topological phase and quantum criptography with spin-orbit entanglement of the photon

35
Topological phase and quantum Topological phase and quantum criptography with spin-orbit entanglement criptography with spin-orbit entanglement of the photon of the photon Universidade Federal Fluminense Universidade Federal Fluminense Instituto de Física - Niterói – RJ - Brasil Instituto de Física - Niterói – RJ - Brasil Antonio Zelaquett Khoury Antonio Zelaquett Khoury Financial Support: Financial Support: CNPq - CAPES – FAPERJ CNPq - CAPES – FAPERJ INSTITUTO DO MILÊNIO DE INSTITUTO DO MILÊNIO DE INFORMAÇÃO QUÂNTICA INFORMAÇÃO QUÂNTICA

Upload: hayes

Post on 03-Feb-2016

35 views

Category:

Documents


0 download

DESCRIPTION

Universidade Federal Fluminense Instituto de Física - Niterói – RJ - Brasil. Topological phase and quantum criptography with spin-orbit entanglement of the photon. Antonio Zelaquett Khoury. Financial Support: CNPq - CAPES – FAPERJ INSTITUTO DO MILÊNIO DE INFORMAÇÃO QUÂNTICA. Outline. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Topological phase and quantum criptography Topological phase and quantum criptography

with spin-orbit entanglement of the photonwith spin-orbit entanglement of the photonTopological phase and quantum criptography Topological phase and quantum criptography

with spin-orbit entanglement of the photonwith spin-orbit entanglement of the photon

Universidade Federal FluminenseUniversidade Federal Fluminense

Instituto de Física - Niterói – RJ - BrasilInstituto de Física - Niterói – RJ - Brasil

Antonio Zelaquett KhouryAntonio Zelaquett Khoury

Financial Support: Financial Support: CNPq - CAPES – FAPERJCNPq - CAPES – FAPERJ

INSTITUTO DO MILÊNIO DE INSTITUTO DO MILÊNIO DE

INFORMAÇÃO QUÂNTICAINFORMAÇÃO QUÂNTICA

Page 2: Topological phase and quantum criptography with spin-orbit entanglement of the photon

OutlineOutline

• Geom. phase for a spin ½ in a magnetic field

• Geometric quantum computation

• The Pancharatnam phase• Beams carrying OAM• Topological phase for entangled states

• BB84 QKD without a shared reference frame

• Conclusions

Page 3: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Geometric phase of a spin 1/2 in a magnetic Geometric phase of a spin 1/2 in a magnetic fieldfield

Page 4: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Spin 1/2 in a time dependent magnetic field Spin 1/2 in a time dependent magnetic field

)(ˆ)())(( tBStBtBH

)(tB

| (0) | , (0)u

0

( / ) ( ( ')) '( )| ( ) | , ( )ˆ

t

n

n

i E B t dti tt e e u t

BERRY PHASE

0( ) ( )ˆB t B u t

Page 5: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Geometric quantum computationGeometric quantum computation

Page 6: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Geometric conditional phase gateGeometric conditional phase gate

]ˆ[]ˆ[ 000 BSIIBSH BBABAA

)(ˆ)(ˆ20 tBStBSSSJHH BBAABzAz

i

i

i

i

e

e

e

e

2

2

2

2

000

000

000

000

| | | |Conditional phase gate

J.A. Jones, V. Vedral, A. Ekert, G. Castagnoll,

NATURE V.403, 869 (2000)

L.-M. Duan, J.I. Cirac, P.Zoller

SCIENCE V.292, 1695 (2001)

Page 7: Topological phase and quantum criptography with spin-orbit entanglement of the photon

The Pancharatnam phaseThe Pancharatnam phase

Page 8: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Pancharatnam phasePancharatnam phase

2/g

S. Pancharatnam, Proc. Indian Acad. Sci. Sect. A, V.44, 247 (1956)

Collected Works of S. Pancharatnam, Oxford Univ. Press, London (1975).

2/ 2/

Page 9: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Beams carrying orbital angular momentumBeams carrying orbital angular momentum

Page 10: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Gauss-Laguerre beams carrying OAMGauss-Laguerre beams carrying OAM

2 , )2 0t

ψ (r zψ + ikz

(Paraxial Wave Equation)(Paraxial Wave Equation)(Paraxial Wave Equation)(Paraxial Wave Equation)

0V

s oL r p dv L L

Angular momentumAngular momentum

Hermite-Gauss (HG)Hermite-Gauss (HG)

RectangularRectangular

Laguerre-Gauss (LG)Laguerre-Gauss (LG)

CylindricalCylindrical

Page 11: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Poincaré representation for beams carrying OAMPoincaré representation for beams carrying OAM

Poincaré representation of first order Gaussian modes

Cylindrical lenses at 45o

Astigmatic mode converter

2

1

i 2

1

Page 12: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Geometric phase from astigmatic mode conversionGeometric phase from astigmatic mode conversion

2/g

E.J. Galvez, P.R. Crawford, H.I. Sztul, M.J. Pysher, P.J. Haglin, R.E. Williams,

Physical Review Letters V.90, 203901 (2003)

Page 13: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Topological phase for entangled statesTopological phase for entangled states

C. E. Rodrigues de Souza, J. A. O. Huguenin and A. Z. KhouryC. E. Rodrigues de Souza, J. A. O. Huguenin and A. Z. Khoury

IF-UFFIF-UFF

P. Milman P. Milman

LMPQ – Jussieu - FranceLMPQ – Jussieu - France

Page 14: Topological phase and quantum criptography with spin-orbit entanglement of the photon
Page 15: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Geometric representation for two-qubit statesGeometric representation for two-qubit states

TWO QUBITS

| , |1z

| , y | , x

| , | 0z

| , |1z

| , y | , x

| , | 0z

Two Bloch spheres??

Only for product states!!!

Bloch sphere

(or Poincaré sphere)

| , |1z

| , y | , x

| , | 0z

ONE QUBIT

| | 0 |1

Page 16: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Geometric representation for two-qubit PURE statesGeometric representation for two-qubit PURE states

Bloch ball| 0 0 |

|1 1 |

SO(3) sphere

(opposite points identified)

| | 00 | 01 |10 |11

Two-qubit

PURE STATES

21

2

C

C

(Concurrence)

Maximally entangled state 1 0C Bloch ball colapses to a point!!!!

P. Milman and R. Mosseri, Phys. Rev. Lett. 90, 230403 (2003).

P. Milman, Phys. Rev. A 73, 062118 (2006).

Page 17: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Topological phase for maximally entangled statesTopological phase for maximally entangled states

* *| | 00 | 01 |10 |11

Cyclic evolutions preserveing maximal entanglement (“Closed” trajectories)

Two homotopy classes:

0top

top

0-type trajectories

π-type trajectories

| ( ) | (0)T

| ( ) | (0)T

SO(3) sphere

0

Page 18: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Separable polarization-OAM modesSeparable polarization-OAM modes

0( ) ( ) ( ) ˆ ˆH VE r E r r e e

( )r

( )r

ˆHe

Ve

Page 19: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Nonseparable polarization-OAM modesNonseparable polarization-OAM modes

* *( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆH V H VE r r e r e r e r e

Geometric representation on the SO(3) sphere 1

23

4

0 01 2

0 03 4

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ2 2

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ2 2

H V V H

V H H V

E EE r r e r e E r r e r e

iE iEE r r e r e E r r e r e

Page 20: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Nonseparable mode preparationNonseparable mode preparation

Holographic preparation of the LG modesHolographic preparation of the LG modesHolographic preparation of the LG modesHolographic preparation of the LG modes

LG LG LG0-1 00 01

(a)

(b)Laser

2/

PBS

1

E

Page 21: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Interferometric measurementInterferometric measurement

1

23

4

4’

1 2 3 4

4 1 (θ = 00) / 4’ 1 (θ = 900)41

/ 2 / 2 / 2

/ 4

/ 4

CCDθ = 45 0 θ = - 45 0θ = 0 0

θ = 0 0

θ = 0 0, 22.5 0, 45 0, 67.5 0, 90 0

Page 22: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Experimental resultsExperimental results

Unseparable mode

Separable mode

θ=00 θ=22.50 θ=450 θ=67.50 θ=900

θ=00 θ=22.50 θ=450 θ=67.50 θ=900

Page 23: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Theoretical expressionsTheoretical expressions

Unseparable mode

2 2( ) ( ) 2 ( ) 1 cos2 cos sin 2 sin 2 siniqyE r e E r r qy qy

2 2( ) ( ) 2 ( ) 1 cos2 cosiqyE r e E r r qy

Separable mode

Page 24: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Calculated imagesCalculated images

Unseparable mode

Separable mode

Page 25: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Partial separability and concurrencePartial separability and concurrence

Partially separable mode

0( ) ( ) 1 ( )ˆ ˆ

H VE r E r e r e

Interference pattern (θ=450)

2( ) 2 ( ) 1 2 (1 ) sin 2 sin

I r r qy

CONCURRENCE

Page 26: Topological phase and quantum criptography with spin-orbit entanglement of the photon

BB84 Quantum key distribution without a BB84 Quantum key distribution without a shared reference frameshared reference frame

C. E. Rodrigues de Souza, C. V. S. Borges, C. E. Rodrigues de Souza, C. V. S. Borges,

J. A. O. Huguenin and A. Z. KhouryJ. A. O. Huguenin and A. Z. Khoury

IF-UFFIF-UFF

L. Aolita and S. P. Walborn L. Aolita and S. P. Walborn

IF-UFRJIF-UFRJ

Page 27: Topological phase and quantum criptography with spin-orbit entanglement of the photon

The BB84 protocolThe BB84 protocol

0

0

1

1

0

0

1

1

ALICE

Bennett and Brassard

1984Polarizers

HV

+/-

HV

+/-

Polarizers

BOB

H - 45o45oV

Photons

Page 28: Topological phase and quantum criptography with spin-orbit entanglement of the photon

010111100Result

HVHVHV+/-HV+/-+/-+/-HVBasis

000111101Result

HV+/-HVHVHV+/-HV+/-+/-Basis

0 1 1 0 0

Alice and Bob check their basis, but not their results !

ALICE

BOB

Page 29: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Spin-orbit entanglementSpin-orbit entanglement

1

2[ ]

L 0L 1L

Logic basis +/-

Logic basis 0/1

1

2[ ]1L

1

2[ ]

1

2[ ]0L 1

2[ ]

Invariant under rotations ! ! ! !

L. Aolita and S. P. Walborn

PRL 98, 100501 (2007)

Page 30: Topological phase and quantum criptography with spin-orbit entanglement of the photon

BB84 without frame alignmentBB84 without frame alignment

BASIS BASIS

{ 0L 1L },

{ L L },

{ 0L 1L },

{ L L },Photons

0L 1L, L L,,

Robust against alignment noise ! ! ! !

ALICE BOB

Page 31: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Procedure sketchProcedure sketch

??

0L 1LL L

0L 0L

0 1

+ -

BOB

CNOTXX

R(φ)

ALICE

R(θ)

Page 32: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Experimental setupExperimental setup

Page 33: Topological phase and quantum criptography with spin-orbit entanglement of the photon

Experimental resultsExperimental results

Bob’s detector 1

State sent by Alice

Bob’s detector 0

Rotation of Alice’s setup

Bob’s detector 1Alice sends 1

Bob’s detector 0

{ 0L 1L },

Bob`s detection basis:

Page 34: Topological phase and quantum criptography with spin-orbit entanglement of the photon

ConclusionsConclusions

Page 35: Topological phase and quantum criptography with spin-orbit entanglement of the photon

ConclusionsConclusions

• Spin-orbit entanglement

• Topological phase for spin-orbit transformations

• Potential applications to conditional gates

• Quantum criptography without frame alignment