tidal micropower - university of washington pres.pdf2013/10/17  · tidal micropower dr. brian...

31
Tidal Micropower Dr. Brian Polagye and Rob Cavagnaro Northwest National Marine Renewable Energy Center University of Washington Energy and Environment Seminar October 17, 2013

Upload: others

Post on 11-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Tidal Micropower

Dr. Brian Polagye and Rob CavagnaroNorthwest National Marine Renewable Energy Center 

University of Washington

Energy and Environment SeminarOctober 17, 2013

Page 2: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Marine Renewable EnergyWave Energy

Pelamis

Tidal Current Energy

Andritz Hydro/Hammerfest 

Offshore Wind

Principle Power WindFloat prototype

Page 3: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Tidal Current Energy

Andritz Hydro/Hammerfest  Ocean Renewable Power Company

Siemens/MCT

Utility‐scale (> 1 MW) turbines harnessing renewable, 

predictable kinetic energy from tidal currents

Page 4: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Device presen

ce: 

Static effe

cts

Device presen

ce: 

Dynam

ic effe

cts

Chem

ical effe

cts

Acou

stic effe

cts

Electrom

agne

tic 

effects

Energy re

moval

Cumulative effects

Physical environment:Near‐fieldPhysical environment:Far‐field

Habitat

Invertebrates

Fish: Migratory

Fish: Resident

Marine mammals

Seabirds

Ecosystem interactions

Polagye, B., B. Van Cleve, A. Copping, and K. Kirkendall (eds), (2011) Environmental effects of tidal energy development.

Potential Environmental Impacts

Potential Significance

Low

Moderate

High

Scientific Uncertainty

Low Moderate High

Page 5: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Studying Changes to Distribution and Use

SoundMetrics DIDSON BioSonics DTX

Pre‐installation studies of tidal energy sites must typically rely on autonomous instrumentation

Active acoustic sensors for observations of marine life have relatively high power draws (> 20 W)

3‐4 deep cycle lead acid batteries 

required to achieve 10% duty cycle for 1 

month

Page 6: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Tidal Micropower Concept

Turbine

Generator and 

Battery Storage

Support Frame

Integrate energy harvesting capability into sensor package

Modular alternative to cabled observatories

Target 10‐20 W/m2

power output (including battery storage losses)

Page 7: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

System Components

Rotor

Kinetic Power

Power Train

Mechanical Power

Controller

Electrical Power

Battery Storage

Sensors

oPACUP 3

21

Flow Velocity

Swept Area

Rotor Efficiency

Balance of System Efficiency

Page 8: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Micropower Rotor Requirements

Self‐starting without external excitation

Accommodate currents with time varying direction

High efficiency conversion of kinetic power to mechanical power

Example Cross‐flow Turbine

Example Axial‐flow Turbine

Page 9: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Micropower Rotor Parameters Cross‐flow turbine

– High solidity– Helical blades– NACA 0018 profile

N: Number of blades (4)

H/D: Aspect Ratio (1.4)

φ: Blade helix angle (60o)

σ: Turbine solidity (0.3)

Limited existing parametric studiesDNc

Shiono, M., Suzuki, K., and Kiho, S., 2002, “Output characteristics of Darrieus water turbine with helical blades for tidal current generations,” Proceedings of the Twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japan, pp. 859‐864.

Bachant, P., and Wosnik, M. 2011, “Experimental investigation of helical cross‐flow axis hydrokinetic turbines, including effects of waves and turbulence,” Proceedings of the ASME‐JSME‐KSME 2011 Joint Fluids Engineering Conference, Hamamatsu, Shizuoka, Japan.

Page 10: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Principle of Operation

UR

212 cos21 UU

Local Velocity

Free‐stream  Velocity

Radius

Rotational rate

Neglecting wake and induction

Page 11: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Laboratory Experiments

Niblick, A.L., 2012, “Experimental and analytical study of helical cross‐flow turbines for a tidal micropower generation system,” Masters thesis, University of Washington, Seattle, WA.

53 1010 UcRec

%2118

Chord Length Re

Blockage Ratio

4.02.0 FrFroude number

%4U

I UTurbulence Intensity

Page 12: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Turbine Operation

Page 13: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Cp‐λ Velocity Dependence

Whelan, J. I., J. M. R. Graham, and J. Peiro (2009) A free‐surface and blockage correction for tidal turbines. Journal of Fluid Mechanics 624, 1: 281‐291.

Page 14: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Angle of Attack Variation

cos

sintan 1

Tip Speed Ratio

Angular Position

UR

Page 15: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Reynolds Number Effect?

53 1010 UcRec

Approximate Local Velocity

Sheldahl, R. E. and Klimas, P. C., 1981, “Aerodynamic characteristics of seven airfoil sections through 180 degrees angle of attack for use in aerodynamic analysis of vertical axis wind turbines,” SAND80‐2114, March 1981, Sandia National Laboratories, Albuquerque, New Mexico.

Page 16: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Significance of Dynamic Stall

Range of α at position of maximum torque along each blade

4105xRec

Jacobs, E.N., and Sherman, A., 1938, “Airfoil section characteristics as affected by variations of the Reynolds number,” Report No. 586, National Advisory Committee for Aeronautics.

Page 17: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Tow vessel

Tow line (~100 m) Skiff (w/ load bank)

Rotor

Skiff Attachment Gearbox

Generator

Field Experiment Method

54 1010 cRe

%0

0Fr

%4U

I U

No Blockage

Page 18: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Field Experiment Implementation

Wake Characterization ExperimentTurbine Integration with Skiff

Page 19: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Turbine Operation

Page 20: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Field Performance

RHUPC e

oP 3

Height

Electrical Power

Radius

?

Page 21: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Reaction Torque Sensor

Generator

EncoderCoupling to 

Motor

Laboratory Dynamometer

Generator connected to field testing load bank

Motor driven by variable frequency drive (3 phase AC)

Evaluate generator and gearbox efficiency under same conditions as field test (loads and rpm)

Page 22: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Generator Efficiency

Page 23: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Balance of System Efficiency

Page 24: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Field Performance

Rotor performance (without blockage) in line with expectations from prior work by Bachant and Wosnik

(2011), accounting for higher solidity 

System Performance Rotor Performance

Page 25: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Torque Control of Fixed‐Pitch Turbines

Johnson, K.E., L. Pao, M. Balas, and L.J. Fingersh(2006) Control of Variable‐Speed Wind Turbines: Standard and Adaptive Techniques for Maximizing Energy Capture, IEEE Control Systems Magazine

caeroJ

1

23*

max,3

21

P

c

CAR

3

*

max,3

23

21

PP CCAR

J

33*

max, PC

F Generator 

Control Torque

Torque Controller Gain

Page 26: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Preview Information

Adaptive control techniques can be used to adjust to changing velocity or turbine performance

Generally require an estimate of velocity upstream of the rotor – difficult to obtain for wind turbines

Options available for remote measurements in water and current turbines are smaller (particularly micropower systems)

Page 27: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Time‐scale Sensitivity

fSfS

fGPP

PP ee

Hz 2cf

m/s5.1U

Taylor’s hypothesisL

Uf c

Smallest engulfing gust

Maximum CP

Page 28: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Tidal Micropower Feasibility Revisited

Self‐starting without external excitation

Accommodate currents with time varying direction

High efficiency conversion of kinetic power to electrical power

— Low balance of system efficiency— Relatively low rotor efficiency

Page 29: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Design Refinements: Hydrodynamics

Improve Rotor Efficiency 

Potential Approaches

—Decrease solidity to increase λ

—Asymmetric foil profile with higher CL/CD at Rec ~ 104 – 105 (similar Recto UAVs)

— Flatback (i.e., blunt trailing edge) foil profile http://adg.stanford.edu/aa241/airfoils/air

foilhistory.html

Page 30: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

Design Refinements: Direct Drive

Submersible Direct‐Drive Generator

— Eliminate rotary seal

—Minimize thermal management challenge

Axial‐flux permanent magnet generator being developed (Senior‐level ME/EE Capstone) Preliminary Design

Page 31: Tidal Micropower - University of Washington Pres.pdf2013/10/17  · Tidal Micropower Dr. Brian Polagyeand Rob Cavagnaro Northwest National Marine Renewable Energy Center University

AcknowledgementsThis material is based upon work supported by the Department of Energy under Award 

Number DE‐FG36‐08GO18179.

Adam Niblick developed the initial laboratory flume data.

Funding for field‐scale turbine fabrication and testing provided by the University of Washington Royalty Research Fund.

Fellowship support for Adam Niblick and Robert Cavagnaro was provided by Dr. Roy Martin.

Two senior‐level undergraduate Capstone Design teams fabricated the turbine blades and test rig (and a third is developing a prototype 

generator).

Martin Wosnik and Pete Bachant (University of New Hampshire) provided a number of helpful comments on representations of the 

blade chord Reynolds number for cross‐flow turbines.