toru yamada - baocolloquium.bao.ac.cn/sites/default/files/ppt_naoc...y.nakamura, master thesis...

68
Galaxy Formation in a Protocluster at z=3.1 Toru Yamada Tohoku University Yuichi Matsuda (NAOJ), Tomoki Hayashino (Tohoku) Mariko Kubo Tohoku) and SSA22 S-Cam/MOIRCS colleagues

Upload: others

Post on 13-Jul-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

  • Galaxy Formation in a Protocluster at z=3.1

    Toru Yamada Tohoku University

    Yuichi Matsuda (NAOJ), Tomoki Hayashino (Tohoku) Mariko Kubo (Tohoku) and SSA22 S-Cam/MOIRCS colleagues

  • a brief general introduction to “protoclusters”

  • ~80-90% are E/S0 galaxies

    Coma cluster

    ● Very old stellar population ● Little star formation now Stars in Galaxies formed at high redshift (z>2-3) - epoch of star formation - epoch of mass assembly

    Clusters of Galaxies at present

  • 200Mpc (comoving)

    a protocluster

    Large-scale distribution of Lyα Emitters

    Redshift 3.1

    Depth 60Mpc

    My talk today

  • De Lapparent et al. 1988

    Void

    Coma Cluster

    Filaments and walls

  • Density fluctuation is detected at the epoch of cosmic recombination

    WMAP Seven Years Map

    http://map.gsfc.nasa.gov/media/101080/index.html

    δT / T =O(10-5)

  • Sloan Digital Sky Survey

    CfA Survey depth

    Zehavi et al. (2002)

  • Large Scale Small Scale

    500Mpc 30Mpc 1pc =3.26 light years

    Z=18.3 13.5 Gyr ago

    Z=5.7 12.7 Gyr ago

    Z=1.4 9 Gyr ago

    ~Present 0.1 Gyr ago

    Millenium Simulation http://www.mpa-garching.mpg.de/millennium/

  • Galaxies are “biased” population (biased from the “mass” distribution)

    Linear (r.m.s.) bias parameter

    14 Mpc

    simulation

    Weinberg et al. (2004)

    b~1 for L* (typical) galaxies at z=0

    Mass Galaxies

    σ : dispersion of density fluctuation

  • Cold Dark Matter universe - The early density fluctuation has Gaussian property (any non-Gaussianity??) - Random Phase

    Wave Numbers k Scale dependence of the dispersion Power Spectrum (in Fourier space) Power spectrum of

    the present-day galaxies

    Small scale

    Large scale

    BAO 0 δ

    ρ

    ρ’ λ

    For a scale λ=2π/k

    σ

    overdensity

  • Dark Matter (Mass) Galaxies

    Most-massive objects

    z=3

    z=1

    “Bias” at different redshift SPH simulation by Weinberg et al. (2004)

    Galaxies

    Dark Matter (Mass)

  • What are the expected consequence of Biased galaxy formation?

    ● High-redshift galaxies show the clustering as strong as the present-day galaxies ● Statistically, galaxies in the dense region (cluster) are older, more massive galaxies are older ● Clustering strength of galaxies represent typical DMH mass associated with the galaxies (assuming “halo occupation” of the galaxies) ● Galaxy formation preferentially occur in the high-redshift high-density region

  • Kajisawa, ,TY, et al. 2010 Subaru MOIRCS Deep Survey

    Evolution of the Stellar Mass Density Evolution In the Universe

  • high-z protocluster ○ Overdensity of Lyman Break galaxies、Lyman α emitters z=2-6 e.g., Adelberger et al. 1998 ○ Overdensity around powerful radio galaxies z=2-4 e.g., Venemans et al. 2006, Kodama et al. 2007, Tanaka et al. 2011, Mahalo-Subaru, etc. ○ X-ray selected clusters z

  • Galaxy Formation in a Protocluster at z=3.1

  • Hayashino et al. 2004, AJ, 129, 2073 Matsuda et al. 2004, AJ, 128, 569 Geach et al. 2005, MNRAS, 363, 1398 Matsuda et al. 2005, ApJ, 63, L125 Matsuda et al. 2006, ApJ, 640, L123 Matsuda et al. 2007, ApJ, 667, 667 Uchimoto et al. 2008, PASJ, 60, 683 Webb et al. 2009, ApJ, 692, 1561 Lehmer et al. 2009, ApJ, 691, 687 Yamada 2009, New Astronomy, 53, 54 Matsuda et al. 2011, MNRAS, 410,L13 Yamada et al. 2012, AJ, 143, 79 Uchimoto et al. 2012 ApJ, 750,116 Yamada et al. 2012b, ApJ, 751,29 Matsuda et al. 2012, MN, 425, 878 Kubo et al. 2013, ApJ, in press Yamada et al. 2012c, in preparation Kubo et al. 2013, in preparation Otsuka et al. 2014, in preparation

  • 1. “Superstructure” around the SSA22 protocluster traced by the Lyα Emitters

  • SSA22 region (22h16m, 0d15m) ● Discovered as a rdshift peak of Lyman Break Galaxies at z=3.1 6x number density of the average in ~20x15x21Mpc3 (comoving) (Steidel et al. 1998; Adelberger et al. 1998; Steidel et al. 2000; 2003) ● one of the most prominent structure at z~3 discovered so far

    z=3.1 redshift peak

    LBG redshift distribution in 6 obserrved fields Redshift z

    10’x15’

  • Lyman Break Galaxies = UV bright galaxies

    Color “drop out” caused by the attenuation by neutral hydrogen (HI) in Intergalactic medium (IGM)

  • B V

    NB497

    LAE: Lyman α Emitters

    Star-forming galaxies

    BV

    Observing Lyα Emitters by Narrow-Band Imaging

    中村 2007、修論

  • LAE, LAA, LAB

    Y.Nakamura, master thesis

    Narrow-band Search for Lyα Emitters

  • 静止系(放射)波長 [μm]

    相対的光度

    相対的光度

    近傍銀河のスペクトル(比較のため)

    楕円銀河

    Scd 円盤銀河

    マゼラン型 不規則銀河

    Sbc 円盤銀河

    楕円銀河

    Scd 円盤銀河

    マゼラン型 不規則銀河

    Sbc 円盤銀河

    Spectra of High-redshift galaxies

    flux

    wavelength

    Lyman Break galaxies

    Distant Red Galaxies

  • 主鏡口径8.2m 単一鏡 世界最大級

    Subaru Telescope 昴望遠鏡 (国立天文台)

    建設 9年 (1992-2000 年) ハワイ島 マウナケア山頂 標高4200m

  • Early results (2004): Subaru/Suprime Cam 1Field of View

    LAE average local density

    Hayashino et al. 2004 Steidel et al. 2000

    LAB2 LAB1

    NB width ~60 Mpc

    ● Lyα Emitters (LAE) ● Lyα Absorbers (LAA)

  • 25” or 190 kpc at z = 3.1

    35 Lyα Blobs at z=3.1 in SSA22-Sb1 (Matsuda et al. 2004)

    First large (>10) sample of LABs

  • Prototypical Giant Lyα Blobs d~30-150kpc, L~10+42-44 erg/s, δv ~ 500-2000 km/s

    25” = 190 kpc @ z=3.1

    Steidel et al. 2000 SSA22 Blob1 Keel et al. 1999 53W002 field No.18

    SCUBA source Obscured AGN (narrow-line, low excitation)

    10” = 80 kpc @ z=2.4

    Both Subaru Images (Matsuda+04,07, Mawatari et al. 2012, in preparation)

    Sub-mm emission was reported, but not confirmed No sign of AGN

  • Seven Suprime Cam Fields (to the similar depth)

    + 5 General Fields (GOODSN, SDF, SXDS-N,-C,-S) with same quality

  • 200Mpc (comoving)

    Highest contour =5.5xaverage

    Large-scale distribution of ~1500 Lyα Emitters NB width ~60 Mpc

  • De Lapparent et al. 1988

    Void

    Coma Cluster

    Filaments and walls

  • (control) general fields to be compared

    SXDS / UDS

    GOODS-N

    SDF

  • Overdensity of SSA22 High Density Region

    Yamada et al. 2012

    Average density in General Fields = 0.20/arcmin2

    Sb1 34’x27’ ~60Mpc 0.43 /arcmin2

  • Q. How significant is the overdensity?

  • 200Mpc (comoving)

    Large-scale distribution of ~1500 Lyα Emitters

    Sb1

    peak

  • Comparison with CDM linear theory

    If LAEs trace mass with the (linear) bias b ~ 2 (Gawiser et al. 2007)

    still it corresponds to ~5 σLAE (Gaussian probability ~10-6 ) ~O(1) such structure is expected within ~100Gpc3

    δ(LAE) = δN/N0 (LAE) ~ δρ/ρ (LAE)

    ~60x40x60Mpc (comoving)

    10x σmass

    Expected from CDM

  • The overdensity at SSA22 Sb1 3.6-4.5 σ(LAE) @ ~60Mpc comoving scale

    No equivalently high-density region is found In the Millennium Simulation

    700arcmin2~Sb1 100arcmin2 ~density peak

    Comparison with Millennium Simulation ‘false LAE’ samples

  • ● Clear identification of the protocluster and surrounding structure with filaments and voids ● Very large density enhancement in large scale Sb1 ~5σLAE (CDM+b=2), ~3.5-4.5σLAE(Millennium) whole Sb1-Sb7 ~2.5σLAE a proto-Great Wall ● Very rare in Gaussian probability distribution ● More than ‘simple halo bias’ for Lyα Emitters Emission Line Bias (Origin of emission lines?)

  • 2. Mass assembly and galaxy formation in the SSA22 protocluster

  • 200Mpc (comoving)

    Stellar Massive galaxies

    Protocluster “Core”

  • Subaru/MOIRCS NIR Observations K < 24 (AB) Photo-z 2.6-3.6

    The area observed with MOIRCS

  • Surface Number Density excess of the SSA22 MOIRCS survey field

    SSA22 whole MOIRCS field

    GOODS

    overdensity at the “peak”

    GOODS

    K

  • 静止系(放射)波長 [μm]

    相対的光度

    相対的光度

    近傍銀河のスペクトル(比較のため)

    楕円銀河

    Scd 円盤銀河

    マゼラン型 不規則銀河

    Sbc 円盤銀河

    楕円銀河

    Scd 円盤銀河

    マゼラン型 不規則銀河

    Sbc 円盤銀河

    Spectra of High-redshift galaxies

    flux

    wavelength

    Lyman Break galaxies

    Distant Red Galaxies

  • Distribution of Massive (>1011Msun) Galaxies

    Protocluster Core

    Little overlap with LBG/LAE

  • Spectroscopy of the K-band selected galaxies w/MOIRCS (complementary with Lyman Break Galaxies)

  • Comparison with Coma Cluster Stellar Mass Function

  • 2013/10/24

    Properties of the K-band (K

  • 2013/10/25 Protocluster Core Field

    Colors of LBGs

    Colors of “quiescent” (no star formation) galaxies

    Dust Reddening

  • 2013/10/24

    For M(stellar) > 1011Msun quiescent galaxies ● ~ 50% of the cluster member are quiescent (i.e., their intensive star formation is halted) ● no counterparts in GOODS-N(MODS) ● clustered at around the peak of LAEs

    F160W KMOIRCS

    F160W KMOIRCS Two examples of the quiescent galaxies They are compact! (re~2kpc)

    F814W F125W

    I F125W

  • 2013/10/24

    Concentration of “Quiescent” galaxies in the z=3.1 protocluster

    LAE peak

  • 2013/10/24

    For M(stellar) > 1011Msun dusty red galaxies ● > 20% of the cluster member are dusty startburst (1.8 times surface overdensity) ● diffused morphology

    F814W F125W F160W KMOIRCS

    F814W F125W F160W KMOIRCS

  • 2013/10/25

    Distributions of “Spitzer 24um detected sample” “Chandra X-ray detected sample”

    (whole field) 1.9 times of GOODS-N (whole field) 2.5 times of GOODS-N (whole field) 1.9 times of GOODS-N

  • 2013/10/24

    Multiple Merging Systems

  • 200Mpc (comoving)

    Stellar Massive galaxies

  • 2013/10/24

    From Mariko Kubo, TY (2013)

    Multiple Merging Galaxies at the protocluster outskirt

    20”

  • 2013/10/24

    Multiple Merging Galaxies at the protocluster outskirt

    From Mariko Kubo, TY, et al.

    20”

  • Origins of the stellar mass that accreted to the galaxies

    Massive Galaxies (3x1011)

    Less Massive Galaxies (5x1010)

    Low mass

    intermediate

    Massive

    Stars formed outside the virial radius accreted

    age and radius

    Oser et al. 2010 Two-Phase Galaxy Formation

    No feedback

    Age

    Log R/Rvir

    Rvir

  • Summary (1)

    Using Subaru Telescope and its instruments (Suprime Cam, MOIRCS), we revealed the population of galaxies in the well characterized very rich Protocluster at z=3.1 (11.5 Gyr ago). ● New ~2deg2 narrow-band Lyα Survey z=3.1 SSA22 protocluster ● Characterizing the significance of the cluster Very high significance 4-5σLAE@50Mpc scale Large overdensity over large scale

  • Summary (2) ● Mass assembly in the protocluster: witnessing massive galaxy formation in cluster ● A significant fraction (50% for Mstr>10^11Msun) of quiescent galaxies ● another significant fraction (>20%) are extremely dusty red galaxies with intense star formation ● Multiple Merging Systems: site of massive GF

  • If I have more time…..

  • ● Lyα Equivalent Width Distribution ● Diffuse Lyα Halos ● Lyα Blobs

  • Lyα Equivalent Width

    flux

    equal area

    Equivalent width

    For Lyα, If photoionization; Ionizing UV photons

    Non-ionizing UV photons

  • Malhotra et sl. 2002; Charlot and Fall 1993

    Case of Photoionization:Lyα EW and IMF

    Continuous Constant SFR 1/20 metallicity Model A Salpeter IMF x=2.35 Model B Top heavy IMF x=0.5 Ml=1 Msun Mu=120 Msun

    ~240Å

    EW0 > 240 Å POPIII ? If constant continuous SFH

  • Lyα (rest Frame, mean-IGM corrected) Cumulative Equivalent Width Distribution

    EW Lower limit

  • Lyα (rest Frame, mean-IGM corrected) Equivalent Width Distribution ● Large number of large EW > 200Åobjects (> 30% if EW is measured in NB Kron aperture) Large EW Young, Metal poor population for the photoionization models Other process (heating by outflow, or cold stream) ● Large fraction of large EW objects in SSA22 high-density region if the high density region is more biased to the aged population, large EW is not due to the young/metal-poor population

  • Lyα EW and local surface density

    SSA22 fields

    General Fields

    High

    Medium

    Low

    EW does not depend on local surface density

    σ=1.5’ Gaussian Kernel smoothing

  • ● Lyα Emitters ○ Lyα Blobs ● Lyα Absorbers

    Lyα Blobs in the new survey

  • Comparison of the number density of LABs

    c.f. Overdensity in entire LAEs at SSA22 protoCluster (Sb1) δρ/ρ(LAEs) [Sb1] ~ 1.5

  • >100kpc LAB (Matsuda et al. 2011)

  • More ‘filamentary’ LABs In LAE low density regions cold Accretion ?

    スライド番号 1スライド番号 2スライド番号 3スライド番号 4スライド番号 5スライド番号 6スライド番号 7スライド番号 8スライド番号 9スライド番号 10スライド番号 11スライド番号 12スライド番号 13スライド番号 14スライド番号 15スライド番号 16スライド番号 17スライド番号 18スライド番号 19スライド番号 20スライド番号 21スライド番号 22スライド番号 23スライド番号 24スライド番号 25スライド番号 26スライド番号 27スライド番号 28スライド番号 29スライド番号 30スライド番号 31スライド番号 32スライド番号 33スライド番号 34スライド番号 35スライド番号 36スライド番号 37スライド番号 38スライド番号 39スライド番号 40スライド番号 41スライド番号 42スライド番号 43スライド番号 44スライド番号 45スライド番号 46スライド番号 47スライド番号 48スライド番号 49スライド番号 50スライド番号 51スライド番号 52スライド番号 53スライド番号 54スライド番号 55スライド番号 56スライド番号 57スライド番号 58スライド番号 59スライド番号 60スライド番号 61スライド番号 62スライド番号 63スライド番号 64スライド番号 65スライド番号 66スライド番号 67スライド番号 68