time evolution of qgp via photon observables

23
TIME EVOLUTION OF QGP VIA PHOTON OBSERVABLES PRESENTER: IMRE MÁJER – EÖTVÖS UNIVERSITY PHYSICS STUDENT SUPERVISOR: MÁTÉ CSANÁD – DEPARTMENT OF ATOMIC PHYSICS ZIMÁNYI WINTER SCHOOL 2011

Upload: turner

Post on 19-Jan-2016

32 views

Category:

Documents


1 download

DESCRIPTION

Time evolution of QGP via photon observables. Presenter : Imre Májer – Eötvös University Physics student Supervisor : Máté Csanád – Department of Atomic Physics. Zimányi Winter School 2011. Rhic milestones. New, strongly interacting medium ( Nucl.Phys ., A757:184–283, 2005 ) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Time evolution of QGP via photon observables

TIME EVOLUTION OF QGP VIA PHOTON OBSERVABLES

PRESENTER: IMRE MÁJER – EÖTVÖS UNIVERSITY PHYSICS STUDENT SUPERVISOR: MÁTÉ CSANÁD – DEPARTMENT OF ATOMIC PHYSICS

ZIMÁNYI WINTER SCHOOL 2011

Page 2: Time evolution of QGP via photon observables

2

RHIC MILESTONES

New, strongly interacting medium(Nucl.Phys., A757:184–283, 2005)

Collective behaviour (Phys.Rev.Lett., 91:182301, 2003)

Perfect fluid hydro(Phys.Rev.Lett., 98:172301, 2007)

Quark degrees of freedom(Phys.Rev.Lett. 98, 162301,2007)

Direct photon data, time evolution can be analyzed(Phys.Rev.Lett., 104:132301, 2010)

Page 3: Time evolution of QGP via photon observables

3

TIME DEVELOPMENT - SPECTRA

freeze-out

expansion, cooling

Photon spectrum: information on the time development

Thermalization time Equation of state Initial

temperature

• Freeze-out time• Freeze-out temperature• Expansion at freeze-out

Hadronic spectrum information on the

final state

thermalization

Page 4: Time evolution of QGP via photon observables

4

SPECTRA INFORMATION

Physical quantities we can get from different spectra: Hadronic spectra

Freeze-out temperature () Freeze-out time () Freeze-out expansion velocities (, , , , )

Photon spectra Equation of state () Thermalization time () Initial temperature ()

Page 5: Time evolution of QGP via photon observables

5

PHYSICAL QUANTITIES

1.• Source function for a particle type • Unknown functions (, , , )

2.• Hydrodynamic model• We get the unknown functions (, , , )

3.• Observables: spectra • Free parameters are the physical quantities (eg. , , , …)

4.• Comparing to data• Fitting the spectra free parameters

How do we get the physical quantities describing the system?

Page 6: Time evolution of QGP via photon observables

6

The probability of particle creation at a given place and time with a given momentum:

Photons: bosons Bose-Einstein distribution

– Cooper-Frye factor gives the integration measure

Integrate the source function: invariant momentum distribution

One of the most important observable!

1. SOURCE FUNCTION 2. 3. 4.

Page 7: Time evolution of QGP via photon observables

7

Relativistic hydro for perfect fluids:

Equation of state ()

Assuming an avarage constant

Ideal solution: Relativistic

1+3 dimensional

Realistic (eg. ellipsoidal) geometry

Anisotropic Hubble-flow ( const.) after some time

Accelerating at the start of the time development

1. 2. HYDRODYNAMICS 3. 4.

Page 8: Time evolution of QGP via photon observables

8

Solutions Basic properties Equation of state

Landau-Khalatnyikov 1+1D, accelerating, implicit

Hwa-Björken1+1D, non-accelerating,

estimate of the initial energy density

Csörgő, Nagy, CsanádPhys.Rev.C77:024908, 2008

1+1D / 1+3D spherical symmetry, accelerating

Bialas et al.Phys. Rev. C76, 054901

(2007).

1+1D, Between Hwa-Björken and Landau-Khalatnyikov

Csörgő, Csernai, Hama, Kodama

Heavy Ion Phys., A21:73–84, 2004

1+3D, ellipsoidal symmetry, non-accelerating

Some known solutions:

1. 2. HYDRODYNAMICS 3. 4.

Page 9: Time evolution of QGP via photon observables

9

The examined solution (Csörgő et al., 2004): Relativistic, 1+3 dimensional

Scaling parameter – ellipsoidal symmetry:

Arbitrary function of the scaling parameter: is the good temperature gradient

Hubble-flow:

Non-accelerating:

1. 2. HYDRODYNAMICS 3. 4.

Page 10: Time evolution of QGP via photon observables

10

3D:

2D:

Fourier series of the azimuthal distribution function

Inverse Fourier-transform transverse momentum distribution and elliptic flow

Bose-Einstein correlation:

correlation radii (HBT radii)

– rapidity()

1. 2. 4.3. OBSERVABLES

Page 11: Time evolution of QGP via photon observables

11

Parameter Symbol Value Type

Freeze-out temperature MeV fixed by hadron spectrum

Freeze-out time fm/c fixed by hadron spectrum

Excentricity fixed by hadron spectrum

Transverse expansion fixed by hadron spectrum

Longitudinal expansion fixed by hadron spectrum

Compressibility fitted

Initial time fm/c acceptable interval

Number of datapoints

Fitted parameters

Degrees of freedom NDF

Chi square

Confidence rate

Properties of the fit:

Fixed by hadron spectrum fit: (M. Csanád – M. Vargyas: Eur.Phys.J., A44:473–478, 2010.)

1. 2. 3. 4. COMPARING TO DATA

Page 12: Time evolution of QGP via photon observables

12

Fitting to 0-92% centrality PHENIX data:

EoS from photon spectra:

PHOTON MOMENTUM DISTRIBUTION

Page 13: Time evolution of QGP via photon observables

13

Fixed from hadronic observables

Determined from photon spectra

With and , hydro gives us the initial temperature:

𝑇 𝑖>507±12MeV

QGP INITIAL TEMPERATURE

Page 14: Time evolution of QGP via photon observables

14

Elliptic flow from PHENIX data [arXiv:1105.4126]: Many models fail

Non-hydro effects from 2 GeV

Sign change possible

PHOTON ELLIPTIC FLOW

Page 15: Time evolution of QGP via photon observables

15

Rout/Rside = 1 for hadrons

Rout Rside here, different time evolution!

BOSE-EINSTEIN CORRELATIONHBT radii at freeze-out time ():

Page 16: Time evolution of QGP via photon observables

16

FURTHER ANALYSISOther microscopic models: additional scaling with needed

with (or if velocity is temperature dependent)

Our model already Examined with use of additional minor change, systematic error

N=0

N=1

N=2

N=3

𝒄𝒔=𝟎 .𝟑𝟔 ±𝟎 .𝟎𝟐𝒔𝒕𝒂𝒕 ±𝟎 .𝟎𝟒𝒔𝒚𝒔

𝑻 𝒊>𝟓𝟎𝟕±𝟏𝟐𝒔𝒕𝒂𝒕±𝟗𝟎𝒔𝒚𝒔MeV

Page 17: Time evolution of QGP via photon observables

17

SUMMARY 1+3D realistic relativistic hydro model without acceleration

Calculated , and HBT radii for photon source

Fitted with freeze-out parameters fixed by hadron solution

Important new parameters: EoS and initial temperature:

MeV

Corresponds to other theories (R. A. Lacey, A. Taranenko., PoS, CFRNC2006:021, 2006: ; A. Adare et al., Phys.Rev.Lett., 104:132301, 2010: )

𝒄𝒔=𝟎 .𝟑𝟔 ±𝟎 .𝟎𝟐𝒔𝒕𝒂𝒕 ±𝟎 .𝟎𝟒𝒔𝒚𝒔

Page 18: Time evolution of QGP via photon observables

THANK YOU FOR YOUR ATTENTION!

Page 19: Time evolution of QGP via photon observables

19

The exact analitic result of the second order Gaussian approximation:

are the coefficients of the first kind modified Bessel-functions

THE ANALYTIC SOLUTION

Page 20: Time evolution of QGP via photon observables

20

Sensitivity to EoS

Small dependence on initial time

DEPENDENCIES OF N1(pt)

Page 21: Time evolution of QGP via photon observables

21

DEPENDENCIES OF v2(pt)

Initial time

EoS

Eccentricity

Page 22: Time evolution of QGP via photon observables

22

SIGN CHANGE OF v2 AT LOW pt-S

Page 23: Time evolution of QGP via photon observables

23

AZIMUTHAL DEPENDENCE OF HBT RADII