toán cc-chương 8 _ chuỗi số - chuỗi lũy thừa _.image.marked

34
1 Ch¬ng 7 : chuçi sè – chuçi luü thõa 7.1. chuçi sè 7.1.1. §Þnh nghÜa chuçi sè. §Þnh nghÜa 7.1. D·y sè lµ mét tËp hîp gåm v« h¹n c¸c sè thùc ®îc s¾p xÕp theo mét quy luËt nμo ®ã. Th«ng thêng, ngêi ta ký hiÖu d·y sè bëi: u n = u 1 , u 2 , u 3 , ..., u n , ... trong ®ã u k ®îc gäi lµ sè h¹ng thø k cña d·y sè (k = , 1 ), u n ®îc gäi lµ sè h¹ng tæng qu¸t cña d·y sè. VÝ dô 7.1. (i) TËp hîp: 1, 3, 5, 7, 9 kh«ng ph¶i lμ d·y sè v× nã chØ cã 5 sè h¹ng. (ii) TËp hîp: 1, 3, 5, 7, 9,... lμ d·y sè v× nã cã v« h¹n sè thùc vµ ®îc s¾p xÕp theo quy luËt sè ®øng sau b»ng sè ®øng ngay tríc nã céng víi 2. D·y sè nµy ®îc viÕt gän nh sau: 2n 1 . §Þnh nghÜa 7.2. Cho d·y sè u n . Tæng tÊt c¶ c¸c sè h¹ng cña d·y sè trªn (ký hiÖu lμ n n u 1 ) ®îc gäi lµ mét chuçi sè. VËy: n n u 1 = u 1 u 2 u 3 ... u n ... 7.1.2. C¸c lo¹i chuçi sè. Chuçi sè d¬ng lµ mét chuçi mµ tÊt c¶ c¸c sè h¹ng cña nã ®Òu d¬ng. Chuçi sè ©m lμ mét chuçi mμ tÊt c¶ c¸c sè h¹ng cña nã ®Òu ©m.

Upload: huan-phung

Post on 07-Nov-2015

16 views

Category:

Documents


2 download

DESCRIPTION

chuỗi số

TRANSCRIPT

  • 1

    Chng 7: chui s chui lu tha

    7.1. chui s

    7.1.1. nh ngha chui s.

    nh ngha 7.1. Dy s l mt tp hp gm v hn cc s thc c sp

    xp theo mt quy lut no .

    Thng thng, ngi ta k hiu dy s bi:

    un = u1, u2, u3, ..., un, ...

    trong uk c gi l s hng th k ca dy s (k = ,1 ), un c gi l

    s hng tng qut ca dy s.

    V d 7.1.

    (i) Tp hp: 1, 3, 5, 7, 9 khng phi l dy s v n ch c 5 s hng.

    (ii) Tp hp: 1, 3, 5, 7, 9,... l dy s v n c v hn s thc v c sp

    xp theo quy lut s ng sau bng s ng ngay trc n cng vi 2. Dy

    s ny c vit gn nh sau: 2n 1.

    nh ngha 7.2. Cho dy s un. Tng tt c cc s hng ca dy s trn

    (k hiu l nn

    u

    1

    ) c gi l mt chui s. Vy:

    nn

    u

    1

    = u1 u2 u3... un...

    7.1.2. Cc loi chui s.

    Chui s dng l mt chui m tt c cc s hng ca n u dng.

    Chui s m l mt chui m tt c cc s hng ca n u m.

  • 2

    Chui s an du l mt chui m hai s hng bt k ng cnh

    nhau th c du ngc nhau.

    Mt chui s khng phi l chui s dng, khng phi l chui s

    m, khng phi l chui s an du th c gi l chui s bt k.

    V d 7.2.

    (i) nn

    1

    2 , n

    n

    1

    3 1 l cc chui s dng.

    (ii) nn

    2 11

    1 , n

    n

    1

    1 2 l cc chui s m.

    (iii) nn

    1

    1 , nn

    n

    1 21

    1 l cc chui s an du.

    (iiii) nn

    cosn

    2 11

    1 , n

    sinn

    1

    l cc chui s bt k.

    7.1.3. S hi t ca chui s.

    Cho chui s nn

    u

    1

    = u1 u2 u3... un... Ta thnh lp dy cc tng

    ring nh sau: S1 = u1, S2 = u1 u2, S3 = u1 u2 u3,..., Sn = u1 u2 u3...

    un,...

    nh ngha 7.3. Nu chui s nn

    u

    1

    c nnlim S

    tn ti, hu hn. Th chui

    nn

    u

    1

    c gi l hi t. Khi ,

    nn

    u

    1

    = nnlim S

    =I,

  • 3

    I c gi l tng ca chui s. Trong trng hp ngc li, chui nn

    u

    1

    c gi l phn k.

    Nhn xt 7.1. Chui nn

    u

    1

    phn k khi nnlim S

    khng tn ti hoc tn ti

    nhng l s v hn.

    V d 7.3. (i) Chui nn

    1

    1

    2 hi t v c tng = 1 v:

    Sn = n n... 1 1 1 1

    12 4 2 2

    n nn nlim S lim

    11 1

    2.

    (ii) Chui n

    n

    1

    phn k v:

    Sn = n n

    ... n

    1

    1 22

    nn n

    n nlim S lim

    1

    2.

    (iii) Chui nn

    1

    1 phn k v:

    Sn = n khi n k...

    khi n k

    1 2 11 1 1 1

    0 2 (k nguyn, dng).

    nnlim S

    khng tn ti.

    Tnh cht 7.1.

    (i) Nu nn

    u

    1

    v nn

    v

    1

    l cc chui hi t th n nn

    u v

    1

    cng hi t.

    (ii) Nu nhn tt c cc s hng ca mt chui s vi mt s khc khng th

    khng lm thay i s hi t hay phn k ca chui s .

    (iii) Nu thm vo hoc bt i mt s hu hn cc s hng ca chui s th

    khng lm thay i s hi t hay phn k ca chui s .

  • 4

    nh l 7.1 (Tiu chun Cauchy mt chui s hi t). iu kin cn v

    chui s nn

    u

    1

    hi t l: ( >0),(N > 0: m,n > N) Sm Sn< .

  • 5

    H qu 7.1.1. iu kin cn chui s nn

    u

    1

    hi t l nnlim u

    0 .

    Chng minh. Theo nh l 7.1, v chui s nn

    u

    1

    hi t nn:

    ( >0),(N > 0: m = n1,n > N) Sm Sn< .

    ( >0),(N > 0: n1 > N) un< .

    nnlim u

    0 . (pcm)

    Nhn xt 7.2. Nu mt chui s khng tho mn iu kin nnlim u

    0

    (ngha l gii hn trn khng tn ti hoc tn ti nhng l s khc 0) th

    chui phn k. Tuy nhin, h qu 7.1.1 ch l iu kin cn nn mt

    chui s tho mn iu kin nnlim u

    0 , th cha kt lun c chui s

    hi t hay phn k.

    V d 7.4.

    (i) Chui n

    nn

    1

    1

    2 1 phn k v: n

    n n

    nlim u lim

    n

    1 1

    02 1 2

    .

    (ii) Chui nn

    1

    1 phn k v: nnlim u

    khng tn ti.

    Ch 7.1. Chng ta cng nhn cc kt qu sau:

    (i) Chui s nn

    q

    1

    (q l hng s) c gi l chui s nhn. Chui ny

    hi t khi q< 1 v phn k khi q 1.

    (ii) Chui s sn n

    1

    1 (s l hng s) c gi l chui Dirichlet. Chui

    ny hi t khi s > 1 v phn k khi s 1.

  • 6

    Nhn xt 7.3. i vi chui s Dirichlet v chui s nhn chng ta ch cn

    nhn vo s hoc q l c th kt lun c chui hi t hay phn k.

    Chng hn:

    (i) nn

    1

    2 l chui s phn k v n l chui s nhn c q = 2 > 1.

    (ii) nn

    1

    1

    3l chui s hi t v n l chui s nhn c q =

    1

    3 < 1.

    (iii) n n

    3

    1

    1l chui s phn k v n l chui s Dirichlet c s =

    1

    3 < 1.

    (iiii) n n

    2

    1

    1l chui s hi t v n l chui s Dirichlet c s = 2 > 1.

    7.2. S hi t ca chui s dng

    Nhc li: Chui s nn

    u

    1

    l chui s dng nu un > 0 (n =1, 2, 3,...).

    Trong phn ny chng ta a ra cc iu kin mt chui s

    dng hi t.

    7.2.1. Du hiu so snh 1.

    nh l 7.2. Cho hai chui s dng nn

    u

    1

    , nn

    v

    1

    ; tn ti s c > 0 v tn ti

    s N nguyn dng sao cho:

    un c.vn (n > N).

    Khi , (i) Nu chui s nn

    v

    1

    hi t th chui s nn

    u

    1

    hi t.

  • 7

    (ii) Nu chui s nn

    u

    1

    phn k th chui s nn

    v

    1

    phn k.

    (Kt qu trn vn ng cho chui s khng m).

    Nhn xt 7.4. p dng c du hiu so snh 1 xt s hi t ca mt

    chui s ta phi tin hnh qua cc bc nh sau:

    Bc 1: Kim tra tnh dng ca chui s cho.

    Bc 2: a ra chui s th hai nn

    v

    1

    tho mn cc iu kin: l

    chui s dng ; bit hi t hay phn k ri; so snh c vi chui s

    cho.

    a ra chui s th hai ta phi da vo chui s cho v chui

    s nhn (hoc chui s Dirichlet).

    V d 7.5. Xt s hi t ca cc chui: a) n n

    2

    1

    1

    3 1, b)

    n

    nn

    1

    5

    3 2.

    Gii. a) n n

    2

    1

    1

    3 1. Ta c un = n 2

    1

    3 1 > 0 (n =1, 2, 3,...) vy chui

    cho l chui dng.

    Chui s nn

    v

    1

    = n n

    2

    1

    1 l chui dng v l chui Dirichlet hi t v

    s = 2 > 1. Mt khc:

    un = n 21

    3 1 <

    n

    2

    1 1

    33vn (n =1, 2, 3,...).

    Theo du hiu so snh 1, chui cho hi t.

    b)n

    nn

    1

    5

    3 2. Ta c un=

    n

    n 5

    3 2>0 (n=1,2,...) vy chui cho l chui dng.

  • 8

    Chui s nn

    v

    1

    = n

    n

    1

    5

    3 l chui dng v l chui nhn phn k v

    q > 1. Mt khc: un = nn

    n

    5 5

    3 2 3 vn (n =1, 2, 3,...).

    Theo du hiu so snh 1, chui cho phn k.

    Nhn xt 7.5. Nu trong v d 7.5, phn a) mu s 3n2 1 c thay bi

    3n2 k hoc phn b) mu s 3n 2 c thay bi 3n k (vi k l hng s

    dng). Th chng ta khng th p dng du hiu so snh 1 c. khc

    phc, sau y chng ta a ra du hiu so snh 2.

    7.2.2. Du hiu so snh 2.

    nh l 7.3. Cho hai chui s dng nn

    u

    1

    , nn

    v

    1

    c nn n

    ulim

    v= k 0, hu

    hn. Th hai chui s trn cng hi t hoc cng phn k.

    Chng minh.

    T gi thit ca nh l ta suy ra k > 0. Theo nh ngha gii hn ta c:

    n

    n n

    ulim

    v= k ( > 0), (N > 0: n > N) k < n

    n

    uv

    < k (7.1)

    V (7.1) ng vi mi > 0 nn cng ng vi 0 =k2

    > 0. Ngha l tn

    ti N0 > 0 sao cho vi mi n > N0 th:

    k2

    vn = (k k2

    )vn < un < (k k2

    )vn = k32

    vn . (7.2)

    (i) Nu nn

    u

    1

    hi t nn N

    u

    0

    hi t. T (7.2) ta c: k2

    vn < un ( n > N0). p

    dng du hiu so snh 1 ta c nn N

    v

    0

    hi t nn

    v

    1

    hi t.

  • 9

    (ii) Nu nn

    u

    1

    phn k nn N

    u

    0

    phn k. T (7.2) ta c: un < k32

    vn ( n

    >N0). p dng du hiu so snh 1 ta c nn N

    v

    0

    phn k nn

    v

    1

    phn k.

    (iii) Nu nn

    v

    1

    hi t nn N

    v

    0

    hi t. T (7.2) ta c: un < k32

    vn ( n >N0).

    p dng du hiu so snh 1 ta c nn N

    u

    0

    hi t nn

    u

    1

    hi t.

    (iiii) Nu nn

    v

    1

    phn k nn N

    v

    0

    phn k. T (7.2) ta c: k2

    vn < un (n >

    N0). p dng du hiu so snh 1 ta c nn N

    u

    0

    phn k nn

    u

    1

    phn k.

    T (i) n (iiii) (pcm)

    Nhn xt 7.6. p dng c du hiu so snh 2 xt s hi t ca chui

    s chng ta cng phi chi qua cc bc nh trong nhn xt 7.4.

    V d 7.6. Xt s hi t ca cc chui: a) n n

    2

    1

    1

    3 2, b)

    n

    nn

    1

    5

    3 2.

    Gii. a) n n

    2

    1

    1

    3 2. Ta c un = n 2

    1

    3 2> 0 (n =1, 2, 3,...) vy chui

    cho l chui dng.

    Chui s nn

    v

    1

    = n n

    2

    1

    1 l chui dng v l chui Dirichlet hi t v

    s = 2 > 1. Mt khc:

    n

    n nn

    u nlim lim

    v n

    2

    23 2=

    1

    3 0, hu hn.

  • 10

    Theo du hiu so snh 2, chui cho hi t.

    b) n

    nn

    1

    5

    3 2.

    Ta c un = n

    n 5

    3 2> 0 (n =1, 2, 3,...) vy chui cho l chui dng.

    Chui s nn

    v

    1

    = n

    n

    1

    5

    3 l chui dng v l chui nhn phn k v

    q > 1. Mt khc:

    n nn

    n nn nn

    ulim lim

    v

    5 3

    3 2 5= 1 0, hu hn.

    Theo du hiu so snh 2, chui cho phn k.

    Ch 7.2. Trong du hiu so snh 2, ta mi chng minh c cho trng

    hp nn n

    ulim

    v = k 0, hu hn. Nu k = 0 hoc k = th du hiu so snh 2

    cn ng na khng ? Sau y chng ta xt c th cho tng trng hp.

    (i) Nu k = 0 nn n

    ulim

    v= k

    ( > 0), (N > 0: n > N) < nn

    uv

    < (7.3)

    V (7.3) ng vi mi > 0 nn cng ng vi 0 = 2 > 0. Ngha l tn

    ti N0 > 0 sao cho vi mi n > N0 th:

    2vn < un < 2vn. (7.4)

    Nu nn

    v

    1

    hi t nn N

    v

    0

    hi t. T (7.4) ta c: un < 2vn ( n >N0).

    p dng du hiu so snh 1 ta c nn N

    u

    0

    hi t nn

    u

    1

    hi t.

  • 11

    Nu nn

    u

    1

    phn k nn N

    u

    0

    phn k. T (7.4) ta c: un < 2vn ( n

    >N0). p dng du hiu so snh 1 ta c nn N

    v

    0

    phn k nn

    v

    1

    phn k.

    Nh vy, nu k = 0. Th du hiu so snh 2 khng ng na m ch

    c th kt lun nh sau:

    Nu k = 0 th t chui nn

    v

    1

    hi t nn

    u

    1

    hi t.

    Nu k = 0 th t chui nn

    u

    1

    phn k nn

    v

    1

    phn k.

    (ii) Nu k = nn n

    ulim

    v=

    (M > 0), (N > 0: n > N) nn

    uv

    > M (7.5)

    V (7.5) ng vi mi M > 0 nn cng ng vi M0 = 20 > 0. Ngha l

    tn ti N0 > 0 sao cho vi mi n > N0 th:

    un > 20vn. (7.6)

    Nu nn

    v

    1

    phn k nn N

    v

    0

    phn k. T (7.6) ta c: un> 20vn ( n

    >N0). p dng du hiu so snh 1 ta c nn N

    u

    0

    phn k nn

    u

    1

    phn k.

    Nu nn

    u

    1

    hi t nn N

    u

    0

    hi t. T (7.6) ta c: un< 20vn ( n > N0).

    p dng du hiu so snh 1 ta c nn N

    v

    0

    hi t nn

    v

    1

    hi t.

  • 12

    Nh vy, nu k = . Th du hiu so snh 2 khng ng na m ch

    c th kt lun nh sau:

    Nu nn

    u

    1

    hi t nn

    v

    1

    hi t.

    Nu nn

    v

    1

    phn k nn

    u

    1

    phn k.

    Nhn xt 7.7. Mun p dng cc du hiu so snh1 v du hiu so snh 2

    xt s hi t ca chui s dng. Chng ta phi a ra c chui

    dng th hai bit hi t hay phn k ri v so snh c vi chui

    cho. Tuy nhin, vic a ra chui th hai tho mn cc iu kin nh trn

    khng phi trng hp no cng thun li. khc phc sau y chng ta

    a ra hai iu kin khc (thun li hn) xt s hi t ca chui s

    dng.

    7.2.3. Du hiu DAlembert.

    nh l 7.5. Cho chui s dng nn

    u

    1

    c nn n

    ulim

    u

    1 = k. Khi :

    (i) Nu k < 1. Th chui nn

    u

    1

    hi t.

    (ii) Nu k > 1. Th chui nn

    u

    1

    phn k.

    (iii) Nu k = 1. Th cha kt lun c v s hi t hay phn k ca

    chui nn

    u

    1

    .

    V d 7.7. Xt s hi t ca cc chui:

    a) n

    n n

    2

    1

    2

    3 2, b) n

    n

    n

    1

    5 13

    3, c)

    n

    nn

    2

    1 3 2.

  • 13

    Gii. a) n

    n n

    2

    1

    2

    3 2. Ta c un =

    nn 23 2

    > 0 (n =1, 2, 3,...) vy chui

    cho l chui dng ; un+1 = n

    n n

    1

    2

    2

    3 6 1.

    k =

    n

    nnn nn

    nulim lim

    u n n

    1 2

    12

    2 3 22

    2 3 6 1> 1.

    Theo du hiu DAlembert, chui cho phn k.

    b) nn

    n

    1

    5 13

    3. Ta c un = n

    n 5 133

    > 0 (n =3, 4, 5,...), u1 = 8

    3 < 0 vy

    chui cho khng phi l chui dng. Nhng chui nn

    n

    3

    5 13

    3 l chui

    dng ; un+1 = nn

    1

    5 8

    3. k =

    nn

    nn nn

    nulim lim

    u n

    1

    1

    3 5 8 1

    33 5 13 < 1. Theo

    du hiu DAlembert, chui nn

    n

    3

    5 13

    3 hi t. Theo tnh cht v s hi t

    ca chui s th chui cho hi t.

    c) n

    nn

    2

    1 3 2. Ta c un =

    nn 23 2

    > 0 (n =1, 2, 3,...), vy chui cho l

    chui dng ; un+1 = n

    n n

    21

    3 6 1. k =

    n

    n nn

    n nulim lim

    u n n n

    2

    12

    3 2 11

    3 6 1.

    Theo du hiu DAlembert, cha kt lun c s hi t hay phn k

    ca chui cho. Mt khc, chui nn

    v

    1

    = n n

    1

    1 l chui s dng v l

  • 14

    chui Dirichlet phn k. Ta li c:

    n

    n nn

    u nlim lim

    v n

    2

    2

    10

    33 2, hu

    hn. Theo du hiu so snh 2, chui cho phn k.

    7.2.4. Du hiu Cauchy.

    nh l 7.6. Cho chui s dng nn

    u

    1

    c n nnlim u

    = k. Khi :

    (i) Nu k < 1. Th chui nn

    u

    1

    hi t.

    (ii) Nu k > 1. Th chui nn

    u

    1

    phn k.

    (iii) Nu k = 1. Th cha kt lun c v s hi t ca chui nn

    u

    1

    .

    V d 7.8. Xt s hi t ca cc chui: a) n

    n n

    2

    1

    11 , b)

    n

    n

    nn

    1 3 1

    .

    Gii. a) n

    n n

    2

    1

    11 . Ta c un =

    n

    n

    2

    11 > 0 (n =1, 2, 3,...), vy chui

    cho l chui dng k = n

    nn

    n nlim u lim e

    n

    11 > 1.

    Theo du hiu Cauchy, chui cho phn k.

    b) n

    n

    nn

    1 3 1

    . Ta c un = n

    nn

    3 1

    > 0 (n =1, 2, 3,...), vy chui cho

    l chui dng k = n nn n

    nlim u lim

    n

    1

    3 1 3 < 1.

    Theo du hiu Cauchy, chui cho hi t.

    Nhn xt 7.8.

  • 15

    (i) Cc du hiu so snh 1, so snh 2, du hiu DAlembert v du hiu

    Cauchy p dng c xt s hi t ca chui s m bng cch nhn tt

    c cc s hng ca chui s m vi (1).

    (ii) Trn y chng ta trnh by cc iu kin mt chui s dng

    hi t hay phn k, theo th t: du hiu so snh 1, so snh 2, du hiu

    DAlembert v du hiu Cauchy. Tuy nhin, khi p dng chng ta nn i

    theo chu trnh ngc li. Tc l, s dng cc du hiu DAlembert v

    Cauchy trc, nu khng c (k =1) th s dng du hiu so snh 2, cng

    khng c th s dng du hiu so snh 1 nu khng c na th s

    dng iu kin cn chui s hi t. V d sau y khng nh iu .

    V d 7.9. Xt s hi t ca chui n

    nn n e

    2

    1

    1 11 .

    Gii. D dng kim tra c chui trn khng p dng c cc du hiu

    DAlembert v Cauchy (v trong c hai trng hp ta lun tm c k

    =1). Vic s dng cc du hiu so snh 1 v so snh 2 xt s hi t ca

    chui s ny gp rt nhiu kh khn. Mt khc, nnlim u e

    12 0 v:

    tx t

    x tln t tx limlim x x ln lim t tx tn

    n xlim u lim e e e e

    e x

    2 00

    1 11 11 1 12 1 21 11 .

    Nn chui cho phn k.

    7.3. S hi t ca chui s an du

    7.3.1. nh ngha chui s an du.

  • 16

    nh ngha 7.4. Chui s an du l mt chui s c mt trong cc dng

    sau: n nn

    u

    1

    1 hoc n nn

    u

    11

    1 , trong un > 0 (n = 1, 2, 3,...).

    V d 7.9.

    (i) Cc chui s sau y l cc chui s an du: n

    n n

    1

    1,

    n

    n n

    1

    21

    1

    2.

    (ii) Chui s n

    n n

    2

    1

    1

    2khng phi l chui an du v u1 = 1< 0, u2 =

    1

    2> 0.

    Nhn xt 7.9.

    (i) S hng tng qut ca n nn

    u

    1

    1 l (1)nun ch khng phi l un .

    (ii) S hng tng qut ca n nn

    u

    11

    1 l (1)n+1un ch khng phi l un .

    7.3.2. S hi t ca chui s an du.

    nh l 7.7 (nh l Leibnitz). Nu chui s an du n nn

    u

    11

    1 tho

    mn cc iu kin sau:

    (i) u1 u2 u3 ... un ...;

    (ii) nnlim u

    = 0.

    Th chui an du trn hi t v c tng u1.

    Chng minh.

    Vi mi k= 1,2,3,... ta c: ukuk+1 0 (v u1 u2 u3 ... un ...) nn

    S2k = u1 u2 u3 u4 ... u2k u2k

    = (u1 u2) (u3 u4) ... (u2k-1 u2k). (7.7)

    = u1 (u2 u3) ... (u2k-2 u2k-1) u2k u1. (7.8)

  • 17

    T (7.7) v (7.8) suy ra S2k l dy khng gim v b chn trn bi

    u1 khi k . Theo tiu chun tn ti gii hn th hai th tn ti

    kklim S

    2 = I u1. (7.9)

    Mt khc, v nnlim u

    = 0 nn kklim u

    2 1 = 0. M S2k+1= S2k u2k+1. Do

    :

    kklim S

    2 1 = kklim S

    2 kklim u

    2 1 = I 0 = I u1. (7.10)

    T (7.9) v (7.10) suy ra nnlim S

    = I u1. (pcm)

    V d 7.10. Xt s hi t ca chui s n

    n n

    1

    1

    1

    3.

    Gii. Chui s cho l chui s an du vi un = n 1

    3 v ta c:

    u1 = 1

    4 > u2 =

    1

    5 > u3 =

    1

    6 > ....; n

    n nlim u lim

    n

    1

    3 = 0.

    Theo nh l Leibniz, chui s cho hi t v c tng 1

    4.

    Ch 7.3.

    (i) nh l Leibnitz pht biu cho chui an du dng n nn

    u

    11

    1 v l

    iu kin chui n nn

    u

    11

    1 hi t. i vi chui an du dng

    n nn

    u

    1

    1 chng ta ch p dng c nh l Leibnitz sau khi nhn tt c

    cc s hng ca n nn

    u

    1

    1 vi (1), do ch kt lun uc s hi t ca

    n nn

    u

    1

    1 m khng kt lun c n nn

    u

    1

    1 c tng u1.

  • 18

    (ii) i vi chui an du dng n nn

    u

    11

    1 m cc gi thit ca nh l

    Leibnitz ch ng khi n > N (vi N l s nguyn dng no ). Th vn kt

    lun c s hi t ca chui an du nhng khng kt lun c chui

    c tng u1.

    V d 7.11. Xt s hi t ca cc chui s (i) n

    n n

    1

    1, (ii)

    n

    n

    n

    n

    2

    1

    1

    16.

    Gii. (i) Chui s cho l chui s an du vi un = n1

    . Nhn tt c cc

    s hng ca chui s cho vi (1) ta c chui s mi: n

    n n

    1

    1

    1 v ta

    c:

    u1 = 1 > u2 = 1

    2 > u3 =

    1

    3 > ....; n

    n nlim u lim

    n

    1 = 0.

    Theo nh l Leibnitz, chui s n

    n n

    1

    1

    1 hi t v c tng 1. Theo

    tnh cht v s hi t ca chui s suy ra chui s cho hi t.

    (ii) Chui s cho l chui s an du vi un = n

    n 2 16. Nhn tt c cc s

    hng ca chui s cho vi (1) ta c chui s mi: n

    n

    n

    n

    1

    21

    1

    16 v ta

    c:

    nn n

    nlim u lim

    n

    20

    16, un+1 un =

    n n

    n n

    2

    2 2

    160

    1 16 16 (n 4).

  • 19

    Xy dng chui n nn

    v

    11

    1 nh sau: vn = n

    u khi n , , , ;u khi n .

    4 1 2 3 4

    4 Th

    ba chui n

    n

    n

    n

    2

    1

    1

    16,

    n

    n

    n

    n

    1

    21

    1

    16 v n n

    n

    v

    11

    1 cng hi t hoc cng phn

    k (tnh cht v s hi t ca chui s), m n nn

    v

    11

    1 l chui an du

    tho mn nh l Leibnitz nn chui n

    n

    n

    n

    2

    1

    1

    16 hi t.

    Nhn xt 7.10. (i) Nu chui s an du c iu kin (ii) ca nh l

    Leibnitz khng tho mn (tc l, nnlim u

    khng tn ti hoc tn ti nhng

    bng k 0). Th chui s an du phn k v khng tho mn iu kin

    cn mt chui s hi t.

    (ii) Nu chui s an du c iu kin (i) ca nh l Leibnitz khng

    tho mn v iu kin (ii) ca nh l tho mn. Th ta cha th kt lun

    g v s hi t hay phn k ca chui s an du , v nh l Leibnitz ch

    l mt iu kin m khng phi l iu kin cn chui s an du

    hi t. V d sau y s khng nh iu .

    V d 7.12. (a) Cho chui s n

    n n

    1

    1

    1. y l chui s an du hi t. Ta

    c chui s mi: 1 8 31 1

    3002 3

    ... l chui hi t tho mn iu

    kin (ii) nhng khng tho mn iu kin (i) ca nh l Leibnitz.

    (b) Chui: n n

    ... ...

    2 3 4 2 1 2

    1 1 1 1 1 1

    2 3 2 3 32 l chui s an du hi

    t (tng ca hai chui hi t) v l chui tho mn iu kin (ii) nhng

  • 20

    khng tho mn iu kin (i) ca nh l Leibnitz.

    (c) Xt chui s c cho bi: u2k-1= k

    k

    2 21

    2 1, u2k=

    k

    k

    2 11

    2 (k = 1,2,3,

    ...). Chui c th nh sau: 1 k k

    ... ...kk

    2 2 2 11 11 1 1 1

    2 4 23 5 2 1

    = k

    k kk k

    1

    2 2 1

    2 2 1.

    y l chui s an du phn k tho mn iu kin (ii) nhng

    khng tho mn iu kin (i) ca nh l Leibnitz.

    7.4. Chui s bt k

    7.4.1. Chui s tr tuyt i.

    nh ngha 7.5. Cho nn

    u

    1

    l chui s bt k th chui nn

    u

    1

    c gi l

    chui s tr tuyt i ca chui s nn

    u

    1

    .

    Nu chui nn

    u

    1

    hi t cn chui nn

    u

    1

    phn k th chui nn

    u

    1

    c

    gi l chui bn hi t.

    Nu c hai chui nn

    u

    1

    v nn

    u

    1

    u hi t th chui nn

    u

    1

    c gi l

    chui hi t tuyt i.

    V d 7.13. D dng kim tra c cc kt qu sau:

  • 21

    Chui s n

    n n

    1

    1 l chui bn hi t; Chui s

    n

    n n

    2

    1

    1 l chui

    hi t tuyt i.

    7.4.2. Tnh cht.

    nh l 7.8. Nu chui nn

    u

    1

    hi t th chui nn

    u

    1

    cng hi t.

    Nhn xt 7.11.

    kim tra mt chui s c hi t tuyt i hay khng ta ch cn

    kim tra s hi t ca chui tr tuyt i ca n.

    7.5. Chui lu tha

    7.5.1. Chui hm.

    nh ngha 7.6. Cho fn(x) l dy cc hm s xc nh trn min X . Th

    tng tt c cc hm s ca dy hm s trn c gi l mt chui hm s

    trn min X, k hiu l nn

    f x

    1

    . Vy: n nn

    f x f x f x ... f x ...

    1 21

    V d 7.14. n

    x x xln ln x ln ... ln ...

    n n

    1 2

    l mt chui hm trn (0;).

    n

    sinnx sin x sin x ... sinnx ...

    1

    2 l mt chui hm trn

    (;).

    nh ngha 7.7. Cho chui nn

    f x

    1

    cc hm xc nh trn X, x0 X. Th

    nn

    f x

    0

    1

    l mt chui s.Nu chui s ny hi t th chui hm

  • 22

    nn

    f x

    1

    c gi l hi t ti x0 v im x0 c gi l im t ca chui

    hm nn

    f x

    1

    . Tp hp tt c cc im t ca mt chui hm c gi l

    min hi t ca chui hm .

    V d 7.15. Chui nn

    x

    1

    c min hi t l (1;1). Chui n

    sinnx

    1

    hi t ti

    cc im k vi mi k = 1, 2, 3,...

    7.5.2. Chui lu tha.

    nh ngha 7.8. Chui lu tha l mt chui hm s c mt trong cc

    dng sau:

    nn

    n

    a x

    1

    (1), nnn

    a x x

    01

    (2),

    trong x0, an (n =1, 2, 3,...) l cc s thc.

    V d 7.16. nn

    x

    1

    l chui lu tha vi an = 1 ( n =1, 2, 3,...).

    n

    n

    xn

    1

    2

    3 1l chui lu tha vi an = n

    1

    3 1 (n =1, 2, 3,...).

    Nhn xt 7.12.

    (i) Chui lu tha dng (1) lun hi t ti x = 0, chui lu tha dng

    (2) lun hi t ti x = x0.

    (ii) Chui lu tha dng (2) lun a c v dng (1) bng cch t

    y = x x0. V vy xt s hi t ca chui lu tha chng ta ch cn xt s

    hi t ca chui lu tha dng (1).

  • 23

    7.6. S hi t ca chui lu tha

    7.6.1. nh l Abel.

    nh l 7.9. Nu chui lu tha nnn

    a x

    1

    hi t ti x0 0 th chui lu tha

    hi t tuyt i ti mi x mx 0 ,N0> 0: n > N0 n

    na x0 M.

    Ti x = 0 chui nnn

    a x

    1

    hi t v c tng bng 0.

    Vi x 0, ta c: anxn =

    n nn

    nx x

    a x Mx x

    00 0

    ( n > N0).

    M n

    n

    xx

    1 0

    l dng v l chui nhn hi t khi x x0. Vy theo du

    hiu so snh 1 ca chui s dng, vi mi x m x x0 thn

    nn

    n N

    a x

    0 1

    hi

    t. Theo tnh cht v s hi t ca chui s th chui n

    nn

    n

    a x

    1

    hi t. Do

    , chui nnn

    a x

    1

    hi t tuyt i khi x x0.(pcm)

    H qu 7.9.1. Nu chui lu tha nnn

    a x

    1

    phn k ti x1 0 th chui lu

    tha phn k ti mi x mx> x1.

  • 24

    Chng minh.

    Gi s tn ti x0 sao cho: x0> x1v chui n

    nn

    a x

    1

    hi t ti x0. Th

    x1 0, theo nh l Abel chui n

    nn

    a x

    1

    hi t tuyt i khi x x0. Do

    chui hi t ti x1. Tri vi gi thit, suy ra (pcm)

    Nhn xt 7.13. i vi chui lu tha m bng cch no chng ta tm

    c hai im x0, x1 0 (x0 < x1); ti x0 chui hi t, ti x1 chui phn k.

    Th kt lun c chui hi t trn (x0; x0), phn k trn (;x1)

    (x1;), cn trn [x1; x0] v [x0;x1] phi xt ring.

    Vn t ra l vi mt chui lu liu c hay khng mt s a > 0 sao

    cho chui hi t khi x < a v phn k khi x > a?

    Ngi ta chng minh c vi mi chui lu tha lun tm c

    mt s r 0 sao cho chui hi t khi x < r v phn k khi x > r.

    nh ngha 7.8. Nu tn ti s r 0 sao cho chui lu tha nnn

    a x

    1

    hi t

    khi x < r v phn k khi x > r (khi r > 0). Th r c gi l bn knh hi

    t ca chui lu tha nnn

    a x

    1

    .

    7.6.2. Phng php tm bn knh hi t ca chui lu tha.

    Da vo cc du hiu D Alembert v Cauchy v s hi t ca chui

    s dng ngi ta chng minh c nh l sau:

    nh l 7.10. Nu chui lu tha nnn

    a x

    1

    c nn

    n

    alim k

    a

    1 hoc

    nnn

    lim a k

    . Th bn knh hi t r ca chui lu tha c tnh theo

  • 25

    cng thc:

    r =

    khi k ;

    khi k ;

    khi k .k

    0

    0

    10

    V d 7.16. Tm min hi t ca cc chui sau:

    a) n

    n

    xn

    1 3 1, b)

    n

    n

    x

    n

    2

    1

    1, c)

    nn

    n

    nx

    n

    2

    1

    12

    2 1.

    Gii. a) n

    n

    xn

    1 3 1. y l chui lu tha vi an = n

    1

    3 1> 0 ( n = 1, 2,

    3,...) v: k = nn n

    n

    a nlim lim

    a n

    1 3 2 1

    3 1. Vy bn knh hi t ca chui

    cho l r = 1. Hay chui cho hi t khi x < 1 v phn k khi x > 1.

    Ti x = 1, ta c chui s: n n

    1

    1

    3 1. y l chui s dng phn k (so

    snh vi chui n n

    1

    1). Vy chui lu tha cho phn k ti x = 1.

    Ti x = 1, ta c chui s: n

    n n

    1

    1

    3 1. y l chui s an du hi t

    (s dng nh l Leibnitz). Vy chui lu tha cho hi t ti x = 1.

    Vy min hi t ca chui lu tha cho l: [1; 1).

    b) n

    n

    x

    n

    2

    1

    1. y l chui lu tha vi an = n2

    1> 0 ( n = 1, 2, 3,...) v:

    k = n

    n nn

    nalim lim

    a n

    2

    12

    11 .

  • 26

    Vy bn knh hi t ca chui cho l r = 1. Hay chui cho hi t

    khi x 1 < 1 v phn k khi x 1 > 1.

    Ti x 1 = 1, ta c chui s: n n

    2

    1

    1. y l chui s dng v l chui

    Dirichlet hi t. Vy chui lu tha cho hi t ti x 1 = 1.

    Ti x 1 = 1, ta c chui s: n

    n n

    2

    1

    1. C

    n

    n n

    2

    1

    1=

    n n

    2

    1

    1 hi t

    nn chui n

    n n

    2

    1

    1 hi t. Vy min hi t ca chui lu tha cho l:

    x 1[1; 1] x [2; 0].

    c) n

    n

    n

    nx

    n

    2

    1

    12

    2 1. y l chui lu tha vi an =

    nnn

    1

    2 1> 0 ( n =

    1, 2, 3,...) v: k = n nn n

    nlim a lim

    n

    1 1

    2 1 2.

    Vy bn knh hi t ca chui cho l r = 2. Hay chui cho hi t

    khi (x 2)2 < 2 v phn k khi (x 2)2 > 2.

    Ti (x 2)2 = 2, ta c chui s: n

    n

    nn

    1

    1

    2 1. y l chui s dng v l

    chui hi t (s dng du hiu Cauchy). Vy chui lu tha cho hi t

    ti (x 2)2 = 2.

    Ti (x2)2=2 v nghim. Vy min hi t ca chui lu tha cho l:

    0 (x 2)2 2 2 x 2 2 2 2 x 2 2 .

    V d 7.17. Tm min hi t ca cc chui sau:

    a) nn

    n! x

    1

    , b) n

    n

    xn !

    1

    1, c) n

    n

    nx

    n

    3

    1

    2 132

    2.

  • 27

    Gii. a) nn

    n! x

    1

    l chui lu tha vi an = n! > 0 ( n = 1, 2, 3,...) v:

    k = n

    n n nn

    n !alim lim lim n

    a n!

    1

    11 .

    Vy bn knh hi t ca chui cho l r = 0 hay chui lu tha

    cho hi t ti duy nht im x = 0.

    b) n

    n

    xn !

    1

    1 l chui lu tha vi an = n!

    1 > 0 ( n = 1, 2, 3,...) v:

    k =

    n

    n n nn

    a n!lim lim lim

    a n ! n

    1 1 0

    1 1.

    Vy bn knh hi t ca chui cho l r = hay chui lu tha cho

    hi t ti mi im.

    c) nn

    nx

    n

    3

    1

    2 132

    2 l chui lu tha vi an =

    nn

    32 13

    2 > 0 ( n = 7, 8, 9,...)

    v: k =

    n

    n nn

    n nalim lim

    a n n

    3

    13

    2 2 131

    1 2 2 11.

    Vy bn knh hi t ca chui cho l r = 1. Hay chui cho hi t

    khi x 2 < 1 v phn k khi x 2 > 1.

    Ti x 2 = 1, ta c chui s: n

    nn

    31

    2 13

    2. y khng phi l chui s

    dng, nhng n

    nn

    37

    2 13

    2 l chui s dng hi t (so snh vi

    n n

    2

    7

    1). Nn

    n

    nn

    31

    2 13

    2 l chui s hi t . Vy chui lu tha cho hi t ti x 2 =

    1.

  • 28

    Ti x 2 = 1, ta c chui s: nn

    nn

    3

    1

    2 131

    2. y khng phi l

    chui s an du v s hng th 6 bng 1

    218 v s hng th 7 bng

    1

    345,

    nhng chui nn

    nn

    3

    7

    2 131

    2 l chui s an du hi t (theo Leibniz). Vy

    chui nn

    nn

    3

    1

    2 131

    2 hi t hay chui lu tha cho hi t ti x 2 = 1.

    Vy min hi t ca chui lu tha cho l: [3; 1].

    Nhn xt 7.14. Cho chui lu tha nnn

    a x

    7

    .

    Ti x = 0 chui hi t v c tng bng 0.

    Ti x 0. Nu tn ti s N0 nguyn, dng sao cho an 0 ( n > N0) v

    tn ti gii hn:

    n

    n nnn n

    nn

    a x alim x lim

    aa x

    11 1 = k(x), (7.11)

    hoc n nn n nn nlim a x x lim a

    = k(x). (7.12)

    Th ta c th s dng du hiu DAlembert hoc du hiu Cauchy i

    vi chui s dng tm min hi t ca lu tha cho nh sau:

    Vi x 0. V an 0 (n>N0) nn chui n

    nn N

    a x

    0 1

    l chui s dng.

    Nu gii hn (7.11) [hoc (7.12)] tn ti th theo du hiu DAlembert

    (hoc du hiu Cauchy) chui nnn N

    a x

    0 1

    hi t khi k(x) < 1 v phn k

    khi k(x) > 1. T c th suy ra c s hi t ca chui lu tha cho.

  • 29

    V d 7.18. Tm min hi t ca chui: nnn

    nx

    1

    2 1

    3.

    Gii. Chui cho l chui lu tha vi an = nn 2 13

    > 0 ( n = 1, 2, 3, ...)

    chui hi t ti x = 0 v c tng bng 0.

    Ti mi x 0 ta c: nnn

    nx

    1

    2 1

    3 l chui s dng v

    k(x) =

    nnn n

    n nn n nnn

    xna x alim x lim x lim

    aa x n

    11 1

    1

    2 1 3

    33 2 1.

    Theo du hiu DAlembert chui nnn

    nx

    1

    2 1

    3 hi t khi

    x 1

    3, phn

    k khi x 1

    3. Do , chui lu tha cho hi t tuyt i khi x (3; 3).

    Vi mi x > 3 chui lu tha cho l chui s dng c k(x) > 1.

    Theo du hiu DAlembert chui lu tha cho phn k.

    Vi mi x < 3 chui lu tha cho l chui s an du v vit c

    di dng: nnn

    nx

    1

    2 1

    3 = n nn

    n

    nx

    1

    2 11

    3 = n n

    n

    u x

    1

    1 , vi

    un(x) = n n

    n n

    n nx

    2 1 2 13

    3 3 = 2n 1 nn nlim u x lim n 2 1 .

    Vy iu kin (ii) ca nh l Leibnitz khng tho mn. Hay chui lu

    tha cho phn k khi x < 3.

    Vi x = 3 ta c chui s n

    n

    1

    2 1 nn nlim u lim n 2 1

    chui phn k, hay chui lu tha phn k ti x = 3.

  • 30

    Vi x = 3 ta c chui s nn

    n

    1

    1 2 1 .

    nnn nlim u lim n 1 2 1 khng tn ti.

    chui phn k, hay chui lu tha phn k ti x = 3.

    MHT ca chui lu tha cho l (3;3).

    7.6.3. o hm v tch phn tng s hng ca chui.

    nh l 7. 11. Nu chui lu tha nnn

    a x

    1

    hi t trn min X v vi mi x

    X ta c nnn

    a x

    1

    = S(x). Th ta c th o hm v tch phn tng s hng

    ca chui. C th: n nn nn n

    a x na x S x

    1

    1 1

    ( x X);

    n

    n nn

    n n

    a xa x dx S x dx

    n

    1

    1 1 1.

    V d 7.18. Tnh cc tng sau:

    (i) S1(x) = 1 2x 3x2 4x3 ....

    (ii) S2(x) = x2 2x3 3x4 4x5 ....

    (iii) S3(x) = x 1

    2x2

    1

    3x3

    1

    4x4 ...

    Gii. Ta c nn

    x

    1

    l chui lu tha hi t v nn

    xx

    x

    1 1

    (khi 1 < x < 1).

    Theo nh l 7.11, o hm hai v ca ng thc trn ta c:

    S1(x) = 1 2x 3x2 4x3 .... =

    x 21

    1 (x (1;1)).

    Nhn c hai v ca ng thc trn vi x2 ta c:

  • 31

    S2(x) = x2 2x3 3x4 4x5 .... =

    x

    x

    2

    21

    (x (1;1)).

    Mt khc, n nn

    x x x x x .... x ...

    2 3 40

    1 l chui lu

    tha hi t v nn

    xx

    0

    1

    1 (x (1;1)). Theo nh l 7.11, tch phn

    hai v ca ng thc trn ta c:

    S3(x) = x 1

    2x2

    1

    3x3

    1

    4x4 ... =

    dxln x C

    x

    11 (x (1;1)).

    7.6.4. Khai trin hm s thnh chui lu tha.

    nh l 7. 12. Nu hm f(x) c o hm mi cp ti x0 v o hm cc cp

    ca n lin tc trong mt ln cn no ca x0 th n khai trin c

    thnh chui lu tha ti x0 . Khi ,

    f(x) = kkk

    f x x xk !

    0 00

    1.

    V d 7.19. Khai trin cc hm s sau thnh chui lu tha cho tng

    trng hp c th:

    (i) f(x) = sin x theo lu tha ca x.

    (ii) f(x) = cos x theo lu tha ca x.

    (iii) f(x) = ln x theo lu tha ca x 1.

    Gii. (i) f(x) = sin x l hm c o hm mi cp ti x = 0 v

    f(n)(x) = sin x n 2 . Nn f(x) = sin x khai trin c thnh chui lu tha ti x = 0 v

    f(x) = sin x = nnsinx x

    x ... x ...! ! n !

    3 52

    3 5

  • 32

    (ii) f(x) = cos x l hm c o hm mi cp ti x = 0 v

    f(n)(x) = cos x n 2 . Nn f(x) = cos x khai trin c thnh chui lu tha ti x = 0 v

    f(x) = cos x = 1 nncosx x

    ... x ...! ! n !

    2 42

    2 4

    (iii) f(x) = ln x l hm c o hm mi cp ti x = 1 v

    f (x) = xx

    11

    , f (1) =1, f(n)(x) = (1)n1(n1)! xn, f(n)(1) = (1)n1(n1)!.

    Nn f(x) = ln x khai trin c thnh chui lu tha ti x = 1 v

    f(x) = ln x = (x1) (x1)2 x x ....! !

    3 41 1

    1 12 3

    Cu hi n tp chng 7

    Cu 1: nh ngha chui s; nh ngha tng ca chui s.

    Cu 2: nh ngha s hi t ca chui s. Nu cc tnh cht v s hi t

    ca chui s; chng minh tnh cht th 3 v s hi t ca chui s.

    Cu 3: Cho hai chui s n nn n

    u A , v B

    1 1

    . Khi c th ni g v s hi

    t ca chui n nn

    u v

    1

    nu:

    a) C hai chui (A) v (B) u hi t?

    b) Mt trong hai chui hi t cn chui kia phn k?

    c) C hai chui (A) v (B) u phn k?

    Cu 4: 1. Pht biu iu kin cn v Cauchy v s hi t ca chui s,

    t suy ra iu kin cn mt chui s hi t.

  • 33

    2. Cho chui s nn

    u

    1

    c nnlim u a

    0 hoc khng tn ti nnlim u

    th c kt

    lun g v s hi t hay phn k ca chui s cho?

    Cu 5: nh ngha chui s dng. Pht biu cc du hiu: So snh 1, So

    snh 2, Dalambe v Cauchy v s hi t ca chui s dng. Chng minh

    du hiu so snh 2; mi du hiu l diu kin cn hay iu kin hay

    iu kin cn v mt chui s dng hi t?

    Cu 6: Cc du hiu: So snh 1, So snh 2, Dalambe v Cauchy v s hi

    t ca chui s dng c p dng xt s hi t ca cc chui s sau y

    c khng? ti sao?

    a) Chui s m.

    b) Chui s khng m.

    Cu 7: Cho chui s dng nn

    a

    1

    hi t v nn n

    blim

    a 1. Th c th khng

    nh chui nn

    b

    1

    cng hi t hay khng? ti sao?

    Cu 8: Cho hai chui s n nn n

    u A , v B

    1 1

    l cc chui s hi t, ng

    thi n n nu t v n , ,... 1 2 . Chng minh rng chui s nn

    t

    1

    (C) cng hi

    t.

    Nu cc chui (A) v (B) cng phn k th c th ni g v s hi t

    ca chui (C)?

    Cu 9: Cho nn

    a

    1

    l chui s khng i du v tho mn iu kin:

    nnlim na k .

    0

  • 34

    Th chui cho phn k.

    Cu 10: Pht biu v chng minh nh l Lepnit v s hi t ca chui s

    an du. nh l Lepnit c ng cho chui an du n nn

    u

    1

    1 khng? ti

    sao? Nu c t nht mt trong hai gi thit ca nh l Lepnit v s hi t

    ca chui s an du khng c tho mn th nh l cn ng na

    khng? Ly v d minh ho.

    Cu 11: Cho chui s bt k nn

    u

    1

    . Nu mi lin h gia s hi t ca

    chui s nn

    u

    1

    v s hi t ca chui s nn

    u

    1

    . Ly v d minh ho.

    Cu 12: Nu cc nh ngha v: chui hm; chui lu tha; im t v

    min hi t ca chui lu tha.

    Cu 13: Pht biu v chng minh nh l Abel v s hi t ca chui lu

    tha. T hy chng t rng nu chui lu tha nnn

    a x

    1

    phn k ti im

    x0 0 th n phn k ti mi x m x > x0. mi

    Cu 14: nh ngha bn knh hi t ca chui lu tha. Nu phng php

    tm bn knh hi t ca chui lu tha.

    Cu 15: Nu iu kin c th o hm v tch phn tng s hng ca

    chui lu tha trn min hi t ca n. p dng kt qu trn vo vic tnh

    tng.