title text - astroweb.case.eduastroweb.case.edu/bjanesh/astr222/notes/20200325.pdf · 25-03-2020...

14
Title Text

Upload: others

Post on 27-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Title Text - astroweb.case.eduastroweb.case.edu/bjanesh/astr222/notes/20200325.pdf · 25-03-2020  · Title Text Something has to "seed" this perturbation. Once it is seeded, the

Title Text

Page 2: Title Text - astroweb.case.eduastroweb.case.edu/bjanesh/astr222/notes/20200325.pdf · 25-03-2020  · Title Text Something has to "seed" this perturbation. Once it is seeded, the

Title Text

Spiral arms come in different "flavors":

• ~10% grand-design (two well-defined spiral arms)

• ~60% multiple-arm

• ~30% flocculent spirals (no well-defined arms at all)

Spiral arms are sites of strong star formation: we see dust, HII regions, blue stars, lots of gas. In fact, spiral arms are much more prominent in blue light than in red.

But what are they? How do they form? How long do they last?

Page 3: Title Text - astroweb.case.eduastroweb.case.edu/bjanesh/astr222/notes/20200325.pdf · 25-03-2020  · Title Text Something has to "seed" this perturbation. Once it is seeded, the

Title Text

solid body wind up

angular speed = constant linear speed increases with radius

angular speed increases with radius linear speed ~ constant

Page 4: Title Text - astroweb.case.eduastroweb.case.edu/bjanesh/astr222/notes/20200325.pdf · 25-03-2020  · Title Text Something has to "seed" this perturbation. Once it is seeded, the

22

Page 5: Title Text - astroweb.case.eduastroweb.case.edu/bjanesh/astr222/notes/20200325.pdf · 25-03-2020  · Title Text Something has to "seed" this perturbation. Once it is seeded, the

23

Page 6: Title Text - astroweb.case.eduastroweb.case.edu/bjanesh/astr222/notes/20200325.pdf · 25-03-2020  · Title Text Something has to "seed" this perturbation. Once it is seeded, the

Title Text

angular PATTERN speed ~ constant linear speed ~ constant

density wave

What happens when a star encounters the density wave? • As it nears the wave, it speeds up towards

the density wave. Why? • After it passes through the wave, it slows

down and leaves very slowly. Why? • So the star spends more time around the

density wave than it otherwise would. We see this as an enhanced density of stars -- a spiral arm!

How does this help us with the winding problem?

Page 7: Title Text - astroweb.case.eduastroweb.case.edu/bjanesh/astr222/notes/20200325.pdf · 25-03-2020  · Title Text Something has to "seed" this perturbation. Once it is seeded, the

Title Text

angular PATTERN speed ~ constant linear speed ~ constant

density wave

Why is there so much more star formation in spiral arms?

One idea: as gas clouds move into the density wave, the local mass density increases. Since the criteria for cloud collapse (Jeans mass) depends on density, a higher density makes it more likely for clouds to collapse and form stars. Another idea: as clouds get swept up by the spiral arms, they collide with one another and drive shock waves through the gas, which in turn causes the gas to collapse and form stars.

Page 8: Title Text - astroweb.case.eduastroweb.case.edu/bjanesh/astr222/notes/20200325.pdf · 25-03-2020  · Title Text Something has to "seed" this perturbation. Once it is seeded, the

Title Text

angular PATTERN speed ~ constant linear speed ~ constant

density wave

Why is there so much more star formation in spiral arms?

Page 9: Title Text - astroweb.case.eduastroweb.case.edu/bjanesh/astr222/notes/20200325.pdf · 25-03-2020  · Title Text Something has to "seed" this perturbation. Once it is seeded, the

Title Text

Something has to "seed" this perturbation. Once it is seeded, the self-gravity of the disk will amplify the perturbation and make it grow. Ideas:

Initial non-axisymmetry in the disk and/or halo (ie galaxy formation processes) Galaxy encounters (environmental processes)

Here's an example of how an encounter between a big galaxy and a small satellite companion can drive spiral structure —>

The answer is that we don’t really know for sure though: we can produce spiral arms many different ways!

Page 10: Title Text - astroweb.case.eduastroweb.case.edu/bjanesh/astr222/notes/20200325.pdf · 25-03-2020  · Title Text Something has to "seed" this perturbation. Once it is seeded, the

Title TextEllipticals

log I ! r1/4

Many ellipticals have surface brightness profiles that follow

Characterized by effective radius (radius that contains 50% of light)

and mean surface brightness (inside effective radius)

re

!Ie" or !!e"

Page 11: Title Text - astroweb.case.eduastroweb.case.edu/bjanesh/astr222/notes/20200325.pdf · 25-03-2020  · Title Text Something has to "seed" this perturbation. Once it is seeded, the

29

Most ellipticals do not exactly follow an r¼ law, and can instead be fit by the generalized “Sersic profile”

log I ! r1/n

where n is the Sersic index

Page 12: Title Text - astroweb.case.eduastroweb.case.edu/bjanesh/astr222/notes/20200325.pdf · 25-03-2020  · Title Text Something has to "seed" this perturbation. Once it is seeded, the

Title Text

M87 has n ~ 10-11

Page 13: Title Text - astroweb.case.eduastroweb.case.edu/bjanesh/astr222/notes/20200325.pdf · 25-03-2020  · Title Text Something has to "seed" this perturbation. Once it is seeded, the

31

Stellar population synthesis tracks: B-V color vs age, for an evolving "single burst"

population of stars with different metallicities:

So two things make a stellar population red: old age, and high metallicity. The colors of a galaxy cannot distinguish between the two

without already knowing age.

Page 14: Title Text - astroweb.case.eduastroweb.case.edu/bjanesh/astr222/notes/20200325.pdf · 25-03-2020  · Title Text Something has to "seed" this perturbation. Once it is seeded, the

32

Elliptical galaxies (like spirals) show a color-

luminosity relationship: brighter, more massive galaxies are redder. In

elliptical galaxies, this is well-established to be a

metallicity effect, not age. So brighter galaxies are more

metal-rich.

The differences between elliptical galaxies and star

forming spirals can be seen in plots of color versus

luminosity or stellar mass: they form a distinct "red

sequence" which is offset from the "blue cloud" of star

forming galaxies: