thermodynamics: the first law yongsik lee 2004. 3

71
Thermodynamics: the first law Yongsik Lee 2004. 3.

Upload: hillary-ashlee-shepherd

Post on 17-Jan-2016

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thermodynamics: the first law Yongsik Lee 2004. 3

Thermodynamics: the first law

Yongsik Lee2004. 3.

Page 2: Thermodynamics: the first law Yongsik Lee 2004. 3

Branches of Thermodynamics Thermodynamics

Classical thermodynamics Phenomenal, bulk properties

Statistical thermodynamics Connection between atomic and bulk thermodynamic pr

operties Branches

Thermochemistry Electrochemistry bioenergetics

Page 3: Thermodynamics: the first law Yongsik Lee 2004. 3

The conservation of energy

Page 4: Thermodynamics: the first law Yongsik Lee 2004. 3

Matter & Energy

물질 (matter) 공간을 차지하고 질량 (mass) 을 가진다

에너지 (energy) 일을 할 수 있는 능력 열 (heat) 과 일 (work) 의 형태를 가진다

E=mc2

물질과 에너지의 연관성

Page 5: Thermodynamics: the first law Yongsik Lee 2004. 3

System and surroundings Consider matter & energy tr

ansfer Open system Closed system Isolated system

Wall Diathermic adiabatic

Page 6: Thermodynamics: the first law Yongsik Lee 2004. 3

Work Gas push back the

surrounding atmosphere

Do wok on its surroundings

Page 7: Thermodynamics: the first law Yongsik Lee 2004. 3

Energy transfer as work/heat

Page 8: Thermodynamics: the first law Yongsik Lee 2004. 3

The measurement of work Transfer of energy that can cause motion against a

n opposing force Work = force x displacement

Physical work No force means no work

Work = pressure x volume change Expansion work Pressure = force / area Volume = area x displacement Work = F dx = P dV

Page 9: Thermodynamics: the first law Yongsik Lee 2004. 3

에너지의 단위 에너지의 크기는 줄 (J) 이라는 단위로 표시 1 J 은 어떤 물체를 1 뉴턴 (N) 의 힘으로 1 m 만큼 움직이는 데

필요한 일의 양 1 J = 1 N-m = 1 kg m2 s-2

1 J 은 1 kg 의 책을 중력에 대해서 10 cm 만큼 들어올리는데 필요한 일의 양

인간의 심장이 한번 박동하는데 필요한 에너지 1840 년대 줄의 실험에 의해 물 1g 의 온도를 1℃ 올리는 데

필요한 열은 4.18J 의 일 (1cal) 에 해당한다는 사실이 밝혀졌다 . 1 cal = 4.184 J

따라서 J 은 일과 열 , 그리고 에너지를 나타내는 단위

Page 10: Thermodynamics: the first law Yongsik Lee 2004. 3

다른 에너지 단위들 calorie

식품 분야에서 많이 쓰이는 에너지 단위 1 cal = 4.184 J 1 Cal = 1 kcal

Erg 1 J = 107 erg

BTU (British thermal unit) 일 파운드의 물을 화씨 일도 올리는데 필요한 에너지

Page 11: Thermodynamics: the first law Yongsik Lee 2004. 3

Heat

열 (q) 높은 온도에서 낮은 온도의 물체로 흐른다 분자운동이 활발하면 열이 많다

열과 온도 계에 열을 가하면 보통 온도가 올라간다

Heat capacity C = q/ΔT

Page 12: Thermodynamics: the first law Yongsik Lee 2004. 3

Work and Heat

계가 열을 받으면 부호는 +, 계가 열을 잃으면 - 가 된다 .

Page 13: Thermodynamics: the first law Yongsik Lee 2004. 3

Expansion work W=-PexΔV W=- ∫PexdV Free expansion

When external pressure is zero

Means no work

Page 14: Thermodynamics: the first law Yongsik Lee 2004. 3

Indicator Diagram

Page 15: Thermodynamics: the first law Yongsik Lee 2004. 3

Reversible expansion Reversible

A change that can be reversed By an infinitesimal change in a variable Maximum work is possible

Page 16: Thermodynamics: the first law Yongsik Lee 2004. 3

At Constant volume 일정부피에서 반응이

일어나면 ,  △V = 0, 그러므로 w = 0

Page 17: Thermodynamics: the first law Yongsik Lee 2004. 3

Isothermal expansion

Perfect gas Isothermal (ΔT=0) process

Kinetic energy is constant

Page 18: Thermodynamics: the first law Yongsik Lee 2004. 3

The measurement of heat Heat capacity

C = q/ΔT [C]=[J/K] Large C means small ΔT

heat capacity at constant pressure (Cp) at constant volume (Cv)

Heat capacity Molar heat capacity Specific heat capacity

Page 19: Thermodynamics: the first law Yongsik Lee 2004. 3

일과 열은 결국 같은 종류가 아닐까 ?

일이나 열은 같은 효과를 얻을 수 있다 .

Joule 은 일과 열을 모두 ' 에너지 ' 라는 새로운 개념의 한 형태로 정의

에너지는 계의 상태가 변할 때 일이나 열의 형태로 나타낼 수 있는 추상적인 양

Page 20: Thermodynamics: the first law Yongsik Lee 2004. 3

James P. Joule (1818-1889) born in Salford, Lancashir

e worked in a brewery Hero in Thermodynamics

질문 : 무게 25℃ 물이 1 g 있다 . 이 물의 온도를 올릴 수 있는 방법은 무엇인가 ?

Page 21: Thermodynamics: the first law Yongsik Lee 2004. 3

두 가지 해결 방법일 ( 실험 2) 과 열 ( 실험 1) 은 같은 효과를 얻을 수 있다 .

Page 22: Thermodynamics: the first law Yongsik Lee 2004. 3

Internal energy and enthalpy

Page 23: Thermodynamics: the first law Yongsik Lee 2004. 3

Thermodynamic variables Intensive property Extensive property

dependent of the amount of the system Path function State function

Depends only on the current state of the system (independent of the path)

Molar property – per number Specific property – per mass

Page 24: Thermodynamics: the first law Yongsik Lee 2004. 3

State function

Page 25: Thermodynamics: the first law Yongsik Lee 2004. 3

Internal energy Measure of the energy

reserves of the system

ΔU=w+q Isothermal change

ΔT=0 ΔU=w+q=C ΔT=0 U is constant

Page 26: Thermodynamics: the first law Yongsik Lee 2004. 3

Expansion at constant volume △U = q + w △U = q + 0 = qv

Page 27: Thermodynamics: the first law Yongsik Lee 2004. 3

제 1 법칙 : 에너지 보존법칙 Crate energy from nothing?

All failed 한 계가 받아들인 열에너지는 그 계의 내부

에너지를 올리거나 , 계가 한 일로 간다 . dq = dU - dW The internal energy of an isolated system is

constant Not a single violation!

Page 28: Thermodynamics: the first law Yongsik Lee 2004. 3

Fuel

Page 29: Thermodynamics: the first law Yongsik Lee 2004. 3

Combustion of propane

C3H8(g) + 5 O2(g) → 3CO2(g) + 4H2O(l) at 298 K 1 atm

(1 atm = 101325 Pa), -2220 kJ = q

What is the work done by the system?For an ideal gas, propane;

pV = nRT (p = pex)n – no. of molesR – gas constantT = temperatureV – volumep = pressure

Page 30: Thermodynamics: the first law Yongsik Lee 2004. 3

V= nRT/p or Vi = niRT/pex

6 moles of gas:Vi = (6 × 8.314 × 298)/ 101325 = 0.1467 m3

3 moles of gas:Vf = (3 × 8.314 × 298)/ 101325 = 0.0734 m3

work done = -pex × (Vf – Vi)

= -101325 (0.0734 – 0.1467) = +7432 Jat constant pressure Pex

Page 31: Thermodynamics: the first law Yongsik Lee 2004. 3

work done = - pex (nfRT/pex – niRT/pex)

= (nf – ni) RT

Work done = - n∆ gasRT

i.e. work done = - (3 – 6) × 8.314 × 298 = + 7432.7 J

Can also calculate U∆∆U = q +w q = - 2220 kJ

w = 7432.7 J = 7.43 kJ

∆U = - 2220 + 7.43 = - 2212.6 kJ

Page 32: Thermodynamics: the first law Yongsik Lee 2004. 3

NB:qp U ∆ why?

Only equal if no work is done i.e. V = 0∆

i.e. qv = U∆

Page 33: Thermodynamics: the first law Yongsik Lee 2004. 3

Example : energy diagram

C3H8 + 5 O2 (Ui)

3CO2 + 4H2O(l) (Uf)

U

U

progress of reaction

reaction path

Page 34: Thermodynamics: the first law Yongsik Lee 2004. 3

Reversible work For an infinitesimal change in volume, dV Work done on system = PdV

For ideal gas, PV = nRT

P = nRT/ V work = P(V) dV = nRT dV/ V

= nRT ln (Vf/Vi) because dx/x = ln x Work done by system= -nRT ln(Vf/Vi)

Vf

Vi

Vf

Vi

Page 35: Thermodynamics: the first law Yongsik Lee 2004. 3
Page 36: Thermodynamics: the first law Yongsik Lee 2004. 3

From heat to work = Engine Compare the work

C-D-A C-A

Page 37: Thermodynamics: the first law Yongsik Lee 2004. 3

enthalpy

Definition H=U+PV

Properties State function ΔH=qp

Page 38: Thermodynamics: the first law Yongsik Lee 2004. 3

Relation between Heat capacities For an ideal gas: H = U + p V For 1 mol: dH/dT = dU/dT + R Cp = Cv + R

Cp / Cv = γ (Greek gamma) At constant pressure

Some of the energy supplied as heat escapes as work when the system expands

The temperature does not rise as much

Page 39: Thermodynamics: the first law Yongsik Lee 2004. 3

Variation of H with temperature

Suppose do reaction at 400 K, need to know H

f at 298 K for comparison with literature value. How?

As temperature ↑, Hm ↑

Hm ∝ T

Hm = Cp,m T

where Cp,m is the molar heat capacity at constant pressure.

Page 40: Thermodynamics: the first law Yongsik Lee 2004. 3

H vs. Temperature qv = Cv ( T2 – T1) or Cv

T = U Cp = H / T Cv = U /T

For small changes Cp = dH / dT Cv = dU / dT

Page 41: Thermodynamics: the first law Yongsik Lee 2004. 3

Chapter 3Thermochemistry

Yongsik Lee2004. 3

Page 42: Thermodynamics: the first law Yongsik Lee 2004. 3

반응열 반응열

표준상태에서 이루어진 반응에서 발생한 열 STP (standard temperature and pressure)

반응열 측정 직접법 : 통열량계를 이용하여 직접 측정 , 또는

표에서 직접 계산 간접법 : 원소로부터 직접 합성이 안 되는 경우

Hess 의 법칙 이용

Page 43: Thermodynamics: the first law Yongsik Lee 2004. 3

Bomb calorimeter

난 통 열량계는 잘 몰라요

통아저씨 이양승

Parr 통열량계

Page 44: Thermodynamics: the first law Yongsik Lee 2004. 3

Using Bomb calorimeter submerges the reaction inside an insulated

container of water. An electrical heating device starts the

reaction inside a sealed reaction vessel and the temperature rise of the water which surrounds it is measured.

heat loss from a calorimeter (calibration) to keep the temperature of the water

surrounding the reaction vessel constant by heating or cooling it

Use well-known standard

Page 45: Thermodynamics: the first law Yongsik Lee 2004. 3

Determine the heat of reaction

Diphenyl + Oxygen reaction combustion reaction

Using benzoic acid for reference Benzoic acid 0.9150 g (0.0217-0.0111 g) Fe wire

Bomb calorimeter with Fe wire Diphenyl 0.8214 g + 0.0031 g Fe wire

Page 46: Thermodynamics: the first law Yongsik Lee 2004. 3

Heat capacity calculation

Page 47: Thermodynamics: the first law Yongsik Lee 2004. 3

Heat of combustion calculation

Page 48: Thermodynamics: the first law Yongsik Lee 2004. 3

enthalpy

Definition H=U+PV For a perfect gas

H=U + RTFor a solid/liquidH=U

Properties State function ΔH=qp

Page 49: Thermodynamics: the first law Yongsik Lee 2004. 3

Physical change

Page 50: Thermodynamics: the first law Yongsik Lee 2004. 3

Phase

Definition A specific state of matter Uniform throughout in composition and

physical state More specific than the state

Two solid phases of sulfur solid state Rhombic or monoclinic sulfur

Page 51: Thermodynamics: the first law Yongsik Lee 2004. 3

Sulfur allotropes Sulfur has three allotropes:

Rhombic, Monoclinic, Plastic At room temperature, monoclinic sulfur is the most stable form. When he

ated, monoclinic sulfur melts to form a viscous liquid at 119 ℃ at the atmosphere pressure.

At higher pressure, the monoclinic sulfur → the rhombic sulfur.

Both crystalline forms have the S8 crown shaped molecule and the plastic sulfur has a chain structure of unspecified number of atoms Sn

Page 52: Thermodynamics: the first law Yongsik Lee 2004. 3

Enthalpy of phase transition Phase transition

Conversion of one phase to another phase

State function ΔsubH = ΔfusH + ΔvapH ΔfusH = - ΔfreezeH Path independent

Enthalpy of vaporization (ΔvapH)

Page 53: Thermodynamics: the first law Yongsik Lee 2004. 3

Atomic and molecular change Succession of ionization

First ionization enthalpy Second ionization enthalpy

More energy is needed to separate an electron from a positively charged ion

Electron gain enthalpy Reverse of ionization Cl(g) + e-(g) → Cl-(g)

ΔH = -349 kJ

Page 54: Thermodynamics: the first law Yongsik Lee 2004. 3

Born-Haber cycle : 1 mol of NaCl

Page 55: Thermodynamics: the first law Yongsik Lee 2004. 3

Bond Enthalpy

C-H bond enthalpy in CH4

CH4 (g) → C (g) + 4 H (g) , at 298K.

Need: Hf of CH 4 (g) =- 75 kJ mol-1

Hf of H (g) = 218 kJ mol-1

Hf of C (g) = 713 kJ mol-1

Hdiss = nHf (products) - nHf

( reactants)

= 713 + ( 4x 218) – (- 75) = 1660 kJ mol-1 Since have 4 bonds : C-H = 1660/4 = 415 kJ mol-1

Page 56: Thermodynamics: the first law Yongsik Lee 2004. 3

Mean bond enthalpies Definition

Average of bond enthalpies Table 3.4 ΔH(AB) selected bond enthalpies Table 3.5 ΔHB mean bond enthalpies

Example H-O-H H2O(g) → 2H(g) + O(g) ΔH=+927 kJ H2O(g) → HO(g) + H(g) ΔH=+479 kJ HO(g) → H(g) + O(g) ΔH=+428 kJ Mean bond enthalpy ΔHB (O-H) = 463 kJ/mol

Page 57: Thermodynamics: the first law Yongsik Lee 2004. 3

Chemical change

Page 58: Thermodynamics: the first law Yongsik Lee 2004. 3

Standard enthalpy changes

ΔrH° Standard reaction enthalpy

Reactants in their standard states Products in their standard states

Standard state Pure substances at exactly 1 bar Temperature is not defined

Page 59: Thermodynamics: the first law Yongsik Lee 2004. 3

Hess’ Law

the standard enthalpy of a reaction is the sum of the standard enthalpies of the reaction into which the overall reaction may be divided.

ΔrH°(overall reaction) = ΣΔrH°(each step) C (g) + ½ O2(g) → CO (g)

Hcomb =? at 298K

Page 60: Thermodynamics: the first law Yongsik Lee 2004. 3

C (g) + ½ O2(g) → CO(g) Hcomb=?

From thermochemical data: C(g) +O2(g) → CO 2(g)

Hcomb =-393.5 kJmol-1

CO (g) +1/2 O2 (g) →CO 2(g) H

comb = -283.0 kJ mol-1

C (g) + O2 (g) – CO (g) – 1/2 O2 (g) → CO2 (g) – CO2 (g) C (g) + ½ O 2 (g) → CO (g) , H

comb= -393.5 – (-283.0) = - 110.5 kJ mol-1

Page 61: Thermodynamics: the first law Yongsik Lee 2004. 3

standard enthalpies of formation

ΔfH° The standard enthalpy (per mole of the substan

ce) for its formation from its elements in their reference states

Reference state The most stable form under the prevailing condi

tions At specified temperature and 1 bar

Page 62: Thermodynamics: the first law Yongsik Lee 2004. 3

화학반응 = 결합의 재배치 화학결합

결합을 끊는데 에너지가 필요하다 . 분자에 에너지를 가해주어야 한다 . 흡열반응

화학반응 화학결합을 끊고 새로운 화학결합을 만든다 약한 결합을 끊고 강한 결합을 만들면 에너지가

남는다 . ( 반응열의 발생 )

Page 63: Thermodynamics: the first law Yongsik Lee 2004. 3

Standard enthalpies of formation Standard reaction enthalpy, ΔrHº ΔrHº =Σ ν Hº(products)- Σ νHº(reactants)

Page 64: Thermodynamics: the first law Yongsik Lee 2004. 3
Page 65: Thermodynamics: the first law Yongsik Lee 2004. 3

화학결합과 에너지 (kJ/mol)

Page 66: Thermodynamics: the first law Yongsik Lee 2004. 3

Hydrazine synthesis reaction

N2 + 2H2 → N2H4

Energy absorbed for bond breaking +946 + 2 x (+436) = +1818 kJ

Energy released by bond making (-389) x 4 + (-163) = -1719 kJ

Energy change during the reaction (+1818) + (-1719) = +99 kJ

Page 67: Thermodynamics: the first law Yongsik Lee 2004. 3

Water Generation reaction

Page 68: Thermodynamics: the first law Yongsik Lee 2004. 3

Kirchoff’s equation : H(T)

Cp,m = Hm/ T (= [J mol-1/ K])

(= [J K-1 mol-1]) HT2°= HT1°+ Cp ( T2 - T1)

Cp = n Cp(products)- nCp(reactants)

For a wide temperature range: Cp ∫ dT between T1 and T2. Hence : qp = Cp( T2- T1) or H = Cp T

Page 69: Thermodynamics: the first law Yongsik Lee 2004. 3

exercises

2-4, 2-5, 2-9, 2-17 3-5, 3-15

Page 70: Thermodynamics: the first law Yongsik Lee 2004. 3

References

http://www.whfreeman.com/ECHEM/

Page 71: Thermodynamics: the first law Yongsik Lee 2004. 3

Creative Commons Attribution-NonCommercial-ShareAlike 2.0

You are free: to copy, distribute, display, and perform the work to make derivative works

Under the following conditions: Attribution. You must give the original author credit. Noncommercial. You may not use this work for commercial purposes. Share Alike. If you alter, transform, or build upon this work, you may distribute the r

esulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.

Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.