thirty-year trend of observed greenhouse clouds over the tropical oceans

5
Adv. Space Res. Vol. 11, No. 3, pp. (3)45—(3)49, 1991 0273—1177/91 $0.00 + .50 Printed in Great Britain. All rights reserved. Copyright © 1991 COSP4R THIRTY-YEAR TREND OF OBSERVED GREENHOUSE CLOUDS OVER THE TROPICAL OCEANS Julius London,* Stephen G. Warren,** and Carole J. Hahn*** * Department of Astrophysical, Planetary and Atmospheric Sciences, University of Colorado, Boulder, CO 80309—0391, U.S.A. **Depar~ent of Atmospheric Sciences, University of Washington, Seattle, WA 98195, U.S.A. ***Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309—0216, U.S.A. ABSTRACT Analysis of the 30-year trend (1952—1981) of the amounts of different cloud types, as observed from ships in the tropical oceans, has shown that, over latitudes 20°N—20°S during the time period studied, cirrus (Ci) and cumulonimbus (Cb) types have increased while cumulus (Cu) and stratus (St) types decreased or remained nearly constant. The greenhouse implications of these cloud trends are discussed. INTRODUCTION Clouds represent the most important single variable affecting the overall net radiative heating or cooling of the earth-atmosphere system. For clear skies, incoming solar radiation is largely absorbed in the lower atmosphere and at the Earth’s surface. This energy gained is re-emitted to space partially by the ground and by the so-called greenhouse gases. If the concentration of these gases increases, the atmosphere becomes more opaque to infrared radiation, and the atmospheric emission comes from a higher (colder) layer that then requires a warmer surface temperature to balance the relatively unaffected incoming solar radiation. The presence of clouds strongly modifies this picture. Most clouds, depending on their physical properties and thickness, significantly reflect solar radiation and thus decrease the available radiative input to the earth-atmosphere system. At the same time (with the exception of very thin cirrus), clouds act as highly efficient infrared radiators. Their emission to space depends on their cloud-top temperature. The infrared emission from clouds thus decreases as the level of the average cloud top increases. Whether clouds act, on average, to heat or cool the atmosphere depends on the magnitude of their albedo as compared to the effect of the height (i.e., the temperature) of the emitting upper surface of the cloud. It has been shown from results of satellite observations that for a global average, clouds act to radiatively cool the earth-atmosphere system (see, e.g., /1,2/). The net cloud radiative cooling (or warming), however, is sensitive to cloud type. High clouds generally have low albedos and represent highly efficient greenhouse clouds. Low clouds have moderately high albedos but relatively warm cloud-top temperatures, thus resulting in significant cloud-effected radiative cooling of the atmosphere. Clouds of large vertical extent have very high albedos but also have cold top radiating surfaces. They therefore tend to maintain an approximate balance between net short-wave incoming and infrared outgoing radiation. However, cumulonimbus clouds provide an important link between surface heating and extended cirrus cloud development over the tropical oceans. It is thus important that cloud radiative forcing calculated for climate models simulate the time-dependent variations of the individual cloud types. For a recent discussion of the effect of different cloud types on numerical models of “greenhouse warming,” see /3/. In our analysis, we have considered the time variations of four different cloud types that represent different characteristics of cloud radiative forcing: Ci (cirrus, cirrostratus, and cirrocumulus), Cb, Cu, and St (stratus, stratocumulus, and fog). Although some cloud-type information has been reported from satellite observations (see, for instance, /4/), we use surface-based observations for our study because, in most cases, specific cloud types are best identified by surface-based observers. In addition, long-term data are available only from these surfaced- based observations. Surface-based cloud observations have been archived dating back to the mid—nineteenth century. However, a reasonably consistent data set from which cloud-type information could be derived is available only from the early 1950s. In this paper, we discuss time trends of the four cloud types, referred to above, as determined from ship observations over the equatorial and tropical oceans for the 30-year period 1952—1981. Efforts are currently underway to extend our analysis for an additional 5-year period. DATA SOURCE The data for this study were taken from the Comprehensive Ocean-Atmosphere Data Set (COADS; /5/). Details of the method of analysis of the cloud data over the oceans—including, for instance, data selection (3)45

Upload: julius-london

Post on 21-Jun-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thirty-year trend of observed greenhouse clouds over the tropical oceans

Adv. Space Res. Vol. 11, No. 3, pp. (3)45—(3)49, 1991 0273—1177/91 $0.00 + .50Printedin GreatBritain. All rights reserved. Copyright© 1991 COSP4R

THIRTY-YEAR TREND OF OBSERVEDGREENHOUSECLOUDS OVER THETROPICAL OCEANS

Julius London,* Stephen G. Warren,** and Carole J. Hahn****Departmentof Astrophysical, Planetary and AtmosphericSciences,

University of Colorado, Boulder, CO 80309—0391, U.S.A.**Depar~entof AtmosphericSciences,University of Washington, Seattle,WA 98195, U.S.A.***Cooperative Institute for Researchin EnvironmentalSciences,University of Colorado, Boulder, CO 80309—0216,U.S.A.

ABSTRACT

Analysis of the30-yeartrend(1952—1981)of theamountsof different cloud types,asobservedfrom shipsin the tropical oceans,hasshown that, overlatitudes 20°N—20°Sduring the time period studied, cirrus(Ci) andcumulonimbus(Cb) typeshaveincreasedwhile cumulus (Cu) andstratus(St) typesdecreasedorremainednearly constant.Thegreenhouseimplicationsof thesecloudtrendsarediscussed.

INTRODUCTION

Clouds representthemostimportant single variableaffectingtheoverall net radiativeheatingor coolingof theearth-atmospheresystem. For clear skies, incoming solar radiationis largely absorbedin theloweratmosphereandat theEarth’ssurface. This energy gainedis re-emittedto spacepartially by thegroundandby theso-calledgreenhousegases.If theconcentrationof thesegasesincreases,theatmospherebecomesmoreopaqueto infrared radiation, andtheatmosphericemissioncomesfrom ahigher(colder) layer thatthenrequiresawarmersurfacetemperatureto balancetherelatively unaffectedincomingsolar radiation.

Thepresenceof cloudsstrongly modifiesthis picture. Most clouds, dependingon their physicalpropertiesandthickness,significantly reflect solar radiation and thus decreasethe availableradiative input to theearth-atmospheresystem. At the sametime (with theexceptionof very thin cirrus), cloudsact as highlyefficient infrared radiators. Their emissionto spacedependson their cloud-toptemperature.The infraredemissionfrom cloudsthusdecreasesas thelevel of theaveragecloud top increases.Whethercloudsact, onaverage,to heatorcool theatmospheredependson themagnitudeof their albedoas comparedto theeffectof theheight (i.e., the temperature)of theemitting uppersurfaceof the cloud. It hasbeenshownfromresultsof satelliteobservationsthat for aglobalaverage,cloudsact to radiatively cool theearth-atmospheresystem(see,e.g., /1,2/).

Thenetcloudradiativecooling (or warming), however,is sensitiveto cloudtype. High cloudsgenerallyhavelow albedosandrepresenthighly efficient greenhouseclouds. Low cloudshavemoderatelyhigh albedosbutrelatively warm cloud-toptemperatures,thus resultingin significantcloud-effectedradiativecooling of theatmosphere.Cloudsof largeverticalextenthaveveryhigh albedosbut alsohavecold top radiatingsurfaces.They thereforetend to maintain an approximatebalancebetweennet short-waveincoming andinfraredoutgoingradiation. However,cumulonimbuscloudsprovide an important link betweensurfaceheatingandextendedcirrusclouddevelopmentoverthetropicaloceans.It is thusimportant thatcloudradiativeforcingcalculatedfor climate modelssimulatethe time-dependentvariationsof the individual cloud types. For arecentdiscussionof the effect of different cloud typeson numericalmodelsof “greenhousewarming,” see/3/.

In our analysis,we haveconsideredthe time variationsof four different cloudtypesthat representdifferentcharacteristicsof cloudradiativeforcing: Ci (cirrus,cirrostratus,andcirrocumulus),Cb,Cu, andSt (stratus,stratocumulus,andfog).

Although some cloud-typeinformation has beenreportedfrom satellite observations(see,for instance,/4/), we usesurface-basedobservationsfor our studybecause,in most cases,specificcloud typesarebestidentifiedby surface-basedobservers.In addition, long-termdataareavailableonly from thesesurfaced-basedobservations.Surface-basedcloudobservationshavebeenarchiveddatingbackto themid—nineteenthcentury. However,a reasonablyconsistentdatasetfrom which cloud-typeinformation could be derivedisavailableonly from theearly1950s. In this paper,we discusstime trendsof thefour cloudtypes,referredtoabove,as determinedfrom ship observationsovertheequatorialandtropicaloceansfor the30-yearperiod1952—1981. Efforts arecurrentlyunderwayto extendour analysisfor an additional 5-yearperiod.

DATA SOURCE

The datafor this studywere takenfrom theComprehensiveOcean-AtmosphereDataSet(COADS; /5/).

Detailsof themethodof analysisof theclouddataover theoceans—including,for instance,dataselection(3)45

Page 2: Thirty-year trend of observed greenhouse clouds over the tropical oceans

(3)46 J. Londonet a!.

Table 1 Annual AverageCloud Amounts(%) over theEquatorialandTropical Oceansfrom Surface-basedObservations(1952-1981)

Latitude Ci Cb Cu St

10°—20°N 13.0 6.0 16.3 18.00°—10°N 16.0 8.4 15.8 21.80°—10°S 12.3 7.0 16.8 18.0

10°—20°S 9.5 6.3 15.6 23.9

Table2 Trend(t) andStandardDeviationabouttheTrend (a) of theAnnual AverageCloud Amounts overtheOceans(1952—1981)

(Changein Cloud Amount over29 Years)

Latitude Ci Cb Cu St0~ i U i U

10°—20°N 0.6 0.7 2.4 0.3 0.0 0.4 0.4 1.00°—10°N1.4 0.5 3.5 0.5 —1.0. 0.4 —0.4 1.20°—10°S1.1 0.4 2.9 0.6 —1.1 0.5 0.5 1.0

10°—20°S 0.6 0.4 2.5 0.6 —0.8 0.6 —0.5 1.0

andgridding, samplingbiases,anddeterminationof averagecloud amounts—aregiven in /6/. In observa-tionswheremorethanonecloudtypewasreported,cirrus-typecloudamountsweredeterminedby makinguseof the randomoverlapassumption. In casesof lower overcast,the cirrus amountwasassumedto bethesameas in the caseswhere theupper level wasvisible. We haveusedgridded 100 x 20°(latitudexlongitude)seasonalaveragesto deriveannualaveragesfor each100 zonebetween20°Nand20°S.(Thetotalarchivedgriddeddatasetis discussedby Hahnet al. /7/. A least-squareslinear trendwasthencalculatedfrom theannualzonalaverages,andthestandarddeviationof theindividual annualzonalvaluesaboutthetrend line wascomputed.

Becauseof thestrongbiasbetweendayandnight observationsof cirrus-typeclouds,only daytimevaluesof

thesecloudswere usedin our analysis.

ANALYSIS

The 30-yearaveragesof theobservedcloud-typeamountsover theoceansare given in Table 1 for each

10°latitude zonebetween20°Nand20°S.The percentcloudamountis thepercentof sky coveredby the

20 _______________________________________20 ______________________________________11111111 lIJI I 111111111 III 1111111111111 1111111 111111~:: lO~~°N ~

O°—IO°N

d 10 10

a, . a

a iiitii lilitititil 11111111 Iii 5 tIIiililtIiiIiiilIlIililIIlI

S25456586062648668707274767680 52545658606264666870727478768020 I I I I I I I I I 20 I I I I I I I I

Ia Is~°—i~° S 1O°—20°S

Ia 16

~:~,—~-.A ~

6 I III IlililtIlil tIltilIllIlli 6 iIttIiiIIIiiiiIIIIIIitIIIIII

S25456586062646668707274767880 525456586062646668707274767680

YEAR YEAR

Fig. 1. Annual cirrus,cirrostratus,andcirrocumuluscloud amount: zonalaveragesandtrend(1952—1981).

Page 3: Thirty-year trend of observed greenhouse clouds over the tropical oceans

Thirty-YearTrendof GreenhouseClouds (3)47

12 I I I I I I I I I I I I I I I I I I I I I I I I I I I I 12 I I I I I I I I I I I I I I I I I I I I I I I I I I I I

10 . l0’—20°N . 10 0°—l0°H

. .~......

2 I II1II1IIII 111111 liii 1111111 2 111111 1111111111111111111 iii525456586062646668707274767880 525456586062646668707274767880

12 I I I I I I I I I I I I I I I I I I I I I I I I I I I I 12 I I I I I I I I I I I I I I I I I I I I I I I I I I I

10 . O°~IO°S . 10 100_200 S

.... 5~~/~c’~

2 I1I1III1II 111111111111111111 2 IIIIIIIIIiI 111111 11111 III Iii

525456585052846668707274767880 525456586062648668707274787880YEAR YEAR

Fig. 2. Annual cumulonimbuscloud amount: zonal averagesandtrend(1952—1981).

specifiedcloud type,including (for high clouds)amountshiddenby lower clouds. Cloud-typeamountsovertheoceansas functionsof all latitude zonesaregiven in /6/ for eachof the four seasons.The dominantcloud typesin thetropics arestratus,altostratus,andaltocumulus.Cirrus, cirrostratus,andcirrocumulusamountsare almost twice theamount of cumulonimbusclouds. The relativeproportionof thesecloudamountsis similar to theglobalaverageexceptthat stratus,stratocumulus,andfog (groupedas St) aremuchmoreprevalentin middle andhigh latitudesthanin the tropics.

Year-to-yearvariations of theamountsof the four different cloud types, determinedfrom ground-basedobservations,aregiven in Figures1—4 for eachof the four latitude zonesconsideredhere. Includedin the

20 I I I I I I I I I I I I I I I I I I I I I I I I I I I I 20 I I I I I I I I I I I I I I I I I I I I I I I I I I I I

19 . . 19

18 . . 15

~

d 14 14.Io°..20°w 0~IDeH

13 . 13

12 1_I I I I I t I I I I I I I I I I 1 1 12 I I I I I I I I I I I I I I I I I I I I I I I525456586062645668707274767880 525456586062646668707274767880

20 I I I I I I I I I I I I I I I I I I I I I I I I I I I I 20 I I I I I I I I I I I I I I I I I I I I I I I I I I I

:

d 14. 14.O

0_100

1O*_20D ~

13 - . 1312 I I I I I I I I I I I I I I I I I I I 12 I I I I I I I I I I I I I I I I I I I I I I

525456586062646688707274767680 525456586062646668707274767880

YEAR YEAR

Fig. 3. Annual cumuluscloud amount: zonal averagesandtrend (1952—1981).

Page 4: Thirty-year trend of observed greenhouse clouds over the tropical oceans

(3)48 J. London ef a!.

30 ____________ 30 _____________1111111111111111 11111111111111111111111111FF

28 - 2826 . . 26

24 I0°~20°H 24

::,~~~fvv\~,~ ~ ~!~0o.l0oH

tO I I I I I I I I I I I I I I I I I I I I I I I I I I I 10 I I I I I I I I I I I I I I I I I I I I I I I I I I I I525456586062646668707274767880 525456586062646668707274767880

30 ____________ 30 _____________I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

28 28

t E 0°-laos E ~! ~ ~ :I0O_2O05

10 I I I I I I I I I I I I I I I I I I I I I I I I I I I I_ 10 I I I I I I I I I I I I I I I I I I I I I I I I I I I I

525456586062646668707274767880 525456586062646668707274767880

YEAR YEAR

Fig. 4. Annualstratusandstratocumuluscloudamount: zonal averagesandtrend (1952—1981).

figuresarethecomputedtrend lines for eachtypeandzone. Table 2 lists thecomputedtrend (i) andthestandarddeviationofthe individual annualvalues for eachcloud type. Figures1—4 aresimilar to diagramsin themicroficheattachmentto ouroceancloud atlas/6/.

During the30-yearperiodcoveredby thedata, thepercentchangeis positiveandgenerallysignificant atthe2o- level for Ci andCb at all latitudesbetween20°Nand20°S.Thepronouncedpositivetrend shownforcumulonimbusclouds(i.e., about25 percentof theaverageCb amountin thetropics),althoughstatisticallysignificant,seemssuspiciouslylarge. Part of this apparentchangecouldhavearisenfrom codinginstructionsandsubjectivedifferencesin observerclassifications.The percentchangeof St during this period is smallandnot significantly differentfrom zero. Thelargecomputednegativetrendsof Cu in theequatorialzonesandsoutherntropicsresult, in part, from thepositiveCu cloudanomaliesasreportedin 1952—1953. If thesetwoyearsareomitted, thenegativetrendsaresignificant(la) only neartheequator.Note alsothatduringthesefirst two years,theaveragestratusamountswere belowthe30-yearaverage.

Ground-basedobservationsshowthat over the tropical oceans,more than40 percentof reportedcumu-lonimbusare accompaniedby reportsof cirrus-typeclouds /8,9/. This associationreflectsthe fact thatin the tropics, cirrusandcirrostratusmost frequentlyoriginate from thespreadingof anvil tops of cumu-lonimbusclouds. This situation is in contrastto thenormal formationof cirrus-typecloudsassociatedwithfrontal activity alongmiddle-andhigh-latitudestormtracks.Theobservedco-occurrenceindicatedbetweencirrus-typeandstrongconvectivecloudsin thetropics would provideahigh-level basefor radiativecoolingof theair in the layerat thetop of deepconvectivecloudsandareductionof theoutgoinginfrared emissionfrom relatedspreadingcirrusclouds at the top of the troposphere.The presenceof suchcirrus clouds iscounterto thesuggestionof drying out of air nearthe tropopauseandtheimplication of convectivelypro-ducedwarmingat tropopauselevels/10/. Thelatter is also inconsistentwith the resultsof WetheraldandManabe/3/ who concludedfrom their model calculationsthat thecloud-feedbackprocessassociatedwithstrongconvectivesystemsleadsto an increasein thecloud height andcloudamountat tropopauselevels,thus reducingthe temperatureat thecloud top andconsequentlytheoutgoingradiationfrom theselevels.

SUMMARY

Clouds act as prime regulatorsof the radiationbalanceof theearth-atmospheresystem. Different cloudtypesaffect theradiativeforcing of this systemdifferently. High cloudsact to warmthesystemwhereaslowcloudsact to cool thesystem. We havefound, from analysisof ground-basedcloud observationsoverthetropical oceans,that cirrus-typecloudshaveincreasedandlow-type (cumulus,stratus,andstratocumulus)cloudshaveremainedsteadyor decreasedoverthe30-yearperiod1952—1981.Theseresultsimply apossibleincreasein greenhouseforcing by changesin different cloud-typeamountsover thetropical oceansduringthis period. However, we do not know to what extent the indicatedtrendsin cloud-typeamountshavebeenbiasedby undiscoveredchangesin observingprocedures.Additional studyis plannedto extendtheseresultsin time andto coverlandareasandmiddle andhigh latitudes.

Page 5: Thirty-year trend of observed greenhouse clouds over the tropical oceans

Thirty-YearTrendofGreenhouseClouds (3)49

ACKNOWLEDGMENTSThework reportedherewas supportedby NASA GrantsNAGW-1002 andNAG1-998. We thankKristin

HoyerandMary Eberlefor programmingandtechnicalassistancein preparationof thepaper.

REFERENCES

1. G. Ohring, P.F. Clapp, T.R. Heddinghaus,and A.F. Krueger, The quasi-globaldistribution of thesensitivity of theEarth-atmosphereradiationbudgetto clouds, 1. Almos. Sci. 38, 2539—2541(1981).

2. V. Ramanathan,R.D. Cess,E.F. Harrison,P. Minnis, B.R. Barkstrom,E. Ahinad, andD. Hartmann,Cloud-radiativeforcing andclimate: Resultsfrom theEarth RadiationBudget Experiment,Science243,57—63 (1989).

3. R.T. WetheraldandS. Manabe,Cloud feedbackprocessesin a generalcirculationmodel, J. Aimos.Sri. 45, 1397—1415(1988).

4. G.E.WoodburyandM.P. McCormick, Zonalandgeographicaldistributionsof cirruscloudsdeterminedfrom SAGEdata,J. Geophys.Rca. 91, 2775—2785(1986).

5. S.D. Woodruff,R.J. Slutz,R.L. Jenne,andP.M. Steurer,A comprehensiveocean-atmospheredataset,Bull. Am. Meieor. Soc. 68, 1239—1250(1987).

6. S.G. Warren,C.J. Hahn,J. London,R.M. Chervin, andR.L. Jenne,Global distribution of total cloudcoverand cloud type amountsover the oceans,NCAR TechnicalNote and DOE TechnicalReportNo. ER/60085-H2,U.S. Departmentof Energy,CarbonDioxideResearchDivision, Washington,D.C.

7. C.J. Hahn, S.G. Warren, J. London, R.L. Jenne,andR.M. Chervin, Climatological datafor cloudsovertheglobefrom surfaceobservations,NDP-026,CarbonDioxide InformationAnalysis Center,OakRidgeNationalLaboratory,Oak Ridge,Tennessee(1988).

8. C.J. Hahn,S.G. Warren,3. London, R.M. Chervin, andR.L. Jenne,Atlasof simultaneousoccurrenceof different cloud typesover the ocean,NCAR TechnicalNote TN-201+STR, 212 p. (1982; NTISPB83-152074).

9. S.G. Warren,C.J. Hahn, and3. London, Simultaneousoccurrenceof different cloudtypes, J. Clim.Appl. Meteor. 24, 658—667 (1985).

10. R.S. Lindzen,Somecoolnessconcerningglobal warming, Bull. Am. Meteor. Soc. 71, 288—299 (1990).