time-delayed feedback control of complex nonlinear systems

50
TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS Eckehard Schöll Institut für Theoretische Physik and Sfb 555 “Complex Nonlinear Processes” Technische Universität Berlin Germany http://www.itp.tu- berlin.de/schoell Net-Works 2008 Pamplona 10.6.2008

Upload: khalil

Post on 24-Jan-2016

37 views

Category:

Documents


1 download

DESCRIPTION

Net-Works 2008 Pamplona 10.6.2008. TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS. Eckehard Schöll. Institut für Theoretische Physik and Sfb 555 “Complex Nonlinear Processes” Technische Universität Berlin Germany. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Eckehard Schöll

Institut für Theoretische Physikand

Sfb 555 “Complex Nonlinear Processes”Technische Universität Berlin

Germany

http://www.itp.tu-berlin.de/schoell

Net-Works 2008 Pamplona 10.6.2008

Page 2: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

OutlineOutline

Introduction: Time-delayed feedback controlTime-delayed feedback control of nonlinear systems

control of deterministic statescontrol of noise-induced oscillations application: lasers, semiconductor nanostructures

Neural systems:Neural systems: control of coherence of neurons and control of coherence of neurons and synchronization of coupled neuronssynchronization of coupled neurons

delay-coupled neuronsdelay-coupled neurons delayed self-feedbackdelayed self-feedback

Control of excitation pulses in Control of excitation pulses in spatio-temporal systemsspatio-temporal systems:: migraine, stroke migraine, stroke non-local instantaneous feedbacknon-local instantaneous feedback time-delayed feedback time-delayed feedback

Page 3: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Why is delay interesting in dynamics?Why is delay interesting in dynamics?

Delay increases the dimension of a differential equation to infinity:

delay generates infinitely many eigenmodes

Delay has been studied in Delay has been studied in classical control theoryclassical control theory and and mechanical engineeringmechanical engineering for a long time for a long time

Simple equation produces very Simple equation produces very complexcomplex behavior behavior

Page 4: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Delay is ubiquitousDelay is ubiquitous

mechanical systems: inertia

electronic systems: electronic systems: capacitive effects capacitive effects ((=RC)=RC) latency time latency time due to processingdue to processing

biological systems: biological systems: cell cycle timecell cycle time biological clocksbiological clocks

neural networks: neural networks: delayed coupling, delayed feedbackdelayed coupling, delayed feedback

optical systems: optical systems: signal transmission timessignal transmission times travelling waves + reflectionstravelling waves + reflections

laser coupled to external cavity (Fabry-laser coupled to external cavity (Fabry-Perot)Perot)multisection lasermultisection lasersemiconductor optical amplifier (SOA)semiconductor optical amplifier (SOA)

Page 5: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Time delayed feedback control methodsTime delayed feedback control methods

Originally invented for controlling chaos (Pyragas 1992): stabilize unstable periodic orbits embedded in a chaotic attractor

More general: More general: stabilization of stabilization of unstable periodic or unstable periodic or stationary statesstationary states in nonlinear dynamic systems in nonlinear dynamic systems

Application to Application to spatio-temporal patterns:spatio-temporal patterns: Partial differential equationsPartial differential equations

Delay can Delay can induce or suppressinduce or suppress instabilities instabilities deterministic delay differential equationsdeterministic delay differential equationsstochastic delay differential equationsstochastic delay differential equations

Page 6: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

PublishedOctober 2007

Scope has considerably widened

Page 7: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Time-delayed feedback control Time-delayed feedback control of deterministic systemsof deterministic systems

Time-delayed feedback (Pyragas 1992):Time-delayed feedback (Pyragas 1992):

Stabilisation of unstable periodic orbits Stabilisation of unstable periodic orbits or unstable fixed points or space-time patterns or unstable fixed points or space-time patterns

Time-delay autosynchronisation(TDAS)

Extended time-delay autosynchronisation(ETDAS) (Socolar et al 1994)

)()1((0

txtxRK

)}()({ txtxK

deterministic chaosdeterministic chaosdeterministic chaosdeterministic chaos

=T=T=T=T

Many other schemes

Page 8: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Time-delayed feedback control of deterministic systemsTime-delayed feedback control of deterministic systems

stability is measured byFloquet exponent : x ~ exp(t)or Floquet multiplier =exp(T)

Page 9: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

b complex

(1 - )

Beyond Odd Number LimitationBeyond Odd Number Limitation

Page 10: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Example of all-optical time-delayed Example of all-optical time-delayed feedback control in semiconductor laserfeedback control in semiconductor laser

Optical feedback:Optical feedback:

latencynlatency

ni

nin

n

nib

ntt

tEetEeRKetE

,,

)()()(

00

10

||

Stabilisationof fixed point:Schikora, Hövel, Wünsche, Schöll, Henneberger, PRL 97, 213902 (2006)

Laser: excitable unit, may be coupled to others to form network motif

Page 11: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Stabilization of cw emission:Stabilization of cw emission:Domain of control of unstable fixed pointDomain of control of unstable fixed point

above Hopf bifurcation above Hopf bifurcation

||

Schikora, Hövel, Wünsche, Schöll, Henneberger , PRL 97, 213902 (2006)

Generic model:

phase sensitive coupling

Generic model:

phase sensitive coupling

=0.5T0 =0.9T0

Page 12: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Experimental realizationExperimental realization

||

Schikora, Hövel, Wünsche, Schöll, Henneberger, PRL 97, 213902 (2006)

Page 13: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Control of spatio-temporal patterns:Control of spatio-temporal patterns: semiconductor nanostructuresemiconductor nanostructure

Without control:Without control:

Examples: Chemical reaction-diffusion systemsChemical reaction-diffusion systemsElectrochemical systemsElectrochemical systemsSemiconductor nanostructuresSemiconductor nanostructuresHodgkin-Huxley neural modelsHodgkin-Huxley neural models

rJuUdt

tdu

x

aaD

xuaf

t

txa

0

1)(

)(),(),(

||

a(x,t): activator variableu(t): inhibitor variable f(a,u): bistable kinetic function D(a): transverse diffusion coefficient

Global coupling:Ratio of timescales:

L

dxuajL

J0

),(1

R

DBRTI

I totU 0

C

U

● Global coupling due to Kirchhoff equation:

jdxUURdt

dUC 0

1 I

Control parameters: = RC, U0

Page 14: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Chaotic breathing pattern

j

u

9.1

u min , u m

ax

= 9.1: above period doubling cascade

Spatially inhomogeneous chaotic oscillations

J. Unkelbach, A.Amann, W. Just, E. Schöll: PRE 68, 026204 (2003)J. Unkelbach, A.Amann, W. Just, E. Schöll: PRE 68, 026204 (2003)

Page 15: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Stabilisation of unstable period-1 orbit

u min , u m

ax

●Period doubling bifurcations generate a family of unstable periodic orbits (UPOs)

● Period-1 orbit:

Breathing oscillationsBreathing oscillations

Resonant tunneling diodeResonant tunneling diodea(x,t): electron concentrationa(x,t): electron concentration in quantum well in quantum well u(t): voltage across diodeu(t): voltage across diode

tracking

Page 16: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Time-delayed feedback control Time-delayed feedback control of noise-induced oscillations of noise-induced oscillations

Stabilisation of UPOStabilisation of UPO

noise-inducednoise-inducedoscillationsoscillations

noise-inducednoise-inducedoscillationsoscillations

??

no deterministic orbits!no deterministic orbits!

)}()({ txtxK )}()({ txtxK

deterministic chaosdeterministic chaosdeterministic chaosdeterministic chaos

=T=T=T=T

K. Pyragas, Phys. Lett. A 170, 421 (1992)K. Pyragas, Phys. Lett. A 170, 421 (1992) N. Janson, A. Balanov, E. Schöll, PRL 93 (2004)N. Janson, A. Balanov, E. Schöll, PRL 93 (2004)

Page 17: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Time-delayed feedback control of injection laser with Fabry-Perot resonator

Suppression of noise-induced relaxations oscillations in semiconductor lasers

||

Lang-Kobayashi model:Power spectral densityof optical intensity

Suppression of noisefor 0.5TRO

Flunkert and Schöll,PRE 76, 066202 (2007)

Page 18: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

))()(()(1)(

),()(),(),(

0

tutuKtDrJuUdt

tdu

txDx

aaD

xuaf

t

txa

u

a

Feedback control of noise-induced space-time patterns in the DBRT nanostructure

G. Stegemann, A. Balanov, E. Schöll, PRE 73, 016203 (2006)G. Stegemann, A. Balanov, E. Schöll, PRE 73, 016203 (2006)

=4, K=0.4 Du = 0.1, Da = 10-4

Page 19: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Enhancement of temporal regularity:correlation time vs. noise amplitude

vs. feedback gain

=7: increase=7: increase=5: decrease=5: decrease

G. Stegemann, A. Balanov, E. Schöll, PRE 73, 016203 (2006)G. Stegemann, A. Balanov, E. Schöll, PRE 73, 016203 (2006)

Large effect for small noise intensity

Du = 0.1, Da = 10-4

Page 20: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Coherence resonanceCoherence resonance

0

)( dsstcor – – normalized normalized autocorrelation functionautocorrelation function

Correlation time:Correlation time:

Simplified FitzHugh-Nagumo (FHN) system: excitable neuron Simplified FitzHugh-Nagumo (FHN) system: excitable neuron

Excitable SystemExcitable SystemExcitable SystemExcitable System

a=1.1a=1.1=0.01=0.01

Gang, Ditzinger, Ning, Haken, PRL 71, 807 (1993)Gang, Ditzinger, Ning, Haken, PRL 71, 807 (1993)Pikovsky, Kurths, PRL 78, 775 (1997)Pikovsky, Kurths, PRL 78, 775 (1997)

Page 21: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Example of coherence resonance: neuronExample of coherence resonance: neuron

Simulation from Simulation from S.-G. LeeS.-G. Lee, A., A. Neiman Neiman, , S. KimS. Kim, ,

PREPRE 57, 3292 57, 3292 ( (19981998).).

Time series of the membrane potentialTime series of the membrane potential for for various noise intensityvarious noise intensity::

Page 22: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

FitzHugh-Nagumo model with delay FitzHugh-Nagumo model with delay

)()(3

3

tDyyKaxy

yx

xx

)()(3

3

tDyyKaxy

yx

xx

12.4;1.1;01.0 a 12.4;1.1;01.0 a

Janson, Balanov, Schöll, PRL 93, 010601 (2004)

Excitabilitya=1: excitabilitythreshold

u activator (membrane voltage) v inhibitor (recovery variable) time-scale ratio

Page 23: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Coherence vs. Coherence vs. and K and K

D=0.09D=0.09D=0.09D=0.09

D=0.09; K=0.2D=0.09; K=0.2D=0.09; K=0.2D=0.09; K=0.2

Numerics: Balanov, Janson, Schöll, Physica D 199, 1 (2004)Analytics: Prager, Lerch, Schimansky-Geier, Schöll, J. Phys.A 40, 11045 (2007)

Page 24: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

2 coupled FitzHugh-Nagumo systems:coupled neuron model as network motif

● 2 non-identical stochastic oscillators: diffusive coupling

frequencies tuned by D1 , D2

B. Hauschildt, N. Janson, A. Balanov, E. Schöll, PRE 74, 051906 (2006)

a= 1.05, 1=0.005, 2= 0.1, D2=0.09 : coherence resonance as function of D1

Page 25: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Stochastic synchronization

● Frequency synchronization : mean interspike intervals (ISI)

● Phase synchronization: 1:1 synchronization index

(Rosenblum et al 2001)

oX+

+ weakly synchronizedo moderately synchronizedx strongly synchronized

Page 26: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Local delayed feedback control: enhance or suppress synchronization

● Moderately synchronized system (o)

System 1

1:1 synchronization index

Page 27: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Delayed coupling, no self-feedback + noise

Dahlem,Hiller, Panchuk,Schöll, IJBC in print, 2008

inducesantiphaseoscillations

Page 28: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Sustained oscillations induced by delayed coupling

excitability parameter a=1.3

a=1.05

Page 29: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Regime of oscillations

excitability parameter a=1.3

Page 30: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Delayed coupling and delayed self-feedback

excitability parameter a=1.3,oscillatory regime,C=K=0.5

Average phase synchronization time:

Schöll, Hiller,Hövel, Dahlem,2008

Page 31: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Spreading depolarization wave(cortical spreading depression SD)

● migraine aura (visual halluzinations)● stroke

Examples:

Page 32: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Migraine aura: neurological precursor(spatio-temporal pattern on visual cortex)

Page 33: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Migraine aura: visual halluzinations

Page 34: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Migraine aura: visual halluzinations

Page 35: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Migraine aura: visual halluzinations

Page 36: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Migraine aura: visual halluzinations

Page 37: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Migraine aura: visual halluzinations

Page 38: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Migraine aura: visual halluzinations

Page 39: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Measured cortical spreading depression

Visual cortex

3 mm/ min

Page 40: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

FitzHugh-Nagumo (FHN) system with FitzHugh-Nagumo (FHN) system with activator diffusionactivator diffusion

u activator (membrane voltage) v inhibitor (recovery variable)Du diffusion coefficient time-scale ratio of inhibitor and activator variables excitability parameter

Dahlem, Schneider, Schöll, Chaos (2008)

_

Page 41: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Transient excitation: tissue at risk (TAR)pulses die out after some distance

Dahlem, Schneider, Schöll, J. Theor. Biol. 251, 202 (2008)

different values of and

Page 42: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Boundary of propagation of traveling excitation pulses (SD)

excitable:traveling pulses

non-excitable: transient

Propagation verlocitypulse

Page 43: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

FHN system with feedback

Non-local, time-delayed feedback:

Instantaneous long-range feedback:

Time-delayed local feedback:

(electrophysiological activity)

(neurovascular coupling)

Dahlem et alChaos (2008)

Page 44: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Non-local feedback: suppression of CSD

uu

vvuv

vu

Tissue at risk

Page 45: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Non-local feedback:shift of propagation boundary

K=+/-0.2

pulse width x

Page 46: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Time-delayed feedback: suppression of SD

uu vu

uv vv

Tissue at risk

Page 47: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Time-delayed feedback:shift of propagation boundary

uu vu

vv vu

K=+/-0.2

pulse width t

Page 48: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Conclusions

Delayed feedback control of excitable systemsControl of coherence and spectral properties

Stabilization of chaotic deterministic patterns

2 coupled neurons as network motif FitzHugh-Nagumo system: suppression or enhancement of

stochastic synchronization by local delayed feedbackModulation by varying delay timeDelay-coupled neurons:

delay-induced antiphase oscillations of tunable frequency delayed self-feedback: synchronization of oscillation modes

Failure of feedback as mechanism of spreading depression

non-local or time-delayed feedback suppresses propagation of excitation pulses for suitably chosen spatial connections or

time delays

Page 49: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

Students

● Roland Aust● Thomas Dahms● Valentin Flunkert● Birte Hauschildt● Gerald Hiller● Johanne Hizanidis● Philipp Hövel● Niels Majer● Felix Schneider

CollaboratorsAndreas AmannAlexander BalanovBernold FiedlerNatalia JansonWolfram JustSylvia SchikoraHans-Jürgen Wünsche

Markus Dahlem

Postdoc

Page 50: TIME-DELAYED FEEDBACK CONTROL OF COMPLEX NONLINEAR SYSTEMS

PublishedOctober 2007