tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from...

50
Tidal forces and mode resonances in compact binaries Sayan Chakrabarti 1 erence Delsate 2 Jan Steinhoff 3 1 Indian Institute of Technology 2 UMons 3 Instituto Superior T ´ ecnico Guwahati, India Mons, Belgium Lisbon, Portugal Aveiro, October 9th, 2013 Supported by (Portugal) and (Germany) through STE 2017 “Resonances of quasinormal modes and orbital motion in general relativistic compact binaries” Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 1 / 17

Upload: others

Post on 09-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Tidal forces and mode resonancesin compact binaries

Sayan Chakrabarti1 Terence Delsate2 Jan Steinhoff3

1Indian Institute of Technology 2UMons 3Instituto Superior TecnicoGuwahati, India Mons, Belgium Lisbon, Portugal

Aveiro, October 9th, 2013

Supported by (Portugal) and (Germany)through STE 2017 “Resonances of quasinormal modes and orbital motion in

general relativistic compact binaries”

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 1 / 17

Page 2: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Important compact object: Neutron star

pics/neutronstar.pdf

Neutron star picture by D. Pagewww.astroscu.unam.mx/neutrones/

”Lab“ for various areas in physics

magnetic field, plasmacrust (solid state)superfluiditysuperconductivityunknown matter in core(condensate of quarks, hyperons,

kaons, pions, . . . ?)

other important objects:magnetars, quark starsblack holes, boson stars

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 2 / 17

Page 3: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Important compact object: Neutron star

pics/neutronstar.pdf

Neutron star picture by D. Pagewww.astroscu.unam.mx/neutrones/

”Lab“ for various areas in physics

magnetic field, plasmacrust (solid state)superfluiditysuperconductivityunknown matter in core(condensate of quarks, hyperons,

kaons, pions, . . . ?)

other important objects:magnetars, quark starsblack holes, boson stars

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 2 / 17

Page 4: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Important compact object: Neutron star

pics/neutronstar.pdf

Neutron star picture by D. Pagewww.astroscu.unam.mx/neutrones/

”Lab“ for various areas in physics

magnetic field, plasmacrust (solid state)superfluiditysuperconductivityunknown matter in core(condensate of quarks, hyperons,

kaons, pions, . . . ?)

other important objects:magnetars, quark starsblack holes, boson stars

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 2 / 17

Page 5: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Tidal forces in binaries and resonances

tidal forces in inspiraling binaries←→ oscillation modes of neutron stars

⇒ resonances!

pics/swift.pdf

Swift/BAT, nasa.gov

resonances probablyrelevant for shortgamma-ray bursts[Tsang et.al., PRL 108 (2012) 011102]

pics/et.pdf

Einstein Telescope

pics/spectral.pdf

mode spectrum fromgravitational waves:gravito-spectroscopy

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 3 / 17

pics/double_pulsar.pdf

binary neutron stars

Page 6: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Tidal forces in binaries and resonances

tidal forces in inspiraling binaries←→ oscillation modes of neutron stars

⇒ resonances!

pics/swift.pdf

Swift/BAT, nasa.gov

resonances probablyrelevant for shortgamma-ray bursts[Tsang et.al., PRL 108 (2012) 011102]

pics/et.pdf

Einstein Telescope

pics/spectral.pdf

mode spectrum fromgravitational waves:gravito-spectroscopy

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 3 / 17

pics/double_pulsar.pdf

binary neutron stars

Page 7: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Tidal forces in binaries and resonances

tidal forces in inspiraling binaries←→ oscillation modes of neutron stars

⇒ resonances!

pics/swift.pdf

Swift/BAT, nasa.gov

resonances probablyrelevant for shortgamma-ray bursts[Tsang et.al., PRL 108 (2012) 011102]

pics/et.pdf

Einstein Telescope

pics/spectral.pdf

mode spectrum fromgravitational waves:gravito-spectroscopy

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 3 / 17

pics/double_pulsar.pdf

binary neutron stars

pics/et.pdf

Page 8: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Tidal forces in binaries and resonances

tidal forces in inspiraling binaries←→ oscillation modes of neutron stars

⇒ resonances!

pics/swift.pdf

Swift/BAT, nasa.gov

resonances probablyrelevant for shortgamma-ray bursts[Tsang et.al., PRL 108 (2012) 011102]

pics/et.pdf

Einstein Telescope

pics/spectral.pdf

mode spectrum fromgravitational waves:gravito-spectroscopy

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 3 / 17

pics/double_pulsar.pdf

binary neutron stars

Page 9: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Tidal forces in Newtonian gravitySimple case: linear perturbation of nonrotating barotropic stars

temperature-independent equation of state

see e.g. [Press, Teukolsky, ApJ 213 (1977) 183]

Displacement ~ξ := perturbed − unperturbed location of fluid elements

~ξ +D~ξ = (external forces)

D~ξ := −~∇[

c2s

ρ0+ 4πG∆−1

]~∇ · (ρ0~ξ )

ρ0: unperturbed mass density cs : speed of sound G: Newton constant

Properties of operator D:contains differential operators ~∇and also integral operator ∆−1

linear, nonlocalspherical symmetricHermitian w.r.t. compact measure dm0 := ρ0d3x[Chandrasekhar, ApJ 139 (1964) 664–674]

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 4 / 17

Page 10: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Tidal forces in Newtonian gravitySimple case: linear perturbation of nonrotating barotropic stars

temperature-independent equation of state

see e.g. [Press, Teukolsky, ApJ 213 (1977) 183]

Displacement ~ξ := perturbed − unperturbed location of fluid elements

~ξ +D~ξ = (external forces)

D~ξ := −~∇[

c2s

ρ0+ 4πG∆−1

]~∇ · (ρ0~ξ )

ρ0: unperturbed mass density cs : speed of sound G: Newton constant

Properties of operator D:contains differential operators ~∇and also integral operator ∆−1

linear, nonlocalspherical symmetricHermitian w.r.t. compact measure dm0 := ρ0d3x[Chandrasekhar, ApJ 139 (1964) 664–674]

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 4 / 17

Page 11: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Tidal forces in Newtonian gravitySimple case: linear perturbation of nonrotating barotropic stars

temperature-independent equation of state

see e.g. [Press, Teukolsky, ApJ 213 (1977) 183]

Displacement ~ξ := perturbed − unperturbed location of fluid elements

~ξ +D~ξ = (external forces)

D~ξ := −~∇[

c2s

ρ0+ 4πG∆−1

]~∇ · (ρ0~ξ )

ρ0: unperturbed mass density cs : speed of sound G: Newton constant

Properties of operator D:contains differential operators ~∇and also integral operator ∆−1

linear, nonlocalspherical symmetricHermitian w.r.t. compact measure dm0 := ρ0d3x[Chandrasekhar, ApJ 139 (1964) 664–674]

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 4 / 17

Page 12: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Normal modes (NM) in Newtonian gravity

Eigenfunctions of D are the normal oscillation modes of the star

D is Hermitian, compact integration measure dm0 := ρ0d3x

⇒ Discrete, real eigenvalues or oscillation frequencies ωn`

Eigenvalue equation:D~ξ NM

n`m = ω2n`~ξ NM

n`m

Orthonormalization: ∫dm0 ~ξ

NM †n′`′m

~ξ NMn`m = δn′nδ`′`δm′m

Indices `, m from spherical harmonics

Decomposition in terms of mode amplitudes An`m(t)

~ξ =∑n`m

An`m(t)~ξ NMn`m(~x)

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 5 / 17

Page 13: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Normal modes (NM) in Newtonian gravity

Eigenfunctions of D are the normal oscillation modes of the star

D is Hermitian, compact integration measure dm0 := ρ0d3x

⇒ Discrete, real eigenvalues or oscillation frequencies ωn`

Eigenvalue equation:D~ξ NM

n`m = ω2n`~ξ NM

n`m

Orthonormalization: ∫dm0 ~ξ

NM †n′`′m

~ξ NMn`m = δn′nδ`′`δm′m

Indices `, m from spherical harmonics

Decomposition in terms of mode amplitudes An`m(t)

~ξ =∑n`m

An`m(t)~ξ NMn`m(~x)

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 5 / 17

Page 14: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Normal modes (NM) in Newtonian gravity

Eigenfunctions of D are the normal oscillation modes of the star

D is Hermitian, compact integration measure dm0 := ρ0d3x

⇒ Discrete, real eigenvalues or oscillation frequencies ωn`

Eigenvalue equation:D~ξ NM

n`m = ω2n`~ξ NM

n`m

Orthonormalization: ∫dm0 ~ξ

NM †n′`′m

~ξ NMn`m = δn′nδ`′`δm′m

Indices `, m from spherical harmonics

Decomposition in terms of mode amplitudes An`m(t)

~ξ =∑n`m

An`m(t)~ξ NMn`m(~x)

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 5 / 17

Page 15: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Amplitude formulationDisplacement field ~ξ specified by

~ξ +D~ξ = (external forces)

= −~∇Φext

Insert mode decomposition

~ξ =∑n`m

An`m(t)~ξ NMn`m(~x)

where D~ξ NMn`m = ω2

n`~ξ NM

n`m

and project onto orthonormal basis ~ξ NMn`m

Result: uncoupled forced harmonic oscillators

An`m + ω2n`An`m = fn`m

fn`m := −∫

dm0 ~ξNM

n`m · ~∇Φext

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 6 / 17

Page 16: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Amplitude formulationDisplacement field ~ξ specified by

~ξ +D~ξ = (external forces)

= −~∇Φext

Insert mode decomposition

~ξ =∑n`m

An`m(t)~ξ NMn`m(~x)

where D~ξ NMn`m = ω2

n`~ξ NM

n`m

and project onto orthonormal basis ~ξ NMn`m

Result: uncoupled forced harmonic oscillators

An`m + ω2n`An`m = fn`m

fn`m := −∫

dm0 ~ξNM

n`m · ~∇Φext

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 6 / 17

Page 17: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Amplitude formulationDisplacement field ~ξ specified by

~ξ +D~ξ = (external forces)

= −~∇Φext

Insert mode decomposition

~ξ =∑n`m

An`m(t)~ξ NMn`m(~x)

where D~ξ NMn`m = ω2

n`~ξ NM

n`m

and project onto orthonormal basis ~ξ NMn`m

Result: uncoupled forced harmonic oscillators

An`m + ω2n`An`m = fn`m

fn`m := −∫

dm0 ~ξNM

n`m · ~∇Φext

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 6 / 17

Page 18: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Overlap integrals

An`m + ω2n`An`m = fn`m

fn`m := −∫

dm0 ~ξNM

n`m · ~∇Φext

Radial/angular split of integral (spherical harmonics)

In` ∼ radial integration part of fn`moverlap integral

fn`m ∝ In` × (`-pole of Φext)

Overlap integrals In`Coupling constants between modes to external fieldDetermine energy exchange between orbital motion and modesTogether with frequencies ωn` they define the gravito-spectrum(measurable through gravitational waves)

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 7 / 17

Page 19: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Overlap integrals

An`m + ω2n`An`m = fn`m

fn`m := −∫

dm0 ~ξNM

n`m · ~∇Φext

Radial/angular split of integral (spherical harmonics)

In` ∼ radial integration part of fn`moverlap integral

fn`m ∝ In` × (`-pole of Φext)

Overlap integrals In`Coupling constants between modes to external fieldDetermine energy exchange between orbital motion and modesTogether with frequencies ωn` they define the gravito-spectrum(measurable through gravitational waves)

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 7 / 17

Page 20: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Different perspective on the Newtonian theoryChakrabarti, Delsate, Steinhoff, arXiv:1306.5820

Example: quadrupolar sector ` = 2

linear responseF−→

external quadrupolar field −→ deformation −→ quadrupolar response

0.00 0.05 0.10 0.15 0.20 0.25

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

frequency: Ω R 2 Π

resp

on

se:

F

R5

quadrupolarresponse:

F =∑

n

I2n`

ω2n` − ω2

ωn`: mode frequencyIn`: overlap integralR: radius

poles⇒ resonances!

pics/resonance.pdf

Tacoma Bridge

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 8 / 17

Page 21: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Different perspective on the Newtonian theoryChakrabarti, Delsate, Steinhoff, arXiv:1306.5820

Example: quadrupolar sector ` = 2

linear responseF−→

external quadrupolar field −→ deformation −→ quadrupolar response

0.00 0.05 0.10 0.15 0.20 0.25

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

frequency: Ω R 2 Π

resp

on

se:

F

R5

quadrupolarresponse:

F =∑

n

I2n`

ω2n` − ω2

ωn`: mode frequencyIn`: overlap integralR: radius

poles⇒ resonances!

pics/resonance.pdf

Tacoma Bridge

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 8 / 17

Page 22: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Different perspective on the Newtonian theoryChakrabarti, Delsate, Steinhoff, arXiv:1306.5820

Example: quadrupolar sector ` = 2

linear responseF−→

external quadrupolar field −→ deformation −→ quadrupolar response

0.00 0.05 0.10 0.15 0.20 0.25

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

frequency: Ω R 2 Π

resp

on

se:

F

R5

quadrupolarresponse:

F =∑

n

I2n`

ω2n` − ω2

ωn`: mode frequencyIn`: overlap integralR: radius

poles⇒ resonances!

pics/resonance.pdf

Tacoma Bridge

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 8 / 17

Page 23: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Analogy with electronics

QU

=1

iω Z

=∑

n

1Ln

1CnLn− ω2

0.00 0.05 0.10 0.15 0.20 0.25

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

frequency: Ω R 2 Π

resp

on

se:

F

R5

QE

=: F

=∑

n

I2n`

ω2n` − ω2

Q: quadrupoleE : external tidal field

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 9 / 17

Page 24: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Analogy with electronics

QU

=1

iω Z

=∑

n

1Ln

1CnLn− ω2

0.00 0.05 0.10 0.15 0.20 0.25

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

frequency: Ω R 2 Π

resp

on

se:

F

R5 Q

E=: F

=∑

n

I2n`

ω2n` − ω2

Q: quadrupoleE : external tidal field

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 9 / 17

Page 25: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Philosophy of the approach

Starting point: single object, e.g., neutron star

IdeaMultipoles describe compact object on macroscopic scale

←→

state variables (p, V , T ) ←→ multipoles (M, S, Q)equations of state ←→ effective actioncorrelation ←→ response

Approximations for binary system using effective theory:Effective point-particle action with dynamical multipolesResponse functions (propagators) for multipoles

⇒ Predictions: gravitational waves, gamma-ray bursts, pulsar timing

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 10 / 17

Page 26: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Philosophy of the approach

Starting point: single object, e.g., neutron star

IdeaMultipoles describe compact object on macroscopic scale

←→

state variables (p, V , T ) ←→ multipoles (M, S, Q)equations of state ←→ effective actioncorrelation ←→ response

Approximations for binary system using effective theory:Effective point-particle action with dynamical multipolesResponse functions (propagators) for multipoles

⇒ Predictions: gravitational waves, gamma-ray bursts, pulsar timing

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 10 / 17

Page 27: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Philosophy of the approach

Starting point: single object, e.g., neutron star

IdeaMultipoles describe compact object on macroscopic scale

←→

state variables (p, V , T ) ←→ multipoles (M, S, Q)equations of state ←→ effective actioncorrelation ←→ response

Approximations for binary system using effective theory:Effective point-particle action with dynamical multipolesResponse functions (propagators) for multipoles

⇒ Predictions: gravitational waves, gamma-ray bursts, pulsar timing

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 10 / 17

Page 28: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Philosophy of the approach

Starting point: single object, e.g., neutron star

IdeaMultipoles describe compact object on macroscopic scale

←→

state variables (p, V , T ) ←→ multipoles (M, S, Q)equations of state ←→ effective actioncorrelation ←→ response

Approximations for binary system using effective theory:Effective point-particle action with dynamical multipolesResponse functions (propagators) for multipoles

⇒ Predictions: gravitational waves, gamma-ray bursts, pulsar timing

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 10 / 17

Page 29: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Intermediate conclusion

Newtonian theory in terms of effective action and response functions:Alternative computation of overlap integral through fit of FImmediately generalizes to more complicated situationsCan be generalized to the relativistic case

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 11 / 17

Page 30: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Relativistic tidal interactionsStatus: expansion around adiabatic case

F (ω) = 2µ2 + iωλ+ 2ω2µ′2 +O(ω3)

µ2: 2nd kind relativistic Love number [Hinderer, ApJ 677 (2008) 1216;

Damour, Nagar, PRD 80 (2009) 084035; Binnington, Poisson, PRD 80 (2009) 084018]

λ: absorption [Goldberger, Rothstein, PRD 73 (2006) 104030]

µ′2: beyond adiabatic, not yet computed [Bini, Damour, Faye, PRD 85 (2012) 124034]

Motivation:Adiabatic tidal effects may not be sufficient[Maselli, Gualtieri, Pannarale, Ferrari, PRD 86 (2012) 044032]

Definition of relativistic overlap integralsResonances between oscillation modes and orbital motion:

Numerical simulations of binary neutron stars for eccentric orbits

[Gold, Bernuzzi, Thierfelder, Brugmann, Pretorius, PRD 86 (2012) 121501]

Shattering of neutron star crust[Tsang, Read, Hinderer, Piro, Bondarescu, PRL 108 (2012) 011102]

Gravito-spectroscopy

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 12 / 17

Page 31: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Relativistic tidal interactionsStatus: expansion around adiabatic case

F (ω) = 2µ2 + iωλ+ 2ω2µ′2 +O(ω3)

µ2: 2nd kind relativistic Love number [Hinderer, ApJ 677 (2008) 1216;

Damour, Nagar, PRD 80 (2009) 084035; Binnington, Poisson, PRD 80 (2009) 084018]

λ: absorption [Goldberger, Rothstein, PRD 73 (2006) 104030]

µ′2: beyond adiabatic, not yet computed [Bini, Damour, Faye, PRD 85 (2012) 124034]

Motivation:Adiabatic tidal effects may not be sufficient[Maselli, Gualtieri, Pannarale, Ferrari, PRD 86 (2012) 044032]

Definition of relativistic overlap integralsResonances between oscillation modes and orbital motion:

Numerical simulations of binary neutron stars for eccentric orbits

[Gold, Bernuzzi, Thierfelder, Brugmann, Pretorius, PRD 86 (2012) 121501]

Shattering of neutron star crust[Tsang, Read, Hinderer, Piro, Bondarescu, PRL 108 (2012) 011102]

Gravito-spectroscopy

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 12 / 17

Page 32: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Relativistic case: generic problems

Analog to Hermitian operator D not available in the relativistic caseSubstitute neutron star by point particle reproducing large-scale field

neutron star

incoming wave outgoing wave

Need to handle an inhomogeneous Regge-Wheeler equation witheffective point-particle source S representing a neutron star

d2Xdr2∗

+

[(1− 2M

r

)`(`+ 1)− 6M

rr2 + ω2

]X = S

How to construct solutions corresponding to external field and response?

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 13 / 17

Page 33: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Relativistic case: generic problems

Analog to Hermitian operator D not available in the relativistic caseSubstitute neutron star by point particle reproducing large-scale field

neutron star

incoming wave outgoing wave

Need to handle an inhomogeneous Regge-Wheeler equation witheffective point-particle source S representing a neutron star

d2Xdr2∗

+

[(1− 2M

r

)`(`+ 1)− 6M

rr2 + ω2

]X = S

How to construct solutions corresponding to external field and response?

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 13 / 17

Page 34: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Relativistic case: generic problems

Analog to Hermitian operator D not available in the relativistic caseSubstitute neutron star by point particle reproducing large-scale field

neutron star

incoming wave outgoing wave

Need to handle an inhomogeneous Regge-Wheeler equation witheffective point-particle source S representing a neutron star

d2Xdr2∗

+

[(1− 2M

r

)`(`+ 1)− 6M

rr2 + ω2

]X = S

How to construct solutions corresponding to external field and response?

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 13 / 17

Page 35: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Relativistic case: generic problems

Analog to Hermitian operator D not available in the relativistic caseSubstitute neutron star by point particle reproducing large-scale field

neutron star

incoming wave outgoing wave

Need to handle an inhomogeneous Regge-Wheeler equation witheffective point-particle source S representing a neutron star

d2Xdr2∗

+

[(1− 2M

r

)`(`+ 1)− 6M

rr2 + ω2

]X = S

How to construct solutions corresponding to external field and response?

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 13 / 17

Page 36: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Identification of external field and response

external quadrupolar field

Newtonian:

r `+1

adiabatic ω = 0:

r `+12F1(... ; 2M/r)

relativistic:

X `MST

quadrupolar response

r−`

r−` 2F1(... ; 2M/r)

X−`−1MST

where [Mano, Suzuki, Takasugi, PTP 96 (1996) 549]

X `MST = e−iωr (ωr)ν

(1− 2M

r

)−i2Mω ∞∑n=−∞

· · · ×[ r

2M

]n

2F1(... ; 2M/r)

Renormalized angular momentum, transcendental number: ν = ν(`, Mω)

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 14 / 17

Page 37: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Identification of external field and response

external quadrupolar field

Newtonian:

r `+1

adiabatic ω = 0:

r `+12F1(... ; 2M/r)

relativistic:

X `MST

quadrupolar response

r−`

r−` 2F1(... ; 2M/r)

X−`−1MST

where [Mano, Suzuki, Takasugi, PTP 96 (1996) 549]

X `MST = e−iωr (ωr)ν

(1− 2M

r

)−i2Mω ∞∑n=−∞

· · · ×[ r

2M

]n

2F1(... ; 2M/r)

Renormalized angular momentum, transcendental number: ν = ν(`, Mω)

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 14 / 17

Page 38: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Identification of external field and response

external quadrupolar field

Newtonian:

r `+1

adiabatic ω = 0:

r `+12F1(... ; 2M/r)

relativistic:

X `MST

quadrupolar response

r−`

r−` 2F1(... ; 2M/r)

X−`−1MST

where [Mano, Suzuki, Takasugi, PTP 96 (1996) 549]

X `MST = e−iωr (ωr)ν

(1− 2M

r

)−i2Mω ∞∑n=−∞

· · · ×[ r

2M

]n

2F1(... ; 2M/r)

Renormalized angular momentum, transcendental number: ν = ν(`, Mω)

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 14 / 17

Page 39: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Identification of external field and response

external quadrupolar field

Newtonian:

r `+1

adiabatic ω = 0:

r `+12F1(... ; 2M/r)

relativistic:

X `MST

quadrupolar response

r−`

r−` 2F1(... ; 2M/r)

X−`−1MST

where [Mano, Suzuki, Takasugi, PTP 96 (1996) 549]

X `MST = e−iωr (ωr)ν

(1− 2M

r

)−i2Mω ∞∑n=−∞

· · · ×[ r

2M

]n

2F1(... ; 2M/r)

Renormalized angular momentum, transcendental number: ν = ν(`, Mω)

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 14 / 17

Identification of external field and response byanalytic continuation in `

Page 40: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Relativistic responseChakrabarti, Delsate, Steinhoff, arXiv:1304.2228

Numerical neutron star perturbation matched toX = A1X `

MST + A2X−`−1MST

X `MST, X−`−1

MST related to effective point-particle source viavariation of parameters

Point-particle source requires regularization (here: Riesz-kernel)

Regularization introduces dependence on scale µ0

Fit for the response:

F (ω) ≈∑

n

I2n

ω2n − ω2

Just like in Newtonian case!Relative error less than 2%Relativistic overlap integrals: InMatching scale µ0 is fitted, too

0.00 0.05 0.10 0.15 0.20 0.25

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

frequency: Ω R 2 Π

resp

on

se:

F

R5

Newton

GR

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 15 / 17

Page 41: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Relativistic responseChakrabarti, Delsate, Steinhoff, arXiv:1304.2228

Numerical neutron star perturbation matched toX = A1X `

MST + A2X−`−1MST

X `MST, X−`−1

MST related to effective point-particle source viavariation of parameters

Point-particle source requires regularization (here: Riesz-kernel)

Regularization introduces dependence on scale µ0

Fit for the response:

F (ω) ≈∑

n

I2n

ω2n − ω2

Just like in Newtonian case!Relative error less than 2%Relativistic overlap integrals: InMatching scale µ0 is fitted, too

0.00 0.05 0.10 0.15 0.20 0.25

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

frequency: Ω R 2 Π

resp

on

se:

F

R5

Newton

GR

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 15 / 17

Page 42: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Generic programsingleobject

determination ofeffective action

application ofapproximations

binarysystem

predictions for observations

feed

back

tom

odel

build

ing

numerical methods(single object)exact solutions

perturbation theory

post-Minkowskianapproximation

small mass-ratioapproximation

post-Newtonianapproximation

numericalsimulations

”synergies“e.g., EOB

gravitational waves gamma-ray burstsorbital motion,pulsar timing

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 16 / 17

Page 43: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Generic programsingleobject

determination ofeffective action

application ofapproximations

binarysystem

predictions for observations

feed

back

tom

odel

build

ing

numerical methods(single object)exact solutions

perturbation theory

post-Minkowskianapproximation

small mass-ratioapproximation

post-Newtonianapproximation

numericalsimulations

”synergies“e.g., EOB

gravitational waves gamma-ray burstsorbital motion,pulsar timing

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 16 / 17

Page 44: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Generic programsingleobject

determination ofeffective action

application ofapproximations

binarysystem

predictions for observations

feed

back

tom

odel

build

ing

numerical methods(single object)exact solutions

perturbation theory

post-Minkowskianapproximation

small mass-ratioapproximation

post-Newtonianapproximation

numericalsimulations

”synergies“e.g., EOB

gravitational waves gamma-ray burstsorbital motion,pulsar timing

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 16 / 17

Page 45: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Generic programsingleobject

determination ofeffective action

application ofapproximations

binarysystem

predictions for observations

feed

back

tom

odel

build

ing

numerical methods(single object)exact solutions

perturbation theory

post-Minkowskianapproximation

small mass-ratioapproximation

post-Newtonianapproximation

numericalsimulations

”synergies“e.g., EOB

gravitational waves gamma-ray burstsorbital motion,pulsar timing

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 16 / 17

Page 46: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Generic programsingleobject

determination ofeffective action

application ofapproximations

binarysystem

predictions for observations

feed

back

tom

odel

build

ing

numerical methods(single object)exact solutions

perturbation theory

post-Minkowskianapproximation

small mass-ratioapproximation

post-Newtonianapproximation

numericalsimulations

”synergies“e.g., EOB

gravitational waves gamma-ray burstsorbital motion,pulsar timing

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 16 / 17

Page 47: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Generic programsingleobject

determination ofeffective action

application ofapproximations

binarysystem

predictions for observations

feed

back

tom

odel

build

ing

numerical methods(single object)exact solutions

perturbation theory

post-Minkowskianapproximation

small mass-ratioapproximation

post-Newtonianapproximation

numericalsimulations

”synergies“e.g., EOB

gravitational waves gamma-ray burstsorbital motion,pulsar timing

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 16 / 17

Page 48: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Conclusions and outlookConclusions:

We defined the relativistic quadrupolar responsefor linear perturbation of nonrotating barotropic stars

Response is completely analogous to Newtonian caseWe defined relativistic overlap integralsImportant step towards gravito-spectroscopy using gravitational waves

Outlook:More realistic neutron star models:

rotation, crust, . . . (also for Newtonian case)

Connection to gamma-ray bursts:shattering of crust, instabilities of modes

Dimensional regularizationOther multipoles

based on action in [Goldberger, Ross, PRD 81 (2010) 124015]

2nd Love number of rotating black holes

Thank you for your attentionChakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 17 / 17

Page 49: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Conclusions and outlookConclusions:

We defined the relativistic quadrupolar responsefor linear perturbation of nonrotating barotropic stars

Response is completely analogous to Newtonian caseWe defined relativistic overlap integralsImportant step towards gravito-spectroscopy using gravitational waves

Outlook:More realistic neutron star models:

rotation, crust, . . . (also for Newtonian case)

Connection to gamma-ray bursts:shattering of crust, instabilities of modes

Dimensional regularizationOther multipoles

based on action in [Goldberger, Ross, PRD 81 (2010) 124015]

2nd Love number of rotating black holes

Thank you for your attentionChakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 17 / 17

Page 50: Tidal forces and mode resonancesjan-steinhoff.de/physics/talks/aveiro13.pdfmode spectrum from gravitational waves: gravito-spectroscopy Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Conclusions and outlookConclusions:

We defined the relativistic quadrupolar responsefor linear perturbation of nonrotating barotropic stars

Response is completely analogous to Newtonian caseWe defined relativistic overlap integralsImportant step towards gravito-spectroscopy using gravitational waves

Outlook:More realistic neutron star models:

rotation, crust, . . . (also for Newtonian case)

Connection to gamma-ray bursts:shattering of crust, instabilities of modes

Dimensional regularizationOther multipoles

based on action in [Goldberger, Ross, PRD 81 (2010) 124015]

2nd Love number of rotating black holes

Thank you for your attentionChakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 17 / 17