Vol.32 (1992) 633.

● Burning Simulation (Tokamak & Helical) K.Yamazaki et al., Nuclear Fusion Vol.49 (2009) 055017.

Based on JT-60U ITB operation and LHD e-ITB data.

3

History of TOTAL code

Toroidal Transport Analysis Linkage

1. Introduction

Page 4: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

Core PlasmaEquilibrium   Tokamak: 2D   APOLLO                  Helical: 3D   VMEC, DESCUR, NEWBOZ Transport   Tokamak  : TRANS , GLF23 , NCLASS                Helical  : HTRANS,   GIOTAStability           NTM,   Sawtooth, Ballooning mode

Impurity IMPDYN (rate equation) including Tungsten ADPAC  ( various cross-section )

Fueling NGS (neutral gas shielding) model                mass relocation model (HFS)       NBI HFREYA, FIFPC Puffing AURORA Divertor   two-point divertor model, density feedback control

Edge transport H-mode edge model

World Integrated Modeling

TOTAL-T,-H(J)TOPICS(J)

TASK(J)CRONOS(EU)TRANSP(US)ASTRA(RU)

4

Toroidal Transport Analysis Linkage

Main Feature of “TOTAL” is to performboth Tokamak and Helical Analyses

Page 5: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

Toroidal Transport Analysis Linkage

For Predictive Simulation and Experimental Data Analysis

TOTAL Code Development

NTM,Sawteeth Analyses

PelletInjectionGLF23

5

Page 6: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

Ref: C.E. Kessel et al., Nucl. Fusion 47 (2007) 1274–1284

TOTALTOTAL

TOTAL code  CDBM model                      (GLF23 model)

2. TOTAL Transport

Benchmark

Page 7: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

ITG

BEBohmGyroBohmanomalous F

21

ITG

BEITG

BEF

1

1

 ◆ E×B shearing rate :

RB

E

dr

d

B

RB rBE

◆ ITG linear growth rate: qR

cs iiITG

2/13/2

dr

dq

q

rs

anomalousalneoclassicie ,

Bohm/GyroBohm Mixed Transport Model

Coefficients are determined using typical experimental data of JT-60U ITB data and LHD e-ITB operations. 

TALA, T., et al., Plasma Phys. Control. Fusion 43 (2001) 507-523.

7

3. Pellet Injection and ITB

Formation

Page 8: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

Transport model cheked by JT-60U data

Page 9: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

Tungsten Transport without and with ITB

Page 10: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

0

2 104

4 104

6 104

8 104

1 105

0 0.2 0.4 0.6 0.8 1

ITG

ExB

0

5 104

1 105

1.5 105

2 105

2.5 105

3 105

0 0.2 0.4 0.6 0.8 1

ITG

ExB

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

Ti

Te

ne

deposition

Tem

pe

ratu

re &

density [ke

v &

10

19 m

-3]

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

Ti

Te

ne

deposition

Tem

pe

ratu

re &

den

sity

[ke

v &

10

19 m

-3]

ITB

HFS Pellet Injectionwith ITB

LFS Pellet InjectionWithout ITB

ITB Formation by Pellet Injection

10

Page 11: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

ITB formation in Helical Reactor

HR-1

0

2 105

4 105

6 105

8 105

0 0.2 0.4 0.6 0.8 1

facc3gamm

ExB

ITG

[1/s]

-400

-300

-200

-100

0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Er

[V/cm]

F(

ExB/

ITG)E

r

F

0

10

20

30

40

0 0.2 0.4 0.6 0.8 10

20

40

60

80

ne

Te

Ti

deposition

Ti, T

e

[keV]

ne

(1019/m3)

Ambipolar radial electric field can form ITB

11

Page 12: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

[1] M.E. Puiatti., et al., Plasma Phys. Control. Fusion 44 (2002) 1863[2] M.E. puiatti., et al., Plasma Phys. Control. Fusion 45 (2003) 2011

ReferenceJET Experiment

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

Te [keV]

r/a

Te

0

5 1016

1 1017

1.5 1017

2 1017

2.5 1017

3 1017

3.5 1017

0 0.2 0.4 0.6 0.8 1

n Ar [m

-3]

r/a

18+

17+

16+

total

15+

nAr

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1Power [MW/m3]

r/a

Pline

Pbrem

Prad

Prad

#52136

NBI 12MWArgon seeded ELMy H-mode discharge

Low triangularity

TOTAL code simulation with Sawteeth

12

4. Impurity Injection and Edge Control

Page 13: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

2.42.73

3.3

0 2 4 6 8 10

n Ar17(0)[m

-3]

time [sec]

2.22.42.62.8

Te(0)[keV]

0.820.840.860.88

ne(0)[m-

3 ]0.6

0.8

1

q(0)

691215

Power[MW]

Prf

Prad

[sec]65.0~saw317

, /100.7 mn sAr

Simulation for a JET Sawtooth

13

Page 14: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

ITER

Radial profile before (solid curve) and after (dashed curve) a sawtooth crash.

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

Te [keV]

r/a

Te

0

5 1014

1 1015

1.5 1015

0 0.2 0.4 0.6 0.8 1

n Ar[m-

3 ]

r/a

total18+

17+

16+

15+

nAr

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1

Power [MW/m3]

r/a

Prad

Pline

Pbrem

Psyn

Prad

0

5 1014

1 1015

1.5 1015

2 1015

2.5 1015

3 1015

3.5 1015

4 1015

0 0.2 0.4 0.6 0.8 1n W [m-

3 ]r/a

68+

66+64+

62+

45+ 30+55+60+

total nw

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1

Power [MW/m3]

r/a

Prad

PbremPsyn

Pline

Prad

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

n e [10

20m

-3]

r/a

ne

14

Page 15: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

KrArNeHeNo injection

P rad [MW/m

3 ]

r/a

q=2 surface

0

50

100

150

He C O Ne Ar Fe Kr Mo

SynchrotronLineBremsstrahlung

Radiation power [MW]

Impurity species

%5 PPP

RFfus PP 10

LHsep PP

Maximum impurity concentration at the reference ITER inductive scenario

based on the ELMy H-mode regime

Page 16: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

020406080100120140160

0 50 100

PalpPrfPradPsep

Power [MW]

time [sec]

00.10.20.30.40.5

0 2 4 6 8 10 12

totalcoremantle

Radiation fraction

nHe/ne [%]

00.20.40.60.81

0 0.005 0.01 0.015

totalcoremantle

Radiation fraction

nKr/ne [%]

Radiative Mantle Formation by Kr Injection in ITER

Page 17: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

17

225

3

2

2

04

22

2

2

22

03

222

2

01

1

1,

2.0

111

)(

Wa

If

B

Lk

WL

Lgk

WWqL

Lk

WW

W

BjLk

Wk

ECEC

ps

qEC

p

qpipsispol

dsps

qpssGGJ

dpBSqBS

 

HFECpolGGJBSdt

dW

Model: Modified Rutherford EquationModel: Modified Rutherford Equation

cos)(2 2

W

W

r

m HF

sHF

42

||

4

||

)4

()( rd

bW

Resonant HF Non-resonant HF

Q.Yu et al., PRL 85(2000)2949

k1 1.0k2 10.0k3 1.0k4 1.0k5 5.0

5. NTM Evolution and ECCD Stabilization

Page 18: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

0

5 105

1 106

1.5 106

0 0.2 0.4 0.6 0.8 1

j[A/m

2 ]

r/a

IBS with NTM(3-2)

IBS with NTM(2-1)

ITOTAL

ITER (Ip=15MA)

0

5

10

15

20

25

30

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

Te  

[keV] q

no NTM

3/2 mode

2/1 mode

3/2 + 2/1 mode

3/2 island

2/1 island

NTM analysis of an ITER Plasma without external helical field

Page 19: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

0.05

0.1

0.15

0.2

0.25

30 35 40 45 50 55 60 65

W

time [s]

60[kA]

80[kA]

100[kA]

120[kA]

ECCD

2/1 mode

0

0.05

0.1

0.15

0.2

0.25

30 35 40 45 50

w

time(s)

Δ α c=0.250.20

0.150.100.05

0.00

(b)

ECCD Stabilization against NTM In ITER Plasma

Page 20: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

Application of External Helical Field

Old experiments on current carrying stellarator disruption-free (without BS current)

(1) Error Field Modification (BHF/B~10-4~-3) resonant field feedback (high frequency) resonant magnetic breaking (low frequency) (2) Helical Field-Assisted (BHF/B~10-2~-1) static non-resonant application mode locked ? disruption ?

(3) Tokamak-Stellarator Hybrid (BHF/B~1) static non-resonant application       disruption-free ?

20

Page 21: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

Non-Resonant Helical Field Application

Br/B0~10-3Without Helical Field With Helical Field

21

Stabilized

GGJ

dW/dt

BS

Page 22: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

6. Summary (1/2)

(1) 1.5-D tokamak code and 2.0-D helical code have been developed for predictive simulation and experimental analysis related to Transport and MHD effects.

(2) ITB can be formed by the deep penetration of HFS pellet injection in tokamaks. The shallow pellet penetration of low-field-side injection did not lead to the ITB formation in the present model.

(3) Sawtooth oscillation effects on ITER impurity transport has been carried out based on a JET simulation model, and 20% radiation reduction was suggested in ITER.

22

Page 23: TOTAL Simulation of ITER Plasmas Kozo YAMAZAKI Nagoya Univ., Chikusa-ku, Nagoya 464-8603, Japan 1

6. Summary (2/2)

(4) Low-z impurity, like He, cannot form radiative mantle, and causes large bremsstrahlung radiation loss in the core. About 84% (core:33% / mantle:51%) of input power is radiated inside the LCFS by Kr impurity seeding without inducing any deleterious change.

(4) NTM excitation and control have been simulated using modified Rutherford equation. The appearance of m=2/n=1 NTM leads to the 20 % reduction in the central temperature in ITER-like reactors. The m/n=3/2 NTM can be stabilized by non-resonant helical field. 

23