three-dimensional unsteady turbomachinery flow analysis

Upload: tgrey027

Post on 03-Jun-2018

239 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Three-Dimensional Unsteady Turbomachinery Flow Analysis

    1/11

    DISTRIBUTIONST AT EMENT A Approved fo rPublicReleaseDistributionUnlimitedISABE99-7283

    Three-DimensionalUnsteadyTurbomachineryFlow AnalysisS.H .Chen(Associate Professor),andL.C.Lee Research Assistant)InstituteofAeronautics an d Astronautics,NationalCheng Kung University,Tainan,Taiwan,RepublicofChina

    ABSTRACTALooselyCoupleBladeRowLCBR)umerical

    methodsevelopedonalyzehensteadylowfieldfhree-dimensionalulti-blade-row turbomachinery problem.Thismethodallowstheus eof initialbladenumbersfo runsteady calculationan donlyneladehannelerladeowssed.Circumferentialveragepproachobtainconvergedteadyolutionshenitialonditionsadoptedornsteadyalculation.elatively,totonlymaintainshe ladeonfiguration,utslso computationallyor efficient.heumericalmethodusedis compressible iscousinitevolumealgorithmolvingReynoldsveragedNavier-Stokesequations.rtificial issipationermsimilartothatused by Jamesonisadopted tosuppressth enumericaloscillations.Four-StageRunge-Kuttachemesse dtodvancehelowquationsnime.esidualsmoothing an d multi-gridechniquesareemployed toaccelerateheonvergence.aldwinndomaxalgebraicurbulentmodels sedorhealculation ofeddy iscosity.TheU TRCUnitedTechnologiesResearchCenter)argecaleurbinesse der esth ees tcase.Thensteadylo w redictedorrelateswellwithdata.The resultsndicatethattheunsteadyturbomachinerylowfieldaneolvedwithingleflowchannelofunequalpitch on each bladero w 1.INTRODUCTION

    Multistageurbomachineryalculationsav ebecomingopularinceid0's.hewoain streamsreircumferentialveragealculationsnd unsteadyalculations.mongheircumferentialaveragemethods,epresentativesstudiesarefromNi[1989],Adamczyk[1990],Denton[1992]nd Dawes[1992].Thesemethodshavebeensedtoreplacethetraditionalow-by-rowesignethodsse dnindustry formany years.However, these type of

    methodsenerallygnorehensteadynteractionsbetweenladeows.espitehisindfmethodignoresruensteadynteractionffectsetweenbladeows,tllowshengineersoesignnd optimize multi-stageurbomachinewithin muchshorterime.hedvantagefunningcircumferentialveragemethodssmorebvioussthenumber ofblade rows is increased.

    Thensteadyressureluctuationsnladesurfacesca nbesignificantespecially fo rmodernhighloadingladeesignsithmallerap setweenbladerows.As result,othermeansocalculatehe fluctuatingpressureson thebladesmustbeoundinorderossureheesignatigueife.Anpproachusinghree-dimensionaluasi-steadyethodology wasstudied by Chenan dLe e1998].tdoesprovidepressureluctuationatabtainedro mhi smethodan dismoreeconmomicalthanfullunsteady analysis.Howeverhisannl yeonsideredsnintermediatepproach.heimulationfullycouplednsteadyotor-statornteractionsllowshetotalnderstandingofhelowhysics.hehree-dimensionalullyouplednsteadyotor-statorinteractionimulationtartsfromRa i1987]withanoverlaidatchedridystem.therethodsthereaftere.g.ah1992])or eresssehesimilarpproach.heiralculationsrequentlymodifiedheotorndtatorumberso implearithmeticatioike :3 r:1.Thehangeofbladenumberwasccompaniedby changeofbladeizeinrderoaintaintsolidityr lockage.hishoweverbiasedhehysical roblem.The redictedamplitudean d frequency in th erotor-stator interaction ar elso iased.oreover,hesemethodsreer ycomputationalostly.s esult,he yweremostlyusednheinalesignerificationrhe nproblemoccurs.Erdoset al.1977]proposed aphase-laggedethodorunsteadynalysis.hi sethodusesnlyneladeitchorac hladeow .t

    86DTICQUALITY DiGPBGTEDI

  • 8/12/2019 Three-Dimensional Unsteady Turbomachinery Flow Analysis

    2/11

    requirestostore theunsteadyflow dataoveran entireperiodoha theladesaneeleriodicalexcitationsro meighboringladeows.he memoryequirementshu sremendous.hissituationwillecomeworsesheumberofbladerows is large.Aimplifiedooselyoupledpproachor unsteadyurbomachinerylowfieldredictionsasinvestigatedyodson1985]ndond Lakshminarayana1998].he yimplyodelhe upstreamnsteadyisturbancesithnncomingwakes.The wakesca nbe calculatedseparatelyfromasteadytateolutionro mnpstream ladeow .Dorneytl.1996]evelopednteratedooselycoupled ladeowmethodndppliedto wo -dimensionalurbinetage.nheirpproach,he perturbationsetweenwodjacentbladeow swereiteratedto updatedvaluesuntilconvergence.Itshowsthatheooselyoupledalculationanredictunsteadinessuitewellutsnorderofmagnitudeinomputationalfficiencyomparedith ullycoupleunsteadyanalysisinatwo-dimensionalsense.H oandLakshminarayana'sthree-dimensionalooselycouplednalysisodifiedheotor/statorladenumbersro m2:40o0:40onqualitchchannelor stationary an drotating bladerowsca nbeused.Bladesizewerescaledtomaintainits blockageeffect.Dorney et al.modified thestator/rotor numbersfrom 22:28to 21:28so an 3: 4bladeratios ca nbe usedtoav eeriodicoundaryonditionatisfied.Neitheroftheboveooselyoupledmethodvoidthebladegeometry modification.

    The purposeofthe resenttudysoevelopmethodha tanolve urbomachinerynsteadyflowfield,utlsoasheollowingistinctadvantages:senlyneladehannelorcalculationhileeepingheladeonfigurationunchanged.Thenumericalmethod used in thepresentstudysompressibleiscousiniteolumealgorithmolvingReynoldsveragedNavier-Stokesequations.hertificial issipationermsimilartothatse dyamesonsdoptedouppresshenumericalscillations.our-stageunge-Kuttascheme isused toadvance theflowequationsintime.Residualmoothing techniqueisemployed tourtheraccelerateonvergence.aldwinndomaxalgebraicurbulentodel1978]sse dorhe calculationofeddy iscosity.TheU TRCargecaleturbinees tataerese doalidateheFD calculations.

    2.UMERICALMETHOD The governing three-dimensional,compressible

    Navier-Stoke equations in integralformca nbe written as:

    dtwhere

    an d

    \WdV+ Fc-dA= Fv-dA+\HdV1)FC=E7+Fj+GkFv=Ri+Sj+Tk

    ~p pu' 'pv pw'pu pun'+p puv puw'pv E= pvii F= pvv'+p G = pvWpw pwu' pwv pww' pe en' +pit evpv ew ' pw

    0 0 0 0rXX ryx Tzx 0r*y 5= Tyy T= *zy H=Q pw*xz V Tzz -pvIAJ y. kJ 0

    where e is the total energy per unit volume,v =(u',v',w')sheelativevelocity,tselationshipwith theabsolutevelocityVs:

    v =v-Six?Q .=Q .i=(x,y,z)

    Thelgebraicwo-layer,dd yiscosityurbulencemodelderivedbyBaldwinan dLomaxisusedfo r thecalculationofturbulenteddyviscosity.

    Th ehysicalomainsdividedntomanymallcontrolvolumes.The discretization formofeq .(1 ) is

    -(hw)+Qc+Qv=hHdt

    where h is thevolumeofgrid,an d

    (2 )

  • 8/12/2019 Three-Dimensional Unsteady Turbomachinery Flow Analysis

    3/11

    Qc=ZFck-Sk

    Qv=^

    vk -s

    kkwherek=1-6, Sstheurfaceareaon eachsideofcontrolvolume.

    Equation2)solvedsingentralifferencingschemewhichsecondorderccuratenpace.norderoam pheumericalscillationssociatedwithcentraldifferencingscheme,artificialdissipation termsimilaroha tse dyameson1981]reconsidered.Eq.(2) ca nbewrittenas:

    wherea=2/3D Atps the time step in the^-direction.Itca nbe approximated as:

    AsAfe==6r (9 )

    Four-stageRunge-Kuttachemesusedodvanceth eflow equation(3 )in time.ofurtheraccelerate convergencendllowargerim etepsesed,implicitesidualmoothingechniquesse dominimizeumericalnstability.heesiduecalculatedaboveissmoothed aftereachRunge-Kuttastage by :

    (hw)+Q c+Qv-D=hH3)dtwhereD is thedissipative term:

    /)=(*+Z)^+D/-)w4)The direction operator isgivenby :> W=C^ V 2Wgg -K4VC)5)

    The termsnd Are givenby 26V 1=t2mzx(vi Vvi,vi_xK 4=max(0,//42) (6 )

    visexpressedasvJi+\-lPi+Pi-\\?)

    Pi+l+2Pi+Pi-lThealuesf2>PArehosens.5nd .0 5respectively. sacoefficientthatha san impacton thetabilityndccuracyfheolution.ominimize issipationwithin iscousoundaryayer,CPscalculatedfrom:

    Af Atq Atg'

    l-eg5^ \ -SJJSJJJJXI- rSrr)R=R (10)where feAn /T are standard secondrderdifferencingperator, an d smoothingarametersc= 7 7 = Er=0.5re chosen Thensteadyalculationtartsro mteadytate

    solutionsromacircumferentialveragealculation.Inheircumferentialveragealculation,nl ynebladehannel er bladeows sed.Thealculated exitonditionofhe tatoror mhenletnsteadyboundaryonditionorhedownstreamotor laderow.On the therwayround,henonuniforminletfloworheotoralculatedromircumferentialaverageolutionormshetatorunsteadyconditionathexit.hensteadynteractionetweenhe rotatingan dstationary bladerowsareperturbedwithrespect to themeanvalues(thesteadystatesolutions).Theperturbedflow quantityat thestatorexitca nthenbe expressedas:

    t s= < t > j < ? / < / > (11)wherej > jsthestatorsteadystatesolution(obtained fromircumferentialveragealculation),pshe stator pitchwisemean value.he flow quantityat therotornletwould eheteadyotoralueddhe perturbationro mhetatorxitequalsotorpitchwiseea nultipliedytatorxit perturbation),

    t r=( )r+((*)/ -0s (12).

  • 8/12/2019 Three-Dimensional Unsteady Turbomachinery Flow Analysis

    4/11

    Similarily,he flowquantityathetatorexitanbe expressedsheteadytatorxitaluelushe pertubationfrom therotor inlet,

    < > s=(j)s+(

  • 8/12/2019 Three-Dimensional Unsteady Turbomachinery Flow Analysis

    5/11

    1 ststator 1st rotor 2n dstatorbladenumber 22 28 22 chord(m ) 0.151 0.161 0.164hu b radius(m ) 0.610 0.610 0.610tip radius(m ) 0.762 0.762 0.762

    Th e ridystem fo rtheurbines enerated singthenteractive rideneration rocedureevelopedby Leetl.1995].The ridystemisheam esthatusedinapreviousstudy[Chenan dLe e(1998)].A two-dimensionalview oft he thegridsystem fo r the1.5tageurbineshownnig..Th e ridystemha s9x33x25ridsorheirsttator,5x33x25gridsfo r th erotor,an d99x33x25 gridsfo r th esecondstator.Theotalumberofgridss25,225.Fo rthepresenttudy,nl yhetatorndotorridsreconsidered.oo drthogonality,moothnessnd clusternessareachieved.The circumferentialaveragesolution isused astheinitialonditionornsteadyalculations.ig .showsheircumferentialverageolutionorhestatorro mearheuboea rea rheip.he resultsomparedellithheataDringtl.(1982)].ig . howsheircumferentialveragesolution fo rthe rotor.So m euncertainty in thedata fo rtherotorisshowninthefigure.Againtheagreementisgood.Fig. isthepressuredistributions atvarioustimetepsorhetatorndotortmidspan.he circlesinthefigurearethetimeaverageresultsoveron e ladeassingeriod.heim everageesultsbecomeheewteadytateolution.heinalconvergedteadytateolutionsteveralladeheightsrehownnigs. nd.The solutionsor bothhenitialircumferentialverageolutionnd theinalim everagedteadytateolutionsresimilarlthoughom e iscrepanciesreoundea rth ehu band the tip.

    The pressuresat6 locations(3nearstator exitan d3ea rotornlethownnig.)remonitoredomakesuretheunsteady pressuresdo reachperiodicalsolutions.Noteha theigureslottedfqualpitchusedintheothercalculations)Fig. showstheunsteady pressuresat these6monitorpoints.Itca nbeseenthattheunsteady pressuresreachnearperiodicalconditioneryuicklyfternlyne lade assingperiod.

    Th etatorxitelocitiestheidspanixingplaneboundaryar eshownin fig.7 fo ron erotorbladepassing period.Thestatorwake at pitch=0.9ha ssomesignificantvelocityfluctuation du e to interaction withth eownstreamrotor.The lobalwavemovesrom

    pitch=loitch=0ueootorotion.heim eaveragevelocityattatorexitmixingplaneisshowninfig..tshouldbe pointedou tthatthecalculatedresultasee nhiftedangentiallynrderocomparegainstheriginaleasurementata.Although thepredictedwake velocity deficit is larger,theoveralltrendagreesquitewellwithdata.Fig.9istheotornletelocitiestheixinglaneboundary.lobalerturbationav eotionsmovingnpposite irectionelativeoha tnhestator.Thestatorviscouswakeinfluenceon therotoris obviousasitmoveswithwith theglobalwave.The resultsho wha theotornfluencenhehe upstreamtatorsbasically otentialffect.nd ,thestator influenceon therotorboth thepotentialan dviscouswakeeffectsareimportant.The timeaveragevelocitytotorinletmixing laneshownnig. 10 .The fluctuation is larger than thatdu e to thestatorwake (fig.8).

    Theressureluctuationmplitudesorheunsteadyalculationsrehownnig.1.he predictionsagreedquitewellwiththedataespecially th emaximumamplitudeandtrendat thecriticalareas(trailingdg eoftatorndeadingdg efotor),althoughom eoverpredictionnheuctionurfaceofstator an d underpredictionon thesuctionsurfaceofrotor.

    Thenalysishowsha three-dimensionalunsteadynalysissinginglenequalitchorturbinetageaneuccessfulfhenteractionsbetweenhetationaryndotating ladeow sreproperlyodeled.heiggestdvantagefsingthispproachsomputationalfficiencynd maintainheladeonfigurationntact.hus,he predictedlowfieldouldeor eealistic.he computationsereerformednEC-8400machine.Roughly50 0timetepsperstatorpassingperiod,nd 3ubiterationspe rtimetepswereused.On entirensteadyalculationincludingnitialcircumferentialaveragecalculation)ofabout10 statorpassingperiods(orroughly3otorpassingperiods)took about6days in C PU.5.CONCLUSIONS

    Aooselyoupled ladeownalysisethodsusedn hree-dimensionalingletageurbineunsteady analysis.Unlike theother looselycoupled orfullycoupled methods, thepresentapproach usesonlyon e ladepitchorac hbladeowwhilehe ladeconfigurationisunmodified.Circumferentialverageanalysisresult singth eam eomputationaldomain

  • 8/12/2019 Three-Dimensional Unsteady Turbomachinery Flow Analysis

    6/11

    issedshenitialonditionorunsteadyanalysis.Thesefircumferentialverageolutionshe startingpointmakesthepredictedunsteadyperiodicalsolutionca nearlybechievedfteronlyon ebladepassingeriod.heteadytateolutions im eaverageresultve racompletebladeassingperiod.Basicallyot hteadytateolutionnd circumferentialverageolutiongreeel lithmeasuredata,lthoughom eifferencesxistbetweenhewoolutions.heredictednsteadysolutionsho whwha thensteadynteraction betweenwodjacent ladeow saneeasonablywellimulated.tisclearthattheinfluencero m thedownstream bladerowbasicallysdu eoapotentialeffectan dtheinfluencefrom theupstreambladero wisueot hoiscousak endotentialffects.Despiteheresentpproachsonsideredsnapproximateolutionomparedwith ullycoupledunsteady calculation,theresult is veryencouraging.6.ACKNOWLEDGEMENT

    TheresenttudysupportedyheationalScienceouncilN S C )fheepublicfhinaunder thecontr ctnumberNSC87-0210-D-006-003. 7.REFERENCES1 .Adamczyk,J.J.,Celestina,M.L.,Beach,T.A.and Barnett, M. Simulation ofThree-Dimensional V iscousFlow within aMultistageTurbine ASMEJ.ofTurbomachinery,V ol112,p370-376,19902.Baldwin,B.S.and Lomax,H ., ThinLayerApproximationand AlgebraicModelfo rSeparationTurbulent Flows AIAA6t hAerospace SciencesMeeting1978,78-257.3.Chen,S. H., Th eFlow AnalysisofAThree-DimensionalMultistageTurbomachinery BladeDesign ,Proceedings ofthe6t h InternationalSymposium on TransportPhenomena an d DynamicsofRotatingMachinery,Vo l .2,996,pp.277-286.4.Chen,S.H. an d Lee,L.C, Three-DimensionalMulti-Blade-Row TurbomachineryFlow Analysis,7th ISRO MAC,February1998.5.Dawes,W.N., Toward Improved Through-flow Capability: theus eofThree-Dimensional V iscousFlow Solvers in aMultistageEnvironment J.ofTurbomachinery,V ol14p8-17,January,992.6.Denton,J.D., Th eCalculationofThree-DimensionalV iscousFlow Through MultistageTurbomachines J.ofTurbomachinery,V ol14pp 18-26,January,1992.7.orney,D. J.,Davis,R.L.an dSharma,O.P .,

    UnsteadyMultistage AnalysisUsing aLoosely

    Couple BladeRow Approach, J.ofPropulsion andPower,V o l .2,No .2,March1996.8.ring,R.P .,Joslyn,H. P ., Hardin,L.W., an dWagner, J.H. , Turbine Rotor-StatorInteraction , J.ofEngineering fo rPower,V o l .04 ,No .0. ,1982,pp.729-742.9.Dring,R.P.,Blair,M. F. ,Joslyn,H. D. ,Power,G .D. ,an d V erd on, J.M., The EffectsofInletTurbulentan d Rotor/StatorInteractionson theAerodynamicsand HeatTransferofaLarge-ScaleRotating TurbineModel ,Part I,FinalReport,N A S AContracteportCR4079,M ay 1986.10 .Dring,R.P .,Joslyn,H. D.,Blair,M. F. , Th eEffects ofInletTurbulentan d Rotor/StatorInteractions on theAerodynamicsan d HeatTransferofaLarge-Scale Rotating TurbineModel ,PartIV ,AerodynamicDataTabulation,N A S A ContractReportCR179496, M ay 1988.11. Erdos, J.I., Alzner,E.an d McNally,W .,

    NumericalSolution ofPeriodicTransonic FlowThroughaFa nStage, AIAA Journal,V o l .5, N o.Il,pp.l559~1568,977.12. Hah,C, Navier-Stokes AnalysisofThree-Dimensional Unsteady Flows insideTurbineStages ,AIAApapern o.92-3211,28thJointPropulsionConference, July1992.13.H o,Y .H. and Lakshminarayana, B. , A LooselyCoupledUnsteady Flow Simulation ofaSingleStageCompressor , IJCFD,Vo l .10,1998,pp.73-89.14. Hodson,H. P., An InviscidBlade-to-BladePredictionofWake-GeneratedUnsteady Flow ,JournalofEngineering fo rG as Turbines an d Power,Vo l .07 ,April1985,pp.337-344.15. Jameson,A. ,Schmidt,W .,an d Trkei,E. ,

    NumericalSolutions oftheEulerEquations by FiniteV o lu m eMethodsUsingRunge-KuttaTime-Stepping Schemes ,AIAApaper81-1259, June1981.16. Lee,LC,Chen,S .H .,Shu,S. B. ,an d Hsu,W.Y ., Interactive Grid Generation fo rTurbomachineryApplications ,TheChineseThirdCF D Conference,August1995.17. Ni ,R.H.an d Bogoian,J.C., Predictionof3D MultistageTurbineFlow Field UsingaMultipleGrid EulerSolver AIAA paperno .89-0203,January1989.18. Rai,M.M., Unsteady Three-DimesnioalNavier-StokesSimulationsofTurbineRotor-StatorInteracton AIAA-87-2058,1987.

  • 8/12/2019 Three-Dimensional Unsteady Turbomachinery Flow Analysis

    7/11

    Fig. Gridsystem fo rU TRC turbine calculation.STATOR(22/28)[12.5%SPAN)

    00.5 00.s ROTOR{ 2 2 B) (12.5% S P A N )ROTOfl t2 2 /2 B)(50.0*S P A N )00.5R O T O R [ 22/28)

  • 8/12/2019 Three-Dimensional Unsteady Turbomachinery Flow Analysis

    8/11

    ROTOR(22/28) 50.0%SPAN

    O TIMEAVERAGE

    (1 )

    (2 )

    STATOR (22/2B)50.0%SPAN

    ,}-W

    0 TIMEAVERAGE

    Fig.4Midspan pressuredistributions fo rStatoran drotorat different time steps.

    Fig.5Monitorpoint locations.

    (5 )

    Fig.6Pressure variations at 6 monitorpoints.

  • 8/12/2019 Three-Dimensional Unsteady Turbomachinery Flow Analysis

    9/11

    VtlOCtTY ATSTATOflE)UT[UID-3PAN).T.O 1-S 20 **~-_ ~N .- *'

    CTCT ,> IX)e. s

    'O li 4 J tl M U

    VELOCITYATSTATORBCTHHOJPANJ.T.IM

    VELOCITY ATSTATOflEWTTMO-BPAWJOS ID V(L0CITATSTAT0fHXIT(MI0SPANJ,T.I7S Ut ^ - - ^ _ _

    CTOT 1.5 v/1A0-t0. B B ' 61 6.4 tu U i

    VELOCITY AT3TATOAEXIT(MO-5PAN).T- VELOCITYAT STATOfl EXIT UlD.SPAN).T-MO

    VEIOOTYAT STATOREX1T M0-SPAN).T.TS Fig.7Unsteady velocity atstator exit.

    VELOCITYAT STATOBEXrT[MD-SPAMl.T.10O

    O M P U T E O MEA S URE

    WLOCTTYAT STATOflXrT|MO-SPAN).T-12S

    Fig.8Timeaveragevelocityat statorexit.

  • 8/12/2019 Three-Dimensional Unsteady Turbomachinery Flow Analysis

    10/11

    RELATIVVELOCTYATROTORNLETIMO-SAN.T.ORSIATIVE VELOCITYAT ROTORNLET(MO- MN).T-174

    RELATIVEVELOCITYAT ROTORNLET(MD-SPAN),T-2S RELATIVEVE L OCTTY ATROTORMLET(MI^SFANJ.T-IM

    10 RELATIVEVELOCITYATROTORWLET[MD-S,A N) ,T SO

    10 . . ^ * " * WTOTU

    l.O

    on DO

    RSLATtVEVELOCITYAT ROTORiNLET(WO-SPAN).T-aS5

    ~ti*1o M RELATIVVELOCITYATROTORLETp.lO-SMNVT.TSl.S10 ^ _ _ ^ _ _ _ _ ~ ~ " ~ * ^ ^

    WTOT.J

    O.S 0-0 06 o.i oj

    Fig.9Unsteady relativevelocityat rotorexit.

    RELATIVEVE LOOTTATROTORM.ET|UO-SPAN).T>IOO

    -53TRCLATIVEVCLOCJTTATROTOR MtJT|MCMFAH).T>lll

    Fig.0Timeaveragerelativevelocity atrotorexit.

    10

  • 8/12/2019 Three-Dimensional Unsteady Turbomachinery Flow Analysis

    11/11

    Pressure AmplitudeDistr ibutionat Midspan(22/28) (Stator) Compute O Measure

    pressuresfde

    Pressure Amplitude Distr ibutiona t Midspan3 (Rotor)

    2. 5 : Compute O Measure 2

    Suct ionSide /1.5 /

    o0 PressureSide0.5

    o o~_ ~ 0 Lead ingEdge V

    Fig.1Unsteady pressure fluctuation amplitudes.

    11