thermo ii lecture 2 solutionthermo

Upload: mikas-philip

Post on 01-Jun-2018

226 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    1/81

    Solution Thermodynamics

    CH2351 Chemical Engineering Thermodynamics II

    Unit – I, II

    www.msubbu.in

    Dr. M. Subramanian

    Associate Professor

    Department of Chemical Engineering

    Sri Sivasubramaniya Nadar College of Engineering

    alava!!am " #$% &&$' anchipuram (Dist)

    Tamil Nadu' *ndia

    msubbu.in+AT,gmail.com

    Jan-2012

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    2/81

    Contents

    - N*T */ P01PE0T*ES 12 S13T*1NS" Partial molar properties' ideal and non4ideal solutions' standard

    states definition and choice' 5ibbs4Duhem e6uation' e7cessproperties of mi7tures.

    - N*T **/ P8ASE E9*3*:0*A" Criteria for e6uilibrium bet;een phases in multi component non4

    reacting systems in terms of chemical potential and fugacity

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    3/81

    Typical Chemical Plant

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    4/81

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    5/81

    Multicomponent Systems " :asic 0elations

    - Single component system/

    " *ntensive properties/ depends on Pressure' Temperature" E7tensive properties/ depends on Pressure' Temperature' and

    amount

    - Multicomponent system/" *ntensive properties/ depends on Pressure' Temperature' and

    composition

    " E7tensive properties/ depends on Pressure' Temperature'amount of each component

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    6/81

    Composition

    Mole fraction

    For binary solution

    In dealing with dilute solutions it is convenient to speak of thecomponent present in the largest amount as the solvent, while thediluted component is called the solute.

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    7/81

    1ther Measures of Composition

    - Mass fraction " preferable ;here the definition of molecular;eight is ambiguous (eg. Polymer molecules)

    - Molarity " moles per litre of solution

     - Molality " moles per !ilogram of solvent. The molality is usuallypreferred' since it does not depend on temperature or pressure';hereas any concentration unit is so dependent.

    - =olume fraction

    - Mole ratio or volume ratio (for binary systems)

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    8/81

    Properties of Solutions

    - The properties of solutions are' in general' not additiveproperties of the pure components.

    - The actual contribution to any e7tensive property is designatedas its partial property. The term partial property is used todesignate the property of a component ;hen it is in admi7ture

    - :ecause most chemical' biological' and geological processesoccur at constant temperature and pressure' it is convenient toprovide a special name for the partial derivatives of all

    thermodynamic properties ;ith respect to mole number atconstant pressure and temperature. They are called partialmolar properties

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    9/81

    Molar volumes:

    Water: 18 mL/molEthanol: 58 mL/mol

    Partial molar volumes(at 50 mole% of

    Ethanol):

    Water: 16.9 mL/molEthanol: 57.4 mL/mol

    Ethanol4>ater System at

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    10/81

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    11/81

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    12/81

    1 liter of ethanol and 1 liter of water are mixed at constant temperature and

    pressure. What is the expected volume of the resultant mixture ?

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    13/81

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    14/81

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    15/81

    Partial Molar Properties

    - The partial molar property of a given component in solution isdefined as the differential change in that property ;ith respect to

    a differential change in the amount of a given component underconditions of constant pressure and temperature' and constantnumber of moles of all components other than the one underconsideration.

    ;here M is any thermodynamic property.

    - The concept of partial molar quantity can be applied to any

    extensive state function.Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    16/81

    Partial Molar =olume

    - Benzene-Toluene: :en?ene and toluene form an ideal solution.The volume of & mole pure ben?ene is @@. mlB the volume of &mole pure toluene is &$#. ml. @@. ml ben?ene mi7ed ;ith

    &$#. ml toluene results in @@. ml &$#. ml' or &.% ml ofsolution. (ideal solution)

    - Ethanol-Water:

     " The volume of & mole pure ethanol is @.$ ml and the volumeof & mole pure ;ater is &@.$ ml. 8o;ever' & mole ;atermi7ed ;ith & mole ethanol does not result in @.$ ml &@.$ml' or F#.$ ml' but rather F.% ml.

    " >hen the mole fraction is $.' the partial molal volume of

    ethanol is F. ml and the partial molal volume of ;ater is. ml. (non-ideal solution)

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    17/81

    2undamental E6uations of Solution

    Thermodynamics

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  

    b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    18/81

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  

    b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    19/81

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  

    b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    20/81

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    21/81

    5ibbs4Duhem E6uation

    - This e6uation is very useful in deriving certain relationshipsbet;een the partial molar 6uantity for a solute and that for the

    solvent.

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    22/81

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    23/81

    Determination of artial !olar roperties of Binary "olutions

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    24/81

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    25/81

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    26/81

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    27/81

    Partial Molar 9uantities " Physical *nterpretation

    - The partial molar volume of component i in a system is e6ual tothe infinitesimal increase or decrease in the volume' divided bythe infinitesimal number of moles of the substance ;hich isadded' ;hile maintaining T' P and 6uantities of all othercomponents constant.

    - Another ;a to visuali?e this is to thin! of the chan e in volume

    on adding a small amount of componentito an infinite totalvolume of the system.

    - Note/ partial molar 6uantities can be positive or negativeG

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    28/81

    Example ro#lem

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    29/81

    7& 8 (HImol)84ideal(HImol)

    8&bar(HImol)

    8

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    30/81

    550

    600

    650

    700

        (   J   /  m  o   l   )

    H-mix

    H-ideal

    H1bar

    H2bar

    350

    400

    450

    0 0.2 0.4 0.6 0.8 1

    x1 (-)

       H

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    31/81

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    32/81

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    33/81

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    34/81

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    35/81

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    36/81

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    37/81

    w  w  w  .m  s  u  b  

    b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    38/81

    Partial Molar Properties from E7perimental Data

    - Partial molar volume/

    " Density data (ρ vs. 7&)

    - Partial molar enthalpy/

    " Enthalpy data (8 vs. 7&)B can be directly used

    " 8eat of mi7ing (also called as enthalpy change on mi7ing)data (∆8mi7 vs. 7&)

    - 1btained using differential scanning calorimetry

    - 0eported normally as HImol of soluteB to be converted to HImol ofsolution

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  

    b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    39/81

    Density data for Water ($) - !ethanol (%) system at %&'$ *

    7&

      ρ (!gIm%) avgM> = =ideal

      ∆=mi7

    m% I!mol m% I!mol m% I!mol

    $ F@#.@# %

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    40/81

    0.025

    0.03

    0.035

    0.04

    0.045

      e   (  m   3   /   k  m

      o   l   )

    V

    V-ideal

    0.01

    0.015

    0.02

    0 0.2 0.4 0.6 0.8 1

    x1

       V  o

       l  u

     

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    41/81

    -6.00E-04

    -4.00E-04

    -2.00E-04

    0.00E+00

    0 0.2 0.4 0.6 0.8 1

     

         V    m     i    x

    -1.20E-03

    -1.00E-03

    -8.00E-04

    x1

     

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    42/81

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    43/81

    ;tJ8

    8(!HImol)

    ∆8mi7

    (!HImol)∆8

    mi7Model

    (!HImol)

    $

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    44/81

    2.00

    6.00

    10.00

        (   k   J    /   m   o   l   )

    -10.00

    -6.00

    -2.00   . . . . . .

    x1

       H

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    45/81

    0edlich4ister Model

    - Also !no;n as 5uggenheim4Scatchard E6uation

    - 2its ;ell the data of ∆Mmi7 vs. 7&

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    46/81

    -10

    -8

    -6

    -4

    -2

    0

    0.00 0.20 0.40 0.60 0.80 1.00

     

         H    m     i    x

    -16

    -14

    -12

    x1

    Data

    RK Model fit

    ao 4.

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    47/81

    Calculate the partial molar volume of Ethanol and Water as afunction of composition.

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    48/81

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    49/81

    5ibbs

    - Hosiah >illard 5ibbs (&@% " &$)

    - 5ibbs greatly e7tended the field of thermodynamics' ;hich

    originally comprised only the relations bet;een heat andmechanical ;or!. 5ibbs ;as instrumental in broadening the fieldto embrace transformations of energy bet;een all the forms in

    ' ' '

    electrical' chemical' or radiant.

    - 8e is considered to be the founder of chemicalthermodynamics.

    - 8e is an American theoretical physicist' chemist' andmathematician. 8e devised much of the theoretical foundationfor chemical thermodynamics as ;ell as physical chemistry.

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    50/81

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    51/81

    2undamental E6uation for Closed System

    - The basic relation connecting the 5ibbs energy to thetemperature and pressure in any closed system/

    " applied to a single4phase fluid in a closed system ;herein nochemical reactions occur.

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

    2 d t l E ti f 1 S t

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    52/81

    2undamental E6uation for 1pen System

    - Consider a single4phase' open system/

    - Definition of chemical potential/

    ∑  

    ∂+

    ∂+

    ∂=

    i

    i

    nT PinPnT 

    dn

    n

    nGdT 

    nGdP

    P

    nGnGd 

     j,,,,

    )()()()(

    (The partial derivative of 5 ;ith respect to the mole number ni at constantT and P and mole numbers n K L n K )

    - The fundamental property relation for single4phase fluid systemsof constant or variable composition/

     jnT Pi

    i n

    nG

    ,,

    )(

      ∂

    ∂≡

     µ 

    ∑+−=i

    iidndT nS dPnV nGd    µ )()()(

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    53/81

    When n = 1,

    ∑+−=i

    iidxSdT VdPdG   µ    ,...),...,,,,( 21   i x x xT PGG  =

     xPT 

    GS 

    ,

     

      

     

    ∂=

     xT P

    GV 

    ,

     

      

     

    ∂=

    The Gibbs energy is expressed as a

    function of its canonical variables.

    Solution properties,  M 

    Partial properties,Pure-species properties,  M i

    i M 

    ii   G≡ µ 

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    54/81

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    55/81

    Chemical potential and phase e6uilibria

    - Consider a closed system consisting of t;o phases ine6uilibrium/

    ∑+−= ii   dndT nS dPnV nGd    α α α α α   µ )()()( ∑+−= ii   dndT nS dPnV nGd    β  β  β  β  β   µ )()()(

     β α  )()(   nM nM nM    +=

    ∑∑   ++−=i

    ii

    i

    ii   dndndT nS dPnV nGd   β  β α α   µ  µ )()()(

     β α 

     µ  µ  ii  =

     β α ii   dndn   −=

    Mass balance:

    Multiple phases at the same T and P are in equilibriumwhen chemical potential of each species is the same in all phases.Jan-2012 M Subramanian

    Since the two-phase system isclosed,

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    56/81

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

    Partial Molar Energy Properties and Chemical

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    57/81

    Partial Molar Energy Properties and Chemical

    Potentials

    The partial molar Gibbs free energy ischemical potential; however, the other partial

    molar energy properties such as that ofinternal energy, enthalpy, and Helmholtz freeenergy are not chemical potentials: becausechemical otentials are derivatives withrespect to the mole numbers with the natural

    independent variables held constant.

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  

    u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    58/81

    w  w  w  .m  s  u  b  b  

    u  .i   n  

    = i i f i h T d P

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    59/81

    =ariation of µ ;ith T and P

    - =ariation of µ ;ith P/ partial molar volume

    - =ariation of µ ;ith T/ partial molar entropy' can bee7pressed in terms of partial molar enthalpy

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  

    u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    60/81

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    61/81

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    62/81

    w  w  w  .m  s  u  b  b  u  .i   n  

    Entropy Change

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    63/81

    Entropy Change

    The second law of thermodynamics

    in which the equality refers to a system undergoing a reversible change and the

    For an isolated system

      .

    For systems that are not isolated it will be convenient to use the criteria ofreversibility and irreversibility such as in the following equation:

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

    Mi7ing at Constant T and P

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    64/81

    Mi7ing at Constant T and P

    To carry out the mixing process in a reversible manner, the external pressure P’ onthe right piston is kept infinitesimally less than the pressure of B in the mixture; andthe external pressure P’’ on the left piston is kept infinitesimally less than thepressure of A in the mixture.

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    65/81

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

    A h i i i i h l d h i i id l

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    66/81

    As the mixing process is isothermal, and the mixture is an ideal gas,

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

    Entropy Change of Mi7ing

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    67/81

    - Consider the process' ;here nA moles of ideal gas A are confinedin a bulb of volume =A at a pressure P and temperature T. Thisbulb is separated by a valve or stopcoc! from bulb : of volume=: that contains n: moles of ideal gas : at the same pressure Pand temperature T. >hen the stopcoc! is opened' the gas

    molecules mi7 spontaneously and irreversibly' and an increase inentropy ∆Smi7 occurs.

    - e en ropy c ange can e ca cu a e y recogn ? ng a e

    gas molecules do not interact' since the gases are ideal. ∆Smi7 isthen simply the sum of ∆SA' the entropy change for thee7pansion of gas A from =A to (=A =:) and ∆S:' the entropychange for the e7pansion of gas : from =: to (=A =:). That is'

    ∆Smix = ∆SA + ∆SB

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    68/81

    For the isothermal process involving ideal gases, ∆H is zero.Therefore,

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

    Partial Molar Entropy of Component i in an ideal gas mi7ture

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    69/81

    w  w  w  .m  s  u  b  b  u  .i   n  

    5ibbs free energy change of mi7ing

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    70/81

    5ibbs free energy change of mi7ing

    w  w  w  .m  s  u  b  b  u  .i   n  

    Chemical potential of component i in an ideal gas mi7ture

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    71/81

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    72/81

    i

    ig

    i

    ig

    i

    ig

    i   y RT GG   ln+=≡ µ 

    P RT T G iigi   ln)(   +Γ =

    P y RT T  iig

    i   ln)(   +Γ =

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

    0esidual Property

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    73/81

    w  w  w  .m  s  u  b  b  u  .i   n  

    2ugacity of a component i

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    74/81

    w  w  w  .m  s  u  b  b  u  .i   n  

    Chemical potential of component i in a solution

    in terms of fugacity

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    75/81

    w  w  w  .m  s  u  b  b  u  .i   n  

    2ugacity and fugacity coefficient/ species

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    76/81

    in solution- 2or species i in a mi7ture of real gases or in a solution

    of li6uids/

    iii   f  RT T   ˆln)(   +Γ ≡ µ 

    Fu acit of s ecies i in solution

    - Multiple phases at the same T and P are in e6uilibrium;hen the fugacity of each constituent species is thesame in all phases/

     (replacing the particle pressure)

    π  β α 

    iii   f  f  f   ˆ...ˆˆ ===

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n  

    ig R−=The residual property:

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    77/81

    igii

     Ri   M  M  M    −=The partial residual property:

    ig

    ii

     R

    i   GGG   −=

    iii   f  RT T    ˆln)(   +Γ ≡ µ 

    P y RT T  iiig

    i   ln)(   +Γ = µ 

    P y

     f 

     RT i

    iig

    ii

    ˆ

    ln=− µ  µ 

    i

     R

    i   RT G   φ ̂ln=

    i

    nT Pi

    i   Gn

    nG

     j

    =

    ∂≡

    ,,

    )( µ 

    P y

     f 

    i

    ii

    ˆˆ ≡φ 

    The fugacity coefficient of species i 

    in solution

    For ideal gas,0=

     R

    iG

    ˆ ==

    P y

     f 

    i

    iiφ    P y f  ii   =

    ˆ

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  

    .i   n  

    The e7cess 5ibbs energy and the activity

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    78/81

    coefficient- The e7cess 5ibbs energy is of particular interest/

    id  E GGG   −≡

    iii   f  RT T G  ˆln)(   +Γ =

    iii

    id 

    i   f  x RT T G   ln)(   +Γ =

    ii

    i E i

     f  x f  RT Gˆ

    ln=

    ii

    ii

     f  x

     f ̂≡γ  

    i

     E 

    i   RT G   γ  ln=The activity coefficient of species

    iin solution.A factor introduced into Raoult’s law to account for

    liquid-phase non-idealities.For ideal solution,

    c.f.

    i

     R

    i   RT G   φ ̂ln=   1,0   ==   i E 

    iG   γ  

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  

    .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    79/81

    ˆ ==P

     f iiφ    P y f  ii  =

    ˆ   ii

     x

     f ̂≡γ  

    i

     E 

    i   RT G   γ  ln=

    0= R

    iG1,0   ==   i

     E 

    iG   γ  

    For ideal solution,

    w  w  w  .m  s  u  b  b  u  

    .i   n  

    2ugacity of a pure li6uid

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    80/81

    - The fugacity of pure species i as a compressed li6uid/

    sat 

    i

    isat 

    ii f 

     f  RT GG   ln=− )(   processisothermaldPV GG

    P

    P  i

    sat 

    ii   sat i

    ∫=−

    =P

    isat 

    i

    sat dPV 

     f    1ln

    i  i

    Since Vi is a weak function of P

     RT 

    PPV 

     f 

     f    sat il

    i

    sat 

    i

    i   )(ln  −=

    sat 

    i

    sat 

    i

    sat 

    i   P f    φ =  RT 

    PPV P f 

    sat 

    i

    l

    isat 

    i

    sat 

    ii

    )(exp

      −= φ 

    w  w  w  .m  s  u  b  b  u  .i   n  

  • 8/9/2019 Thermo II Lecture 2 SolutionThermo

    81/81

    Infinite dilution of girls in boys

    Jan-2012 M Subramanian

    w  w  w  .m  s  u  b  b  u  .i   n