today’s outline - november 04, 2013csrri.iit.edu/~segre/phys570/13f/lecture_20.pdf · today’s...

79
Today’s Outline - November 04, 2013 C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 1 / 17

Upload: others

Post on 31-May-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Today’s Outline - November 04, 2013

• Bragg & Laue Geometries

• Reflection for a Single Layer

• Kinematical Approach for Many Layers

• Darwin Curve

• Dynamical Diffraction Theory

Homework Assignment #5:Chapter 5: 1, 3, 7, 9, 10due Monday, November 11, 2013

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 1 / 17

Page 2: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Today’s Outline - November 04, 2013

• Bragg & Laue Geometries

• Reflection for a Single Layer

• Kinematical Approach for Many Layers

• Darwin Curve

• Dynamical Diffraction Theory

Homework Assignment #5:Chapter 5: 1, 3, 7, 9, 10due Monday, November 11, 2013

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 1 / 17

Page 3: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Today’s Outline - November 04, 2013

• Bragg & Laue Geometries

• Reflection for a Single Layer

• Kinematical Approach for Many Layers

• Darwin Curve

• Dynamical Diffraction Theory

Homework Assignment #5:Chapter 5: 1, 3, 7, 9, 10due Monday, November 11, 2013

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 1 / 17

Page 4: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Today’s Outline - November 04, 2013

• Bragg & Laue Geometries

• Reflection for a Single Layer

• Kinematical Approach for Many Layers

• Darwin Curve

• Dynamical Diffraction Theory

Homework Assignment #5:Chapter 5: 1, 3, 7, 9, 10due Monday, November 11, 2013

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 1 / 17

Page 5: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Today’s Outline - November 04, 2013

• Bragg & Laue Geometries

• Reflection for a Single Layer

• Kinematical Approach for Many Layers

• Darwin Curve

• Dynamical Diffraction Theory

Homework Assignment #5:Chapter 5: 1, 3, 7, 9, 10due Monday, November 11, 2013

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 1 / 17

Page 6: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Today’s Outline - November 04, 2013

• Bragg & Laue Geometries

• Reflection for a Single Layer

• Kinematical Approach for Many Layers

• Darwin Curve

• Dynamical Diffraction Theory

Homework Assignment #5:Chapter 5: 1, 3, 7, 9, 10due Monday, November 11, 2013

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 1 / 17

Page 7: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Today’s Outline - November 04, 2013

• Bragg & Laue Geometries

• Reflection for a Single Layer

• Kinematical Approach for Many Layers

• Darwin Curve

• Dynamical Diffraction Theory

Homework Assignment #5:Chapter 5: 1, 3, 7, 9, 10due Monday, November 11, 2013

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 1 / 17

Page 8: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Lattice Vibrations Review

Recall that the inclusion of atomic vibration resulted in a scatteredintensity with two terms.

I =∑m

∑n

f (~Q)e−Me i~Q·~Rm f ∗(~Q)e−Me−i

~Q·~Rn

+∑m

∑n

f (~Q)e−Me i~Q·~Rm f ∗(~Q)e−Me−i

~Q·~Rn

[eQ

2〈uQmuQn〉 − 1]

The first term is just the elastic scattering from the lattice with the

addition of the term e−M = e−Q2〈u2

Q〉/2, called the Debye-Waller factor.

This second term is what we will focus on now.

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 2 / 17

Page 9: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Lattice Vibrations Review

Recall that the inclusion of atomic vibration resulted in a scatteredintensity with two terms.

I =∑m

∑n

f (~Q)e−Me i~Q·~Rm f ∗(~Q)e−Me−i

~Q·~Rn

+∑m

∑n

f (~Q)e−Me i~Q·~Rm f ∗(~Q)e−Me−i

~Q·~Rn

[eQ

2〈uQmuQn〉 − 1]

The first term is just the elastic scattering from the lattice with the

addition of the term e−M = e−Q2〈u2

Q〉/2, called the Debye-Waller factor.

This second term is what we will focus on now.

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 2 / 17

Page 10: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Lattice Vibrations Review

Recall that the inclusion of atomic vibration resulted in a scatteredintensity with two terms.

I =∑m

∑n

f (~Q)e−Me i~Q·~Rm f ∗(~Q)e−Me−i

~Q·~Rn

+∑m

∑n

f (~Q)e−Me i~Q·~Rm f ∗(~Q)e−Me−i

~Q·~Rn

[eQ

2〈uQmuQn〉 − 1]

The first term is just the elastic scattering from the lattice with the

addition of the term e−M = e−Q2〈u2

Q〉/2, called the Debye-Waller factor.

This second term is what we will focus on now.

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 2 / 17

Page 11: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Lattice Vibrations Review

Recall that the inclusion of atomic vibration resulted in a scatteredintensity with two terms.

I =∑m

∑n

f (~Q)e−Me i~Q·~Rm f ∗(~Q)e−Me−i

~Q·~Rn

+∑m

∑n

f (~Q)e−Me i~Q·~Rm f ∗(~Q)e−Me−i

~Q·~Rn

[eQ

2〈uQmuQn〉 − 1]

The first term is just the elastic scattering from the lattice with the

addition of the term e−M = e−Q2〈u2

Q〉/2, called the Debye-Waller factor.

This second term is what we will focus on now.

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 2 / 17

Page 12: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Properties of the Debye-Waller Factor

For crystals with several differenttypes of atoms, we generalize theunit cell scattering factor.

B jT = 8π2〈u2

Qj〉

for isotropic atomic vibrations

〈u2〉 = 〈u2x + u2

y + u2z 〉

= 3〈u2x 〉 = 3〈u2

Q〉

F u.c. =∑j

fj(~Q)e−Mj e i~Q·~rj

Mj =1

2Q2〈u2

Qj〉

=1

2

(4π

λ

)2

sin2 θ〈u2Qj〉

Mj = B jT

(sin θ

λ

)2

B isoT =

8π2

3〈u2〉

In general, Debye-Waller factors can be anisotropic

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 3 / 17

Page 13: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Properties of the Debye-Waller Factor

For crystals with several differenttypes of atoms, we generalize theunit cell scattering factor.

B jT = 8π2〈u2

Qj〉

for isotropic atomic vibrations

〈u2〉 = 〈u2x + u2

y + u2z 〉

= 3〈u2x 〉 = 3〈u2

Q〉

F u.c. =∑j

fj(~Q)e−Mj e i~Q·~rj

Mj =1

2Q2〈u2

Qj〉

=1

2

(4π

λ

)2

sin2 θ〈u2Qj〉

Mj = B jT

(sin θ

λ

)2

B isoT =

8π2

3〈u2〉

In general, Debye-Waller factors can be anisotropic

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 3 / 17

Page 14: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Properties of the Debye-Waller Factor

For crystals with several differenttypes of atoms, we generalize theunit cell scattering factor.

B jT = 8π2〈u2

Qj〉

for isotropic atomic vibrations

〈u2〉 = 〈u2x + u2

y + u2z 〉

= 3〈u2x 〉 = 3〈u2

Q〉

F u.c. =∑j

fj(~Q)e−Mj e i~Q·~rj

Mj =1

2Q2〈u2

Qj〉

=1

2

(4π

λ

)2

sin2 θ〈u2Qj〉

Mj = B jT

(sin θ

λ

)2

B isoT =

8π2

3〈u2〉

In general, Debye-Waller factors can be anisotropic

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 3 / 17

Page 15: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Properties of the Debye-Waller Factor

For crystals with several differenttypes of atoms, we generalize theunit cell scattering factor.

B jT = 8π2〈u2

Qj〉

for isotropic atomic vibrations

〈u2〉 = 〈u2x + u2

y + u2z 〉

= 3〈u2x 〉 = 3〈u2

Q〉

F u.c. =∑j

fj(~Q)e−Mj e i~Q·~rj

Mj =1

2Q2〈u2

Qj〉

=1

2

(4π

λ

)2

sin2 θ〈u2Qj〉

Mj = B jT

(sin θ

λ

)2

B isoT =

8π2

3〈u2〉

In general, Debye-Waller factors can be anisotropic

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 3 / 17

Page 16: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Properties of the Debye-Waller Factor

For crystals with several differenttypes of atoms, we generalize theunit cell scattering factor.

B jT = 8π2〈u2

Qj〉

for isotropic atomic vibrations

〈u2〉 = 〈u2x + u2

y + u2z 〉

= 3〈u2x 〉 = 3〈u2

Q〉

F u.c. =∑j

fj(~Q)e−Mj e i~Q·~rj

Mj =1

2Q2〈u2

Qj〉

=1

2

(4π

λ

)2

sin2 θ〈u2Qj〉

Mj = B jT

(sin θ

λ

)2

B isoT =

8π2

3〈u2〉

In general, Debye-Waller factors can be anisotropic

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 3 / 17

Page 17: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Properties of the Debye-Waller Factor

For crystals with several differenttypes of atoms, we generalize theunit cell scattering factor.

B jT = 8π2〈u2

Qj〉

for isotropic atomic vibrations

〈u2〉 = 〈u2x + u2

y + u2z 〉

= 3〈u2x 〉 = 3〈u2

Q〉

F u.c. =∑j

fj(~Q)e−Mj e i~Q·~rj

Mj =1

2Q2〈u2

Qj〉

=1

2

(4π

λ

)2

sin2 θ〈u2Qj〉

Mj = B jT

(sin θ

λ

)2

B isoT =

8π2

3〈u2〉

In general, Debye-Waller factors can be anisotropic

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 3 / 17

Page 18: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Properties of the Debye-Waller Factor

For crystals with several differenttypes of atoms, we generalize theunit cell scattering factor.

B jT = 8π2〈u2

Qj〉

for isotropic atomic vibrations

〈u2〉 = 〈u2x + u2

y + u2z 〉

= 3〈u2x 〉 = 3〈u2

Q〉

F u.c. =∑j

fj(~Q)e−Mj e i~Q·~rj

Mj =1

2Q2〈u2

Qj〉

=1

2

(4π

λ

)2

sin2 θ〈u2Qj〉

Mj = B jT

(sin θ

λ

)2

B isoT =

8π2

3〈u2〉

In general, Debye-Waller factors can be anisotropic

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 3 / 17

Page 19: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Properties of the Debye-Waller Factor

For crystals with several differenttypes of atoms, we generalize theunit cell scattering factor.

B jT = 8π2〈u2

Qj〉

for isotropic atomic vibrations

〈u2〉 = 〈u2x + u2

y + u2z 〉

= 3〈u2x 〉 = 3〈u2

Q〉

F u.c. =∑j

fj(~Q)e−Mj e i~Q·~rj

Mj =1

2Q2〈u2

Qj〉

=1

2

(4π

λ

)2

sin2 θ〈u2Qj〉

Mj = B jT

(sin θ

λ

)2

B isoT =

8π2

3〈u2〉

In general, Debye-Waller factors can be anisotropic

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 3 / 17

Page 20: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

The Debye Model

The Debye model can be used tocompute BT by integrating a lin-ear phonon dispersion relation upto a cutoff frequency, ωD , calledthe Debye frequency.

BT is given as a function of theDebye temperature Θ.

BT =6h2

mAkBΘ

[φ(Θ/T )

Θ/T+

1

4

]φ(x) =

1

x

∫ Θ/T

0

ξ

eξ − 1dξ

BT [A2] =

11492T[K]

AΘ2[K2]φ(Θ/T) +

2873

AΘ[K]

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 4 / 17

Page 21: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

The Debye Model

The Debye model can be used tocompute BT by integrating a lin-ear phonon dispersion relation upto a cutoff frequency, ωD , calledthe Debye frequency.

BT is given as a function of theDebye temperature Θ.

BT =6h2

mAkBΘ

[φ(Θ/T )

Θ/T+

1

4

]φ(x) =

1

x

∫ Θ/T

0

ξ

eξ − 1dξ

BT [A2] =

11492T[K]

AΘ2[K2]φ(Θ/T) +

2873

AΘ[K]

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 4 / 17

Page 22: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

The Debye Model

The Debye model can be used tocompute BT by integrating a lin-ear phonon dispersion relation upto a cutoff frequency, ωD , calledthe Debye frequency.

BT is given as a function of theDebye temperature Θ.

BT =6h2

mAkBΘ

[φ(Θ/T )

Θ/T+

1

4

]

φ(x) =1

x

∫ Θ/T

0

ξ

eξ − 1dξ

BT [A2] =

11492T[K]

AΘ2[K2]φ(Θ/T) +

2873

AΘ[K]

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 4 / 17

Page 23: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

The Debye Model

The Debye model can be used tocompute BT by integrating a lin-ear phonon dispersion relation upto a cutoff frequency, ωD , calledthe Debye frequency.

BT is given as a function of theDebye temperature Θ.

BT =6h2

mAkBΘ

[φ(Θ/T )

Θ/T+

1

4

]φ(x) =

1

x

∫ Θ/T

0

ξ

eξ − 1dξ

BT [A2] =

11492T[K]

AΘ2[K2]φ(Θ/T) +

2873

AΘ[K]

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 4 / 17

Page 24: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

The Debye Model

The Debye model can be used tocompute BT by integrating a lin-ear phonon dispersion relation upto a cutoff frequency, ωD , calledthe Debye frequency.

BT is given as a function of theDebye temperature Θ.

BT =6h2

mAkBΘ

[φ(Θ/T )

Θ/T+

1

4

]φ(x) =

1

x

∫ Θ/T

0

ξ

eξ − 1dξ

BT [A2] =

11492T[K]

AΘ2[K2]φ(Θ/T) +

2873

AΘ[K]

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 4 / 17

Page 25: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Debye Temperatures

BT =11492T

AΘ2φ(Θ/T )

+2873

diamond is very stiff and Θdoes not vary much withtemperature

copper has a much lowerDebye temperature and awider variation of thermalfactor with temperature

A Θ B4.2 B77 B293

(K) (A2)

C∗ 12 2230 0.11 0.11 0.12Al 27 428 0.25 0.30 0.72Cu 63.5 343 0.13 0.17 0.47∗diamond

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 5 / 17

Page 26: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Debye Temperatures

BT =11492T

AΘ2φ(Θ/T )

+2873

diamond is very stiff and Θdoes not vary much withtemperature

copper has a much lowerDebye temperature and awider variation of thermalfactor with temperature

A Θ B4.2 B77 B293

(K) (A2)

C∗ 12 2230 0.11 0.11 0.12Al 27 428 0.25 0.30 0.72Cu 63.5 343 0.13 0.17 0.47∗diamond

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 5 / 17

Page 27: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Debye Temperatures

BT =11492T

AΘ2φ(Θ/T )

+2873

diamond is very stiff and Θdoes not vary much withtemperature

copper has a much lowerDebye temperature and awider variation of thermalfactor with temperature

A Θ B4.2 B77 B293

(K) (A2)

C∗ 12 2230 0.11 0.11 0.12Al 27 428 0.25 0.30 0.72Cu 63.5 343 0.13 0.17 0.47∗diamond

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 5 / 17

Page 28: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Debye Temperatures

BT =11492T

AΘ2φ(Θ/T )

+2873

diamond is very stiff and Θdoes not vary much withtemperature

copper has a much lowerDebye temperature and awider variation of thermalfactor with temperature

A Θ B4.2 B77 B293

(K) (A2)

C∗ 12 2230 0.11 0.11 0.12Al 27 428 0.25 0.30 0.72Cu 63.5 343 0.13 0.17 0.47∗diamond

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 5 / 17

Page 29: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 6 / 17

Page 30: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 7 / 17

Page 31: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 8 / 17

Page 32: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 9 / 17

Page 33: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 10 / 17

Page 34: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Bragg & Laue Geometries

Bragg

symmetric

asymmetric

Laue

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 11 / 17

Page 35: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Bragg & Laue Geometries

Bragg

symmetric

asymmetric

Laue

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 11 / 17

Page 36: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Bragg & Laue Geometries

Bragg

symmetric

asymmetric

Laue

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 11 / 17

Page 37: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Bragg & Laue Geometries

Bragg

symmetric

asymmetric

Laue

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 11 / 17

Page 38: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Bragg & Laue Geometries

Bragg

symmetric

asymmetric

Laue

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 11 / 17

Page 39: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Bragg & Laue Geometries

Bragg

symmetric

asymmetric

Laue

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 11 / 17

Page 40: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Scattering Geometry

Consider symmetric Bragg geometry

We expect the crystal to diffract in anenergy bandwidth defined by ∆k

This defines a spread of scattering vec-tors such that

ζ =∆Q

Q=

∆k

k

called the relative energy or wavelengthbandwidth

Q=mG

∆k

Q=mG(1+ζ)

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 12 / 17

Page 41: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Scattering Geometry

Consider symmetric Bragg geometry

We expect the crystal to diffract in anenergy bandwidth defined by ∆k

This defines a spread of scattering vec-tors such that

ζ =∆Q

Q=

∆k

k

called the relative energy or wavelengthbandwidth

Q=mG

Q=mG(1+ζ)

k k’

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 12 / 17

Page 42: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Scattering Geometry

Consider symmetric Bragg geometry

We expect the crystal to diffract in anenergy bandwidth defined by ∆k

This defines a spread of scattering vec-tors such that

ζ =∆Q

Q=

∆k

k

called the relative energy or wavelengthbandwidth

Q=mG

Q=mG(1+ζ)

k k’

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 12 / 17

Page 43: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Scattering Geometry

Consider symmetric Bragg geometry

We expect the crystal to diffract in anenergy bandwidth defined by ∆k

This defines a spread of scattering vec-tors such that

ζ =∆Q

Q=

∆k

k

called the relative energy or wavelengthbandwidth

Q=mG

∆k

Q=mG(1+ζ)

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 12 / 17

Page 44: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfectcrystal as an infinite stack of atomicplanes. This is fundamentally equivalentto the Ewald and von Laue approaches.

For a single thin slab of density ρ andthickness d � λ, the reflected and trans-mitted waves are

where

g =λroρd

sin θ

for a layer of unit cells ρ = |F |/vc and

d

T S

θ θ

S = −igT(1− igo)T ≈ e−igoT

g =[2d sin θ/m]ro(|F |/vc)d

sin θ=

1

m

2d2rovc|F |

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 13 / 17

Page 45: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfectcrystal as an infinite stack of atomicplanes. This is fundamentally equivalentto the Ewald and von Laue approaches.

For a single thin slab of density ρ andthickness d � λ, the reflected and trans-mitted waves are

where

g =λroρd

sin θ

for a layer of unit cells ρ = |F |/vc and

d

T S

θ θ

S = −igT(1− igo)T ≈ e−igoT

g =[2d sin θ/m]ro(|F |/vc)d

sin θ=

1

m

2d2rovc|F |

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 13 / 17

Page 46: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfectcrystal as an infinite stack of atomicplanes. This is fundamentally equivalentto the Ewald and von Laue approaches.

For a single thin slab of density ρ andthickness d � λ, the reflected and trans-mitted waves are

where

g =λroρd

sin θ

for a layer of unit cells ρ = |F |/vc and

d

T S

θ θ

S = −igT(1− igo)T ≈ e−igoT

g =[2d sin θ/m]ro(|F |/vc)d

sin θ=

1

m

2d2rovc|F |

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 13 / 17

Page 47: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfectcrystal as an infinite stack of atomicplanes. This is fundamentally equivalentto the Ewald and von Laue approaches.

For a single thin slab of density ρ andthickness d � λ, the reflected and trans-mitted waves are

where

g =λroρd

sin θ

for a layer of unit cells ρ = |F |/vc and

d

T S

θ θ

S = −igT

(1− igo)T ≈ e−igoT

g =[2d sin θ/m]ro(|F |/vc)d

sin θ=

1

m

2d2rovc|F |

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 13 / 17

Page 48: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfectcrystal as an infinite stack of atomicplanes. This is fundamentally equivalentto the Ewald and von Laue approaches.

For a single thin slab of density ρ andthickness d � λ, the reflected and trans-mitted waves are

where

g =λroρd

sin θ

for a layer of unit cells ρ = |F |/vc and

d

T S

θ θ

S = −igT(1− igo)T ≈ e−igoT

g =[2d sin θ/m]ro(|F |/vc)d

sin θ=

1

m

2d2rovc|F |

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 13 / 17

Page 49: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfectcrystal as an infinite stack of atomicplanes. This is fundamentally equivalentto the Ewald and von Laue approaches.

For a single thin slab of density ρ andthickness d � λ, the reflected and trans-mitted waves are

where

g =λroρd

sin θ

for a layer of unit cells ρ = |F |/vc and

d

T S

θ θ

S = −igT(1− igo)T ≈ e−igoT

g =[2d sin θ/m]ro(|F |/vc)d

sin θ=

1

m

2d2rovc|F |

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 13 / 17

Page 50: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfectcrystal as an infinite stack of atomicplanes. This is fundamentally equivalentto the Ewald and von Laue approaches.

For a single thin slab of density ρ andthickness d � λ, the reflected and trans-mitted waves are

where

g =λroρd

sin θ

for a layer of unit cells ρ = |F |/vc and

d

T S

θ θ

S = −igT(1− igo)T ≈ e−igoT

g =[2d sin θ/m]ro(|F |/vc)d

sin θ=

1

m

2d2rovc|F |

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 13 / 17

Page 51: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfectcrystal as an infinite stack of atomicplanes. This is fundamentally equivalentto the Ewald and von Laue approaches.

For a single thin slab of density ρ andthickness d � λ, the reflected and trans-mitted waves are

where

g =λroρd

sin θ

for a layer of unit cells ρ = |F |/vc and

d

T S

θ θ

S = −igT(1− igo)T ≈ e−igoT

g =[2d sin θ/m]ro(|F |/vc)d

sin θ

=1

m

2d2rovc|F |

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 13 / 17

Page 52: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfectcrystal as an infinite stack of atomicplanes. This is fundamentally equivalentto the Ewald and von Laue approaches.

For a single thin slab of density ρ andthickness d � λ, the reflected and trans-mitted waves are

where

g =λroρd

sin θ

for a layer of unit cells ρ = |F |/vc and

d

T S

θ θ

S = −igT(1− igo)T ≈ e−igoT

g =[2d sin θ/m]ro(|F |/vc)d

sin θ=

1

m

2d2rovc|F |

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 13 / 17

Page 53: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Dynamical Diffraction - Darwin Approach

g =1

m

2d2rovc|F |

since vc ∼ d3 then g ∼ ro/d ≈ 10−5

the transmitted beam depends on

go =λρat f

0(0)ro∆

sin θ

which can be rewritten

go =|Fo ||F |

g

where Fo is the forward scattering factorat Q = θ = 0

d

T S

θ θ

S = −igT(1− igo)T ≈ e−igoT

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 14 / 17

Page 54: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Dynamical Diffraction - Darwin Approach

g =1

m

2d2rovc|F |

since vc ∼ d3 then g ∼ ro/d ≈ 10−5

the transmitted beam depends on

go =λρat f

0(0)ro∆

sin θ

which can be rewritten

go =|Fo ||F |

g

where Fo is the forward scattering factorat Q = θ = 0

d

T S

θ θ

S = −igT(1− igo)T ≈ e−igoT

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 14 / 17

Page 55: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Dynamical Diffraction - Darwin Approach

g =1

m

2d2rovc|F |

since vc ∼ d3 then g ∼ ro/d ≈ 10−5

the transmitted beam depends on

go =λρat f

0(0)ro∆

sin θ

which can be rewritten

go =|Fo ||F |

g

where Fo is the forward scattering factorat Q = θ = 0

d

T S

θ θ

S = −igT(1− igo)T ≈ e−igoT

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 14 / 17

Page 56: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Dynamical Diffraction - Darwin Approach

g =1

m

2d2rovc|F |

since vc ∼ d3 then g ∼ ro/d ≈ 10−5

the transmitted beam depends on

go =λρat f

0(0)ro∆

sin θ

which can be rewritten

go =|Fo ||F |

g

where Fo is the forward scattering factorat Q = θ = 0

d

T S

θ θ

S = −igT(1− igo)T ≈ e−igoT

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 14 / 17

Page 57: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Dynamical Diffraction - Darwin Approach

g =1

m

2d2rovc|F |

since vc ∼ d3 then g ∼ ro/d ≈ 10−5

the transmitted beam depends on

go =λρat f

0(0)ro∆

sin θ

which can be rewritten

go =|Fo ||F |

g

where Fo is the forward scattering factorat Q = θ = 0

d

T S

θ θ

S = −igT(1− igo)T ≈ e−igoT

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 14 / 17

Page 58: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Kinematical Reflection

If we now extend this model to N layers we can use this kinematicalapproximation if Ng � 1.

Proceed by adding reflectivity from each layer with the usual phase factor

rN(Q) = −igN−1∑j=0

e iQdje−igo je−igo j = −igN−1∑j=0

e i(Qd−2go)j

Q=mG

∆k

Q=mG(1+ζ)where the x-rays pass through each layertwice

these N unit cell layers will give a recip-rocal lattice with points at multiples ofG = 2π/d we are interested in small de-viations from the Bragg condition:

ζ =∆Q

Q=

∆k

k=

∆EE

=∆λ

λ

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 15 / 17

Page 59: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Kinematical Reflection

If we now extend this model to N layers we can use this kinematicalapproximation if Ng � 1.

Proceed by adding reflectivity from each layer with the usual phase factor

rN(Q) = −igN−1∑j=0

e iQdje−igo je−igo j = −igN−1∑j=0

e i(Qd−2go)j

Q=mG

∆k

Q=mG(1+ζ)where the x-rays pass through each layertwice

these N unit cell layers will give a recip-rocal lattice with points at multiples ofG = 2π/d we are interested in small de-viations from the Bragg condition:

ζ =∆Q

Q=

∆k

k=

∆EE

=∆λ

λ

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 15 / 17

Page 60: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Kinematical Reflection

If we now extend this model to N layers we can use this kinematicalapproximation if Ng � 1.

Proceed by adding reflectivity from each layer with the usual phase factor

rN(Q) = −igN−1∑j=0

e iQdje−igo je−igo j

= −igN−1∑j=0

e i(Qd−2go)j

Q=mG

∆k

Q=mG(1+ζ)where the x-rays pass through each layertwice

these N unit cell layers will give a recip-rocal lattice with points at multiples ofG = 2π/d we are interested in small de-viations from the Bragg condition:

ζ =∆Q

Q=

∆k

k=

∆EE

=∆λ

λ

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 15 / 17

Page 61: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Kinematical Reflection

If we now extend this model to N layers we can use this kinematicalapproximation if Ng � 1.

Proceed by adding reflectivity from each layer with the usual phase factor

rN(Q) = −igN−1∑j=0

e iQdje−igo je−igo j

= −igN−1∑j=0

e i(Qd−2go)j

Q=mG

∆k

Q=mG(1+ζ)

where the x-rays pass through each layertwice

these N unit cell layers will give a recip-rocal lattice with points at multiples ofG = 2π/d we are interested in small de-viations from the Bragg condition:

ζ =∆Q

Q=

∆k

k=

∆EE

=∆λ

λ

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 15 / 17

Page 62: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Kinematical Reflection

If we now extend this model to N layers we can use this kinematicalapproximation if Ng � 1.

Proceed by adding reflectivity from each layer with the usual phase factor

rN(Q) = −igN−1∑j=0

e iQdje−igo je−igo j = −igN−1∑j=0

e i(Qd−2go)j

Q=mG

∆k

Q=mG(1+ζ)

where the x-rays pass through each layertwice

these N unit cell layers will give a recip-rocal lattice with points at multiples ofG = 2π/d we are interested in small de-viations from the Bragg condition:

ζ =∆Q

Q=

∆k

k=

∆EE

=∆λ

λ

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 15 / 17

Page 63: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Kinematical Reflection

If we now extend this model to N layers we can use this kinematicalapproximation if Ng � 1.

Proceed by adding reflectivity from each layer with the usual phase factor

rN(Q) = −igN−1∑j=0

e iQdje−igo je−igo j = −igN−1∑j=0

e i(Qd−2go)j

Q=mG

∆k

Q=mG(1+ζ)

where the x-rays pass through each layertwice

these N unit cell layers will give a recip-rocal lattice with points at multiples ofG = 2π/d

we are interested in small de-viations from the Bragg condition:

ζ =∆Q

Q=

∆k

k=

∆EE

=∆λ

λ

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 15 / 17

Page 64: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Kinematical Reflection

If we now extend this model to N layers we can use this kinematicalapproximation if Ng � 1.

Proceed by adding reflectivity from each layer with the usual phase factor

rN(Q) = −igN−1∑j=0

e iQdje−igo je−igo j = −igN−1∑j=0

e i(Qd−2go)j

Q=mG

∆k

Q=mG(1+ζ)where the x-rays pass through each layertwice

these N unit cell layers will give a recip-rocal lattice with points at multiples ofG = 2π/d we are interested in small de-viations from the Bragg condition:

ζ =∆Q

Q=

∆k

k=

∆EE

=∆λ

λ

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 15 / 17

Page 65: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Multiple Layer Reflection

rN(Q) = −igN−1∑j=0

e i(Qd−2go)j

Q=mG

∆k

Q=mG(1+ζ)

The term in the phase factor now be-comes

Qd − 2go = mG (1 + ζ)2π

G− 2go

= 2π(m + mζ − goπ

)

rN(Q) = −igN−1∑j=0

e i2π(m+mζ−go/π

= −igN−1∑j=0

e i2πmje i2π(mζ−go/π)

= −igN−1∑j=0

1 · e i2π(mζ−go/π)

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 16 / 17

Page 66: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Multiple Layer Reflection

rN(Q) = −igN−1∑j=0

e i(Qd−2go)j

Q=mG

∆k

Q=mG(1+ζ)

The term in the phase factor now be-comes

Qd − 2go

= mG (1 + ζ)2π

G− 2go

= 2π(m + mζ − goπ

)

rN(Q) = −igN−1∑j=0

e i2π(m+mζ−go/π

= −igN−1∑j=0

e i2πmje i2π(mζ−go/π)

= −igN−1∑j=0

1 · e i2π(mζ−go/π)

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 16 / 17

Page 67: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Multiple Layer Reflection

rN(Q) = −igN−1∑j=0

e i(Qd−2go)j

Q=mG

∆k

Q=mG(1+ζ)

The term in the phase factor now be-comes

Qd − 2go = mG (1 + ζ)2π

G− 2go

= 2π(m + mζ − goπ

)

rN(Q) = −igN−1∑j=0

e i2π(m+mζ−go/π

= −igN−1∑j=0

e i2πmje i2π(mζ−go/π)

= −igN−1∑j=0

1 · e i2π(mζ−go/π)

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 16 / 17

Page 68: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Multiple Layer Reflection

rN(Q) = −igN−1∑j=0

e i(Qd−2go)j

Q=mG

∆k

Q=mG(1+ζ)

The term in the phase factor now be-comes

Qd − 2go = mG (1 + ζ)2π

G− 2go

= 2π(m + mζ − goπ

)

rN(Q) = −igN−1∑j=0

e i2π(m+mζ−go/π

= −igN−1∑j=0

e i2πmje i2π(mζ−go/π)

= −igN−1∑j=0

1 · e i2π(mζ−go/π)

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 16 / 17

Page 69: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Multiple Layer Reflection

rN(Q) = −igN−1∑j=0

e i(Qd−2go)j

Q=mG

∆k

Q=mG(1+ζ)

The term in the phase factor now be-comes

Qd − 2go = mG (1 + ζ)2π

G− 2go

= 2π(m + mζ − goπ

)

rN(Q) = −igN−1∑j=0

e i2π(m+mζ−go/π

= −igN−1∑j=0

e i2πmje i2π(mζ−go/π)

= −igN−1∑j=0

1 · e i2π(mζ−go/π)

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 16 / 17

Page 70: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Multiple Layer Reflection

rN(Q) = −igN−1∑j=0

e i(Qd−2go)j

Q=mG

∆k

Q=mG(1+ζ)

The term in the phase factor now be-comes

Qd − 2go = mG (1 + ζ)2π

G− 2go

= 2π(m + mζ − goπ

)

rN(Q) = −igN−1∑j=0

e i2π(m+mζ−go/π

= −igN−1∑j=0

e i2πmje i2π(mζ−go/π)

= −igN−1∑j=0

1 · e i2π(mζ−go/π)

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 16 / 17

Page 71: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Multiple Layer Reflection

rN(Q) = −igN−1∑j=0

e i(Qd−2go)j

Q=mG

∆k

Q=mG(1+ζ)

The term in the phase factor now be-comes

Qd − 2go = mG (1 + ζ)2π

G− 2go

= 2π(m + mζ − goπ

)

rN(Q) = −igN−1∑j=0

e i2π(m+mζ−go/π

= −igN−1∑j=0

e i2πmje i2π(mζ−go/π)

= −igN−1∑j=0

1 · e i2π(mζ−go/π)

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 16 / 17

Page 72: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Multiple Layer Reflection

This geometric series can besummed as usual

where

ζo =goπ

=2d2|Fo |πmvc

ro

rN(Q) = −igN−1∑j=0

e i2π(mζ−go/π)

|rN(ζ)| =

[sin(πN[mζ − ζo ])

sin(π[mζ − ζo ])

]|rN(ζ)|2 → g2

2(π[mζ − ζo ])2

This describes a shift of the Bragg peak away from the reciprocal latticepoint, the maximum being at ζ = ζo/m

The kinematical approach now breaks down and we need to develop a newtheory for dynamical diffraction.

First, let’s explore how the intensity would vary using the kinematicalexpression

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 17 / 17

Page 73: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Multiple Layer Reflection

This geometric series can besummed as usual

where

ζo =goπ

=2d2|Fo |πmvc

ro

rN(Q) = −igN−1∑j=0

e i2π(mζ−go/π)

|rN(ζ)| =

[sin(πN[mζ − ζo ])

sin(π[mζ − ζo ])

]

|rN(ζ)|2 → g2

2(π[mζ − ζo ])2

This describes a shift of the Bragg peak away from the reciprocal latticepoint, the maximum being at ζ = ζo/m

The kinematical approach now breaks down and we need to develop a newtheory for dynamical diffraction.

First, let’s explore how the intensity would vary using the kinematicalexpression

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 17 / 17

Page 74: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Multiple Layer Reflection

This geometric series can besummed as usual

where

ζo =goπ

=2d2|Fo |πmvc

ro

rN(Q) = −igN−1∑j=0

e i2π(mζ−go/π)

|rN(ζ)| =

[sin(πN[mζ − ζo ])

sin(π[mζ − ζo ])

]

|rN(ζ)|2 → g2

2(π[mζ − ζo ])2

This describes a shift of the Bragg peak away from the reciprocal latticepoint, the maximum being at ζ = ζo/m

The kinematical approach now breaks down and we need to develop a newtheory for dynamical diffraction.

First, let’s explore how the intensity would vary using the kinematicalexpression

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 17 / 17

Page 75: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Multiple Layer Reflection

This geometric series can besummed as usual

where

ζo =goπ

=2d2|Fo |πmvc

ro

rN(Q) = −igN−1∑j=0

e i2π(mζ−go/π)

|rN(ζ)| =

[sin(πN[mζ − ζo ])

sin(π[mζ − ζo ])

]

|rN(ζ)|2 → g2

2(π[mζ − ζo ])2

This describes a shift of the Bragg peak away from the reciprocal latticepoint, the maximum being at ζ = ζo/m

The kinematical approach now breaks down and we need to develop a newtheory for dynamical diffraction.

First, let’s explore how the intensity would vary using the kinematicalexpression

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 17 / 17

Page 76: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Multiple Layer Reflection

This geometric series can besummed as usual

where

ζo =goπ

=2d2|Fo |πmvc

ro

rN(Q) = −igN−1∑j=0

e i2π(mζ−go/π)

|rN(ζ)| =

[sin(πN[mζ − ζo ])

sin(π[mζ − ζo ])

]

|rN(ζ)|2 → g2

2(π[mζ − ζo ])2

This describes a shift of the Bragg peak away from the reciprocal latticepoint, the maximum being at ζ = ζo/m

The kinematical approach now breaks down and we need to develop a newtheory for dynamical diffraction.

First, let’s explore how the intensity would vary using the kinematicalexpression

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 17 / 17

Page 77: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Multiple Layer Reflection

This geometric series can besummed as usual

where

ζo =goπ

=2d2|Fo |πmvc

ro

rN(Q) = −igN−1∑j=0

e i2π(mζ−go/π)

|rN(ζ)| =

[sin(πN[mζ − ζo ])

sin(π[mζ − ζo ])

]

|rN(ζ)|2 → g2

2(π[mζ − ζo ])2

This describes a shift of the Bragg peak away from the reciprocal latticepoint, the maximum being at ζ = ζo/m

The kinematical approach now breaks down and we need to develop a newtheory for dynamical diffraction.

First, let’s explore how the intensity would vary using the kinematicalexpression

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 17 / 17

Page 78: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Multiple Layer Reflection

This geometric series can besummed as usual

where

ζo =goπ

=2d2|Fo |πmvc

ro

rN(Q) = −igN−1∑j=0

e i2π(mζ−go/π)

|rN(ζ)| =

[sin(πN[mζ − ζo ])

sin(π[mζ − ζo ])

]|rN(ζ)|2 → g2

2 sin2(π[mζ − ζo ])

This describes a shift of the Bragg peak away from the reciprocal latticepoint, the maximum being at ζ = ζo/m

The kinematical approach now breaks down and we need to develop a newtheory for dynamical diffraction.

First, let’s explore how the intensity would vary using the kinematicalexpression

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 17 / 17

Page 79: Today’s Outline - November 04, 2013csrri.iit.edu/~segre/phys570/13F/lecture_20.pdf · Today’s Outline - November 04, 2013 Bragg & Laue Geometries Re ection for a Single Layer

Multiple Layer Reflection

This geometric series can besummed as usual

where

ζo =goπ

=2d2|Fo |πmvc

ro

rN(Q) = −igN−1∑j=0

e i2π(mζ−go/π)

|rN(ζ)| =

[sin(πN[mζ − ζo ])

sin(π[mζ − ζo ])

]|rN(ζ)|2 → g2

2(π[mζ − ζo ])2

This describes a shift of the Bragg peak away from the reciprocal latticepoint, the maximum being at ζ = ζo/m

The kinematical approach now breaks down and we need to develop a newtheory for dynamical diffraction.

First, let’s explore how the intensity would vary using the kinematicalexpression

C. Segre (IIT) PHYS 570 - Fall 2013 November 04, 2013 17 / 17