top quark physics outline

51
Top Quark Physics E. Boos High Energy Theory Division Skobeltsyn Institute of Nuclear Physics, Moscow State University Outline Introduction. Discovery in RUN1. Puzzles Basic production processes at colliders. (NLO generator SingleTop) Decays and spin correlations Top mass, V tb , Top Yuakawa coupling ”New Physics” via top quark (few examples) Conclusions LHC/LC Study Group,“Physics interplay of the LHC and the ILC,” arXiv:hep-ph/0410364 M. Beneke et al.,“Top quark physics,”arXiv:hep-ph/0003033 S. Willenbrock,“The standard model and the top quark,” arXiv:hep-ph/0211067 D.Chakraborty, J.Konigsberg, D.Rainwater,“Review of Top Quark Physics,” arXiv:hep-ph/0303092 S.Dawson, “The Top Quark, QCD, and New Physics,” arXiv:hep-ph/0303191 E. Boos, “Top quarks at photon colliders,” arXiv:hep-ph/0009100

Upload: others

Post on 12-Feb-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Top Quark Physics

E. Boos

High Energy Theory Division

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Outline

• Introduction. Discovery in RUN1. Puzzles

• Basic production processes at colliders. (NLO generator SingleTop)

• Decays and spin correlations

• Top mass, Vtb, Top Yuakawa coupling

• ”New Physics” via top quark (few examples)

• ConclusionsLHC/LC Study Group,“Physics interplay of the LHC and the ILC,” arXiv:hep-ph/0410364

M. Beneke et al.,“Top quark physics,”arXiv:hep-ph/0003033

S. Willenbrock,“The standard model and the top quark,” arXiv:hep-ph/0211067

D.Chakraborty, J.Konigsberg, D.Rainwater,“Review of Top Quark Physics,” arXiv:hep-ph/0303092

S.Dawson, “The Top Quark, QCD, and New Physics,” arXiv:hep-ph/0303191

E. Boos, “Top quarks at photon colliders,” arXiv:hep-ph/0009100

Top quark

• Qtem = 2

3 | e |

• Weak isospin partner of b quark: T t3 = 1

2

• Color triplet

• spin- 12

SU(3) SU(2) U(1)Y

QiL =

0

@

uL

dL

1

A

0

@

cL

sL

1

A

0

@

tL

bL

1

A 3 2 1

6

uiR = uR cR tR 3 1 2

3

diR = dR sR bR 3 1 − 1

3

In the Standard Model top quark couplings are uniquely fixed by the principle

of gauge invariance, the structure of the quark generations, and a requirement

of including the lowest dimension interaction Lagrangian.

Top quark has been found by the Fermilab CDF and D0 collaborations.

RUN1 results:

• Mt = 174.3 ± 3.2(stat) ± 4.0(syst)

• σtt(CDF Mt = 175GeV ) = 6.5+1.7−1.4pb

σtt(D0 Mt = 172GeV ) = 5.9 ± 1.7pb

• λt(Mt) = 1.00 ± 0.03

• |Vtb| > 0.78 ( 90% CL)

• The 95% Confidence Level Limit on single top production cross section :

13.5 pb by CDF

39 pb (17 pb Neural Network) (s-channel) and

58 pb (22pb Neural Network) (W-gluon fusion) by D0

SM prediction: σSM = 2.43 ± 0.32 pb

• FCNC coupling limits

Br(t → Zq) < 33%(95%CL) Br(t → γq) < 3.2%(95%CL)

Top quark is the heaviest elementary particle found so far with a mass slightly

less than the mass of the gold nucleus.

• Top decays (τt ∼ 5 × 10−25 sec) much faster than a typical time-scale for

a formation of the strong bound states (τQCD ∼ 3 × 10−24 sec). So, top

provides, in principle, a very clean source for a fundamental information.

• Top is so heavy and point like at the same time. So, one might expect a

possible deviations from the SM predictions more likely in the top sector.

• Top Yukawa coupling λt = 23/4G1/2F mt is very close to unit. Studies of

top may shed a light on an origin of the mechanism of the EW symmetry

breaking.

Top quark physics will be a very important part of research programs for all

future hadron and lepton colliders.

At hadron and lepton colliders, top quarks may be produced either in pairs or

singly. At the Tevatron and LHC: Top pair (left), Single top (right)

q

q

t

t

g

g

t

t

+

g

g

t

t

+

g

g

t

t

����

��� � � � � �

����

� ��

��� �

�� �

� � � � � �

��

��

� � � �� �� � �� ��� � �� �� �� �

Three mechanisms of the single top production:

t-channel (Q2W < 0)

s-channel (Q2W > 0)

associated tW (Q2W = M2

W )

Q2W - W-boson virtuality

Basic production processes cross sections

σNLO (pb) qq → tt gg → tt

Tevatron (√

s = 1.8 TeV pp) 4.87 ± 10% 90% 10%

Tevatron (√

s = 2.0 TeV pp) 6.70 ± 10% 85% 15%

LHC (√

s = 14 TeV pp) 833 ± 15% 10% 90%

s channel t channel Wt

Tevatron (√

s = 2.0 TeV pp) 0.90 ± 5% 2.1 ± 5% 0.1 ± 10%

LHC (√

s = 14 TeV pp) 10.6 ± 5% 250 ± 5% 75 ± 10%

LHC will the Top factory: about 10 mln top quarks per year

(or 1 top per second) with 10 fb−1 luminosity

) (pb)t t→ p(pσ0 2 4 6 8 10 12 14

0

11Cacciari et al. JHEP 0404:068 (2004)

2=175 GeV/ctm CDF Run 2 Preliminary

All Hadronic: Vertex Tag 2.3 4.7± 2.5

2.5± 7.8 )-1(L= 165pb

Lepton+Jets: Soft Muon Tag 1.0 1.3± 1.9

2.9± 5.2 )-1(L= 193pb

Lepton+Jets: Jet Prob Tag 1.3 1.3± 1.2

1.3± 5.8 )-1(L= 162pb

Lepton+Jets: Double Vertex Tag 0.8 1.1± 1.9

2.4± 5.0 )-1(L= 162pb

Lepton+Jets: Vertex Tag 0.6 0.9± 1.1

1.2± 5.6 )-1(L= 162pb

Lepton+Jets: Vertex Tag+Kinematic 1.2 1.2± 1.6

1.6± 6.0 )-1(L= 162pb

Lepton+Jets: Kinematic NN 1.6 1.6± 1.1

1.1± 6.7 )-1(L= 193pb

Lepton+Jets: Kinematic 1.8 1.8± 1.6

1.6± 4.7 )-1(L= 193pb

Dilepton: MET, # jets 1.1 1.1± 2.4

2.5± 8.6 )-1(L= 193pb

Dilepton: Combined 1.2 1.7± 2.1

2.4± 7.0 )-1(L= 200pb

0 2.5 5 7.5 10 12.5 15 17.5 20

DO Run II Preliminary

σ(pp− tt−) (pb)0 2.5 5 7.5 10 12.5 15 17.5 20

dilepton

l+jets (topological)

l+jets (soft µ tag)

eµ (Vertex tag)

l+jets (Impact parameter)

l+jets (Vertex tag)

all hadronic

Cacciari et al. JHEP 0404:068(2004), mt = 175 GeV/c2

L=146 pb−1

14.3 +5.1−4.3

+2.6−1.9

pb

L=143 pb−1

7.2 +2.6−2.4

+1.6−1.7

pb

L=93 pb−1

11.4 +4.1−3.5

+2.0−1.8

pb

L=158 pb−1

11.1 +5.8−4.3

+1.4−1.4

pb

L=164 pb−1

7.2 +1.3−1.2

+1.9−1.4

pb

L=164 pb−1

8.2 +1.3−1.3

+1.9−1.6

pb

L=162 pb−1

7.7 +3.4−3.3

+4.7−3.8

pb

The first 95% confidence level upper limits on single top

production cross sections in RUN2 by D0 collaboration are

PLB 622, 265 (2005)

5.0 pb in the s-channel and

4.4 pb in the t-channel

New CDF and D0 are very similar:

NN 3.2 pb s-channel, 3.1 t-channel with 700 pb−1

The first Single Top observation is expected at the Tevatron RUN2 rather soon

when accumulated integrated luminosity will be about 1.5 fb−1

Main problem is large backgrounds (W + jets, Wbb, tt etc.) and complicated

analysis to extract the signal

Problems and requirements for a generator for the single top signal:

• Double counting and negative weights

• Matching of various NLO contributions at the generator level. One should

have the correct NLO rate and correct shapes of the NLO distributions

• Matching to showering programs

• Correct spin correlations

• Finite top and W widths

• Separation Top and antiTop since the rates are different (for the LHC)

• Anomalous Wtb and FCNC couplings

Generators for the single top signal:

ONETOP

TopRex

generators based on MADGRAPH&MADEVENT

generators based on PYTHIA

SingleTop - generator based on CompHEP (PYTHIA and NLO computations)

LO order diagrams

q q

t

t

+W

+W

+W

t

t

b

b

b

b

g

g

tq

q

+W

b

(a)

(b)

(c)

(d)

Representative loop and tree NLO diagrams to the t- and s- channel single top

production

q q

t+W

+W

+Wt

t

bb

g

g

t

q

+Wb

(a)

(b)

(c)

(d)

q qg

g qq

b

q

q

q

t

+W +W

t

t

b

g

q+W

(a) (b)

(c)

q g

gq

q

b

bq

s-channel at NLO and LO times a K-factor of 1.54 (Zack Sullivan)

NLOLO � �� ��

� ! (GeV)

"$#&%'")(+*-

, (fb/G

eV)

200150100500

6

5

4

3

2

1

0

NLOLO . /0 12

34

57698:5<;'=

(fb)

543210-1-2-3-4-5

120

100

80

60

40

20

0

NLOLO > ?@ AB

C DFE G (GeV)

H7I9J:HLK+M-

NO (fb/G

eV)

200150100500

6

5

4

3

2

1

0

NLOLO P QR ST

UWV X

Y7Z9[:Y7\:]^

(fb)

543210-1-2-3-4-5

200

150

100

50

0

Transverse momentum and pseudorapidity of the top quark and b-jet

t-channel

Splitting on pt of the b-jet (b-jet not from top decay)

2 → 2 with ISR at ”small” pt region

(CompHEP + ISR from PYTHIA)

2 → 3 at ”large” pt region

(CompHEP)

( for both cases with spin correlated 1 → 3 top subsequent decay)

The separation parameter (P0)bt of ”small” and ”large” pt regions is turned such

that:

1. The total rate is normalized to the NLO rate

σ2→2 |P bt <(P0)b

t+σ(2→3) |P b

t >(P0)bt

= σNLO

2. The distributions are smooth

Matching CompHEP&PYTHIA(2 → 2) and CompHEP (2 → 3) distributions (P qT

> 20 GeV)

including deays 2 → 4 and 2 → 5 (LHC )

CompHEP (tqb+ISR) and Pythia (tq+ISR) processes, PTb cut = 20 GeV

0

5

10

0 50 100 150 200PT(t), [GeV]

dσ/dP

T(t), [p

b/GeV

]

0

2

4

6

-5 -2.5 0 2.5 5 yt

dσ/dy

t, [pb]

0

5

10

15

50 100 150 PT(q), [GeV]

dσ/dP

T(q), [

pb/G

eV]

0

2

4

6

-5 -2.5 0 2.5 5 yq

dσ/dy

q, [pb]

1

10

0 20 40 60 PT(b), [GeV]

dσ/dP

T(b), [

pb/G

eV]

0

2

4

-5 -2.5 0 2.5 5 yb

dσ/dy

b, [pb]

Matching CompHEP&PYTHIA(2 → 2) and CompHEP (2 → 3) distributions (P qT

> 10 GeV)

including deays 2 → 4 and 2 → 5 (LHC )

CompHEP (tqb+ISR) and Pythia (tq+ISR) processes, PTb cut = 10 GeV

0

5

10

0 50 100 150 200PT(t), [GeV]

dσ/dP

T(t), [p

b/GeV

]

0

2

4

6

-5 -2.5 0 2.5 5 yt

dσ/dy

t, [pb]

0

5

10

50 100 150 PT(q), [GeV]

dσ/dP

T(q), [

pb/G

eV]

0

2

4

6

-5 -2.5 0 2.5 5 yq

dσ/dy

q, [pb]

1

10

0 20 40 60 PT(b), [GeV]

dσ/dP

T(b), [

pb/G

eV]

0

2

4

6

-5 -2.5 0 2.5 5 yb

dσ/dy

b, [pb]

Comparisons with MCFM for top decay products (t-channel):

Transverse momentum and pseudorapidity of l and νl from top decayEta_e

Entries 69032Mean 0.2317RMS 1.108

-5 -4 -3 -2 -1 0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4Eta_e

Entries 69032Mean 0.2317RMS 1.108

CompHEP

MCFM

of e+, top onlyη Pt_eEntries 137587Mean 38.02RMS 20.38

0 20 40 60 80 100 120 140 160 180 2000

0.005

0.01

0.015

0.02

0.025Pt_e

Entries 137587Mean 38.02RMS 20.38

CompHEP

MCFM

of e+, top onlyTP

Eta_nuEntries 69032Mean 0.1146RMS 1.106

-5 -4 -3 -2 -1 0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4Eta_nu

Entries 69032Mean 0.1146RMS 1.106

CompHEP

MCFM

of neutrino, top onlyη Pt_nuEntries 137587Mean 50.99RMS 25.72

0 20 40 60 80 100 120 140 160 180 2000

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Pt_nuEntries 137587Mean 50.99RMS 25.72

CompHEP

MCFM

of neutrino, top onlyTP

Top pair and single top in e+e− collisions (ILC)

e+e− → tt → WWbb, W → f f ′,

where e.g. for W+

f = u, c, νe, νµ, ντνµ; f ′ = d, s, e, µ, τ

Gauge invariant s-channel subset of 10 diagrams

e

e

γ, Z t

t b

W+ e

νe

diagr.1,2

e

e

γ, Z e

e νe

W+ b

t

diagr.3,4

e

e

γ, Z b

b t

W+ e

νe

diagr.5,6

e

e

γ, Z

e

νe

W+ b

t

diagr.7,8

eW+ e

νeνe

eW+ b

t

diagr.9

e

eZ νe

νe e

W+ b

t

diagr.10

One should split top pair and single top contributions in the s-channel subset

Gauge invariant t-channel subset of 10 diagrams

ee

γ, Ze

e νe

W+ b

t

diagr.1,2

e eγ, Z

tt

bW+

e νe

diagr.3,4

e eγ, Z

bb

tW+

e νe

diagr.5,6

ee

γ, ZW+ b

tW+

eνe

diagr.7,8

eνe e

W+ b

tW+

eνe

diagr.9

ee

Z νe

νee

W+ b

t

diagr.10

All the diagrams contribute to Single Top

(at LEP2 the rate is too small, about 10−5 pb)

In case of γγ collisions there are no nontrivial gauge invariant subsets. A situ-

ation is similar to single top at the LHC in Wt mode.

γt W−

btγ

t

diagr.1

γt

t W−

b

diagr.2

γ tt

bW+

γ W−

diagr.3

γ tt

W−b

γ b

diagr.4

γb

b W−

t

diagr.5

γ bb

tW+

γ W−

diagr.6

γ bb

W−t

γ t

diagr.7

γb W−

tbγ

b

diagr.8

γ W−W+

tb

γ b

diagr.9

γ W−W+

bt

γ t

diagr.10

γW−

W+γ

W+ b

t

diagr.11

γW+ b

tW+γ

W−

diagr.12

γ

γ

W−

W+ b

t

diagr.13

The top pair rate has to be removed in order to get the correct single top rate.

Single Top Diagrams in γe Collisions

γ

e

e νe

W+ b

t

diagr.1

γ tt

bW+

e νe

diagr.2

γ bb

tW+

e νe

diagr.3

γW+ b

tW+

eνe

diagr.4

This is one of so called ”gold plated” processes in γe collision mode of ILC

Cross sections of Top production processes at LC

In SM top decays to W-boson and b-quark practically with 100% probability

t

b

W ν

l

dΓ ∼ |M|2 ∼ (t+ms) · `b · ν, where in the top-quark rest frame, the spin four-

vector is s = (0, s), and s is a unit vector that defines the spin quantization axis

of the top quark

In the top quark rest frame:1Γ

dΓd cos θ`

= 12(1 + cos θ`)

Hence the charged lepton tends to point along the direction of top spin.

Mahlon,Parke; E.B.,Sherstnev

Top quark mass.

In SM W-boson, Top quark and H boson masses are connected to each other

via loop contributions to W and Z propagators

W W

t

b

Z Z

t

t

h

+

h

M2W =

πα√2GF

s2W

(1−∆r)where ∆r contains the one-loop corrections.

(∆r)top ≈ − 3GF m2t

8√

2π2

1t2W

where t2W ≡ tan2 θW .

This one-loop correction depends quadratically on the top-quark mass.

(∆r)Higgs ≈ 11GF M2Zc2

W

24√

2π2ln

m2h

M2Z

This one-loop correction depends only logarithmically on the Higgs-boson mass,

so ∆r is not as sensitive to mh as it is to mt.

80.3

80.4

80.5

150 175 200

mH [GeV]114 300 1000

mt [GeV]

mW

[Ge

V]

68% CL

∆α

LEP1, SLD dataLEP2 (prel.), pp− data

Mtop [GeV/c2]

Mass of the Top Quark (*Preliminary)Measurement Mtop [GeV/c2]

CDF-I di-l 167.4 ± 11.4D∅-I di-l 168.4 ± 12.8CDF-II di-l* 165.3 ± 7.3CDF-I l+j 176.1 ± 7.3D∅-I l+j 180.1 ± 5.3CDF-II l+j* 173.5 ± 4.1D∅-II l+j* 169.5 ± 4.7CDF-I all-j 186.0 ± 11.5

χ2 / dof = 6.5 / 7

Tevatron Run-I/II* 172.7 ± 2.9

150 170 190

CDF and D0 combined

(see A.Hoang et. al)

[GeV]s330 335 340 345 350 355 360

[GeV]s330 335 340 345 350 355 360

[p

b]

σ

0

0.2

0.4

0.6

0.8

1default+beam spread+beamstrahlung+ISR

γ, Z

e−

e+

b

W−

W+

b

(b)

γ, Z

e−

e+

b

W−

W+

b

γ, Z

e−

e+

W−

b

b

W+

γ, Z

e−

e+

W−

b

b

W+

νe

e−

e+

W−

b

b

W+

γ, Z

e−

e+

b

W−

W+

b

γ, Z

e−

e+

W−

b

b

W+

γ, Z

e−

e+

W−

b

b

W+

νe

e−

e+

W−

b

b

W+

Accuracies: top mass - to 100 MeV, top width - to 50 MeV

at ILC with 300 fb−1

Delicate computational problems at NLO and NNLO level:

The width Γt ∼ mtα and Ekin ∼ mtα2s are of the same order

At the Tevatron Run II with 2fb−1 one expects:

δMW ∼ 27 MeV

δMt ∼ 3 GeV

yielding a prediction for the Higgs mass with an uncertainty of

δMh

Mh∼ 40%

At the LHC with 10 fb−1

δMt ∼ 0.7 GeV

At ILC with 500 fb−1 from the top pair threshold scan one can get

δMt ∼ 0.1 GeV

|Vtb| measurements

At LHC and Tevatron Run2 via single top

_

_�`a

b

c

b�d ef gh h ij_

_�`a

b

k

l c_

_�` a

bl c

m d ef gh h ij

ck

ab

a b gn no ep gq ir s�t o ru eq po h

V 2tb could be measured with an accuracy of 10% dominated by systematics

At ILC (1 TeV, 500 fb−1) in eγ collisions -

2-3 % accuracy dominated by statistics

Top Yukawa coupling ttH measurements

For the LHC complete NLO computations have been performed(LO diagrams are shown)

W. Beenakker et al. hep-ph/0211352; S.Dawson et al. hep-ph/0211438

vv

v

wxx y

xv

v

v xx y

wxv

wx

xv x y

xv wx

xy

x

v x

v x yxx

v wxv x ywxx

v

xv

x

xv x ywx

v xx

yx

v wx

Top Yukawa could be measured with an accuracy from 16% at low Lumi to 11%

at high Lumi regime

New Physics via Top (examples):

• Wtb anomalous couplings

• FCNC

• Various SUSY effects without and with R-parity violation

• Charged Higgs in top decays

• New strong dynamics (W ′, Z ′, πT , ρT , topgluon, WLWL → tt ...)

• Kaluza-Klein graviton excitations and radion in ADD and RS scenarious

• ...

Maximal value of the CP even light Higgs in MSSM is about 135-140 GeV

(not MZ) due to large top quark mass

Mmaxh =

M2Z + ε

ε =3GF m4

t√2π2 sin2 β

[

f(t)

]

, where t = log

(

M2S

m2t

)

Anomalous Top Couplings

The top quark interactions of dimension 4:

L4 = −gs tγµTatGaµ − g√

2

X

q=d,s,b

tγµ(vWtq − aW

tq γ5)qW+µ

−2

3etγµtAµ − g

2 cos θW

X

q=u,c,t

tγµ(vZtq − aZ

tqγ5)qZµ

The dimension 5 couplings have the generic form:

L5 = −gs

X

q=u,c,t

κgtq

ΛtσµνTa(fg

tq + ihgtqγ5)qGa

µν − g√2

X

q=d,s,b

κWtq

Λtσµν(fW

tq + ihWtq γ5)qW+

µν

−eX

q=u,c,t

κγtq

Λtσµν(fγ

tq + ihγtqγ5)qAµν − g

2 cos θW

X

q=u,c,t

κZtq

Λtσµν(fZ

tq + ihZtqγ5)qZµν

where |f |2 + |h|2 = 1.

Present constrains come from

• Low energy data via loop contributions

KL → µ+µ−, KL − KS mass difference, b → l+l−X, b → sγ

• LEP2

• Tevatron Run1

• HERA

• Unitarity violation bounds

Anomalous Wtb Couplings

• Lagrangian

L =g√2Vtb

[

W−ν bγµP−t − 1

2MWW−

µν bσµν(FL2 P− + FR

2 P+)t

]

+ h. c.

with W±µν = DµW±

ν − DνW±µ , Dµ = ∂µ − ieAµ,

σµν = i/2[γµ, γν ] and P± = (1 ± γ5)/2. The couplings F L2 and F R

2 are

proportional to the coefficients of the effective Lagrangian

FL2 = 2MW

Λ κWtb (−fW

tb − ihWtb ),

FR2 = 2MW

Λ κWtb (−fW

tb + ihWtb ), |FL2,R2| < 0.6 from unitary bounds

• |Vtb| is very close to 1 in SM with 3 generations. (|Vtb| is very weakly

constrained in case of 4 generations, e.g.)

• A possible V + A form factor is severely constrained by the CLEO b → sγ

data to 3 × 10−3 level

Wtb anomalous couplings limit on TEVATRON and LHC:

(E.Boos,L.Dudko,T.Ohl,EPJ99)

-0.2-0.1

00.10.20.30.40.50.6

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Test

FR2

FL2

-0.015-0.01

-0.0050

0.0050.01

0.0150.02

0.0250.03

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

Test

FR2

FL2

Uncorrelated limits on anomalous couplings from measurements at different

machines.

FL2 FR

2

Tevatron (∆sys. ≈ 10%) −0.18 ÷+0.55 −0.24 ÷+0.25

LHC (∆sys. ≈ 5%) −0.052÷+0.097 −0.12 ÷+0.13

γe (√

se+e− = 0.5 TeV) −0.1 ÷+0.1 −0.1 ÷+0.1

γe (√

se+e− = 2.0 TeV) −0.008÷+0.035 −0.016÷+0.016

FCNC couplings

• Couplings: tqg, tqγ, tqZ, where q = u, c

∆Leff =1

Λ[κγ,Z

tq etσµνqFµνγ,Z + κg

tqgstσµνλi

2qGiµν ] + h.c.

Information on FCNC couplings come from either top pair production with sub-

sequent decays to rear modes t → q V , where V = γ, Z, g

or from additional contributions to the single top production

t

cq → tq

t

qq → tc

t

cg → tg

t

gg → tc

All present and expected limits are presented in terms of Br fractions:

Γ(t → qg) =

κgtq

Λ

!28

3αsm3

t , Γ(t → qγ) =

κγtq

Λ

!2

2αm3t ,

Γ(t → qZ)γ =“

|vZtq|2 + |aZ

tq|2”

α m3t

1

4M2Z

sin2 2θW

1 − M2Z

m2t

!2

1 + 2M2

Z

m2t

!

,

Γ(t → qZ)σ =

κZtq

Λ

!2

α m3t

1

sin2 2θW

1 − M2Z

m2t

!2

2 +M2

Z

m2t

!

Current constraints

CDF LEP-2 HERA

BR(t → gq) ≤ 29% – –

BR(t → γq) ≤ 3.2% – ≤ 0.7%

BR(t → Zq) ≤ 32% ≤ 7.0% –

Future expectations

Tevatron LHC e+e−

t → Run II decay production√

s > 500 GeV

g q 0.06% 1.6 × 10−3 1 × 10−5 –

γ q 0.28% 2.5 × 10−5 3 × 10−6 4 × 10−6

Z q 1.3% 1.6 × 10−4 1 × 10−4 2 × 10−4

Charged Higgs in Top Decay (impact of tau polarization)

t

b

W+ nl

l π+

Nl

diagr.1

t

b

H+ nl

l π+

Nl

diagr.2

In the rest frame of top t → bR → bτντ → bντ ντπwhere a resonance R is W boson or charged H

dΓdyπ

= 1xmax−xmin

(1 − Pτ )log xmax

xmin+ 2Pτyπ( 1

xmin− 1

xmax), 0 < yπ < xmin

(1 − Pτ )log xmax

yπ+ 2Pτ (1 − yπ

xmax), xmin < yπ

where yπ =Etop

πMtop

, xmin =Emin

τMtop

, xmax =Emax

τMtop

, Eminτ =

M2R

2Mtop, Emax

τ =Mtop

2

Pτ = −1 for W boson and Pτ = 1 for charged Higgs

e+e− → tt → τντ bb + 2jets

Simulations are performed for e+e− collisions at 500 GeV cms

and for 500 fb−1 integrated luminosity

π-meson energy spectrum for the MSSM point

tan β = 50, µ = 500, MH± = 130 GeV with Br(t → H+b) = 9.1%

E.B., S.Bunichev, M.Carena, C.Wagner

GeV0 10 20 30 40 50 60 70 80 90 100

Even

ts /2

GeV

0

50

100

150

200

250

300

350

400

in Top r/f π E in Top r/f π E

From the signal+backgr fit MH± = 129.4 +/- 0.9 GeV

W ′ gauge boson in single topT.Tait, C.-P.Yuan; Z.Sullivan; E.B., V.Bunichev, L.Dudko, M.Perfilov

q

q′

t

b

W′

L =Vqiqj

2√

2gwqiγµ

(

aRqiqj

(1 + γ5) + aLqiqj

(1 − γ5))

W ′qj + H.c. , (1)

where aRqiqj

, aLqiqj

- left and right couplings of W ′ to quarks, gw = e/(sw) is

the SM weak coupling constant and Vqiqjis the SM CKM matrix element. The

notations are taken such that for so-called SM-like W ′ aLqiqj

= 1 and aRqiqj

= 0.

The interference between the SM and W ′ contributions (new)

|M |2 = V 2tbV

2ud(gW )4

[

(pupb)(pdpt)

(s − m2W )2 + γ2

W m2W

+ (2)

+2aLuda

Ltb(pupb)(pdpt)

(s − m2W )(s − M2

W ′) + γ2W Γ2

W ′

((s − m2W )2 + γ2

W m2W )((s − M2

W ′)2 + Γ2W ′M2

W ′)+

+(aL

ud

2aL

tb

2+ aR

ud

2aR

tb

2)(pupb)(pdpt) + (aL

ud

2aR

tb

2+ aR

ud

2aL

tb

2)(pupt)(pdpb)

(s − M2W ′)2 + Γ2

W ′M2W ′

]

Invariant mass of tb system for MW ′ 800 GeV

at the Tevatron (left) and LHC (right)

, GeV bMass t 100 200 300 400 500 600 700 800 900 1000

/dM

, f

b/9

Ge

d

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

, GeV bMass t 100 200 300 400 500 600 700 800 900 1000

/dM

, f

b/9

Ge

d

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210SM+right W’SM+left W’SM W only

, GeV bMass t 100 200 300 400 500 600 700 800 900 1000

/dM

, f

b/9

Ge

d

-810

-710

-610

-510

-410

-310

-210

-110

1

, GeV bMass t 100 200 300 400 500 600 700 800 900 1000

/dM

, f

b/9

Ge

d

-810

-710

-610

-510

-410

-310

-210

-110

1SM+right W’SM+left W’SM W only

W ′ gauge boson in single top

Latest limits by the D0 collaboration

Generic search for a resonance in top pair production at the LHC

(MSSM Higgses H/A, Z ′, topgluon, RS-graviton, KK excitations in UED etc.)

Reconstructed mtt (GeV)

Entri

es/5

0 G

eV

0

200

400

1000 2000mtt (GeV)

σ*

Br (

fb

)

1

10

10 2

10 3

1000 2000 3000 4000 5000

Measured tt invariant mass distribution for reconstruction of a narrow resonance

of mass 1600 GeV decaying to tt and value of σ× BR required for a 5σ discovery

potential.

Conclusions

Discovery of the top quark has opened up many new avenues to interesting

physics

• Precision measurements of top quark characteristics such as mass, produc-

tion cross sections, decay width and branching fractions, spin correlations

are needed to test the SM

• Tests and understanding all possible deviations from the SM expectations

to check if top is exotic in some way

• Precise calculations and simulations, and measurements of the top event

kinematical characteristics to understand backgrounds to many other pos-

sible New physics processes

• Possible discovery and study of various New physics effects via top produc-

tion and/or decay

V. Bunichev