thermallydrivenflows-2017steenburgh/classes/6250/lectures/... · 2017. 9. 15. · •winds tend to...

11
9/15/17 1 Thermally Driven Flows Atmos 6250: Mountain Meteorology Jim Steenburgh Department of Atmospheric Sciences University of Utah [email protected] Photo: greatmontanabeertrek.com Reading Zardi, D., and C. D. Whiteman, 2013: Diurnal mountain wind systems. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges. T. Chow, S. de Wekker, and B. Snyder, Eds., Springer, 35–119. Discussion Why do terrain heterogeneities (mountains, valleys, slopes) lead to circulations in the presence of uniform surface heating or cooling? Can you provide some examples of thermally driven mountain, valley, or slope circulations in Utah? Types of Mountain Winds Dynamically driven flows produced by the interaction of the large-scale flow with topography Thermally driven flows (a.k.a. diurnal mountain winds) produced by horizontal contrasts in heating and cooling that arise from topographic and land-surface contrasts Frequently combined to some extent Types of Mountain Winds Dynamically driven flows produced by the interaction of the large-scale flow with topography Thermally driven flows (a.k.a. diurnal mountain winds) produced by horizontal contrasts in heating and cooling that arise from topographic and land-surface contrasts Frequently combined to some extent This Lecture Thermally Driven Mountain Winds Slope flows (upslope and downslope) Produced by horizontal temperature contrasts between air over a valley and air over its sidewalls Valley flows (up-valley and down-valley) Produced by horizontal temperature contrasts along a valley axis or between air in the valley and over an adjacent plain Cross-valley flows Produced by horizontal temperature differences between two opposing valley sidewalls Mountain-plain wind system Produced by horizontal temperature differences between air over a mountain massif and air over the surrounding plains

Upload: others

Post on 02-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ThermallyDrivenFlows-2017steenburgh/classes/6250/lectures/... · 2017. 9. 15. · •Winds tend to be higher near mouth of a valley because –Winds accelerate with distance down

9/15/17

1

ThermallyDrivenFlows

Atmos 6250:MountainMeteorologyJimSteenburgh

DepartmentofAtmosphericSciencesUniversityofUtah

[email protected]:greatmontanabeertrek.com

Reading

Zardi,D.,andC.D.Whiteman,2013:Diurnalmountainwindsystems.MountainWeatherResearchandForecasting:RecentProgressandCurrentChallenges.T.Chow,S.deWekker,andB.

Snyder,Eds.,Springer,35–119.

Discussion

• Whydoterrainheterogeneities(mountains,valleys,slopes)leadtocirculationsinthepresenceofuniformsurfaceheatingorcooling?

• Canyouprovidesomeexamplesofthermallydrivenmountain,valley,orslopecirculationsinUtah?

TypesofMountainWinds

• Dynamicallydrivenflows producedbytheinteractionofthelarge-scaleflowwithtopography

• Thermallydrivenflows (a.k.a.diurnalmountainwinds)producedbyhorizontalcontrastsinheatingandcoolingthatarisefromtopographicandland-surfacecontrasts

• Frequentlycombinedtosomeextent

TypesofMountainWinds

• Dynamicallydrivenflows producedbytheinteractionofthelarge-scaleflowwithtopography

• Thermallydrivenflows (a.k.a.diurnalmountainwinds)producedbyhorizontalcontrastsinheatingandcoolingthatarisefromtopographicandland-surfacecontrasts

• Frequentlycombinedtosomeextent

ThisLecture

ThermallyDrivenMountainWinds• Slopeflows(upslopeanddownslope)

– Producedbyhorizontaltemperaturecontrastsbetweenairoveravalleyandairoveritssidewalls

• Valleyflows(up-valleyanddown-valley)– Producedbyhorizontaltemperaturecontrastsalongavalleyaxisorbetween

airinthevalleyandoveranadjacentplain

• Cross-valleyflows– Producedbyhorizontaltemperaturedifferencesbetweentwoopposingvalley

sidewalls

• Mountain-plainwindsystem– Producedbyhorizontaltemperaturedifferencesbetweenairoveramountain

massifandairoverthesurroundingplains

Page 2: ThermallyDrivenFlows-2017steenburgh/classes/6250/lectures/... · 2017. 9. 15. · •Winds tend to be higher near mouth of a valley because –Winds accelerate with distance down

9/15/17

2

ThermallyDrivenMountainWinds• Diurnalmountainwindsystems

– ThermallydrivenwindsystemsassociatedwiththediurnalcycleofheatingandcoolingattheEarth’ssurface

– Exhibitdiurnalreversal

• Anabaticflows– Upslope,upvalley

• Katabaticflows– Downslope,downvalley

• Anabaticandkatabaticflowsdonotnecessarilyexhibitdiurnalreversal– Katabaticmorecommonlythananabatic

SlopeandValleyFlows

Whiteman(2000)

DaytimeNighttime*Diurnalreversalcommon,butnotrequired(e.g.,glacialflows)

CrossValleyFlow

BaderandWhiteman(1989),Whiteman(2000)

Mountain-PlainWindSystem

H

L

H

L

Daytime

Nighttime

Regional-scalecirculationbetweenmountain/plateaumassiff andsurroundinglowlands

Mountain-PlainWindSystem

Reiter & Tang (1984); Whiteman (2000)

MeanJuly850mbheight(0500MST) MeanJuly850mbheight(1700MST)

ReiterandTang(1984),Whiteman(2000)

Multiscale Interactions

Whiteman(2000)

Page 3: ThermallyDrivenFlows-2017steenburgh/classes/6250/lectures/... · 2017. 9. 15. · •Winds tend to be higher near mouth of a valley because –Winds accelerate with distance down

9/15/17

3

Multiscale Interactions

Whiteman(2000)

SlopeFlows

Photo:http://oldbearnews.blogspot.com/

Discussion

• Lateintheday,flowsthatmovedirectlydowntheterraingradienttypicallydevelopalongslopes

• Whatmechanismsdrivetheseflows?

• Whydon’ttheycontinuetogetstrongerduringthenight(inmostinstances,theydon’t)

SlopeFlows

• Gravityorbuoyancyflowsthatfollowtheterraingradient

• Drivingforceisbuoyancygeneratedbythecoolingorwarmingofairadjacenttotheslope

• Bestdevelopedinclear,undisturbedweather

• Difficulttofindinpureform

SlopeFlows

Whiteman(2000)

Along-SlopeForceBalance

S

n

u =velocityparalleltoslope(alongs),positivedownslope

ρ0 =referencedensitywithoutcooling

Pa =Ambientpressure

θ’=perturbationθ nearslope

θ0 =referenceθ

α=slopeangle

u’w’=turbulentmomentumflux

DuDt

= −gθ 'θ0sinα − 1

ρ0

∂(p− pa )∂s

−∂(u 'w ')∂n

HorstandDoran(1986),Whiteman(2000)

Page 4: ThermallyDrivenFlows-2017steenburgh/classes/6250/lectures/... · 2017. 9. 15. · •Winds tend to be higher near mouth of a valley because –Winds accelerate with distance down

9/15/17

4

Along-SlopeForceBalance

S

n

DuDt

−1ρ0

∂(p− pa )∂s

−gθ 'θ0sinα

−∂(u 'w ')∂n

DuDt

= −gθ 'θ0sinα − 1

ρ0

∂(p− pa )∂s

−∂(u 'w ')∂n

Along-slopeacceleration

Buoyancycomponentalongslope

Along-slopepressuredifferencegradient(differencerelativetoambient)

Turbulentmomentumflux(a.k.a.,friction)

HorstandDoran(1986),Whiteman(2000)

SlopeFlows

U

B

PGFF Assumingsteadystate,buoyancybalancedby:

1.Friction/entrainment2.Pressuregradient(relativetoambient)producedbychangesindepthofcoldpoolalongslope

DuDt

= −gθ 'θ0sinα − 1

ρ0

∂(p− pa )∂s

−∂(u 'w ')∂n

HorstandDoran(1986),Whiteman(2000)

SlopeFlows• Typically1–5ms-1,butspeedincreaseswithslopelength

– Antarctica15–30ms-1

• Decreaseindepthwithincreasingstaticstability

• Downslopeflows– Strongestatorjustfollowingsunset

• DeepeningcoldpoolcreatesadversePGFlateratnightandlimitsbuoyancyeffect

• Convergeintogullies,basins,etc.

• Upslopeflows– Strongestmidmorning– Increaseindepthasonemovesupslope– Convergeoverhigherground(e.g.,ridges,plateaus,etc.)

SlopeFlows• Verysensitivetospatialvariationsinsurfaceradiation– Persistentcloudcover,timeofsunrise/sunset– Slopeaspect,topographicshading,etc.

Whiteman(2000)

UpslopeFlowaboveForest

Whiteman(2000)

Heatingincanopylayercanproduceupslopeflowaboveshallowdownslopeinthesnow-cooledsub-canopylayer

ValleyFlows

https://cleanairfairbanks.files.wordpress.com/2011/01/helios-fire_2011-1-16_nh_1453_duringfire.jpg

Page 5: ThermallyDrivenFlows-2017steenburgh/classes/6250/lectures/... · 2017. 9. 15. · •Winds tend to be higher near mouth of a valley because –Winds accelerate with distance down

9/15/17

5

ValleyFlows

• Drivenbystrongerheatingandcoolingofthevalleyatmospherecomparedtotheadjacentplain

• Bestdevelopedinclear,undisturbedweather

Whiteman(2000)

Discussion

• Basedonthecrosssectionspictured,whichofthevalleysbelowwouldhaveastrongerdaytimeup-valleyflow?

ValleyWinds

ValleyVolumeEffectValley-to-plain

temperaturecontrastsdevelopbecauseairvolumeinvalleyissmallerthanthatinplain

Valleydoesn’thavetoslopetoproducealong-valley

winds

Whiteman(2000)

SeasonalEffectonDiurnalReversal

Reiteretal.(1983),Whiteman(2000)

NocturnalValleyExitJet• Windstendtobehighernearmouthofavalleybecause– Windsacceleratewithdistancedownthevalley– Horizontalpressuregradientlargestnearexitwherethereisanabrupttransitionfromhighpressureinvalleytolowpressureoverplain

– Bycontinuity,windspeedincreasesascoldvalleyairsinksandfansoutoverplain

• Greatestimpactfordeepvalleysthatendabruptlyataplain

NocturnalValleyExitJet

ExitjetfromAustria’sInnValley

Pamperin andStilke (1985),Whiteman(2000)

Page 6: ThermallyDrivenFlows-2017steenburgh/classes/6250/lectures/... · 2017. 9. 15. · •Winds tend to be higher near mouth of a valley because –Winds accelerate with distance down

9/15/17

6

ValleyWindVariability

• Along-valleytemperatureandwindvariabilitycanbeproducedby– Contrastinshort- orlon-waveradiationlossesorgainsalongvalley

– Rateofconversionofnetradiationtosensibleheat• Concerns:Heterogeneoussnowcover,soilmoisture,vegetation

Whiteman(2000)

ValleyShape

• Along-valleytemperatureandwindvariabilitycanbeproducedbychangesinvalleyvolume– Heatingofairinvalleyisproportionaltovalleyvolume(Whiteman1990)

– AreaswithconvexvalleysidewallsheatmorequicklythanU-shapedareas

Whiteman(2000)

Discussion

ThisphotoofupperLittleCottonwoodCanyonwastakenshortlyaftersunriseAssumingcalmlarge-scalewinds,whatlocalflowsdoyouexpect?

Cross-ValleyWinds

• Blowacrossvalleywhenairononesidebecomeswarmerthanothersid)• Compensatoryflowsinoppositedirectionaloft• Culprits:Unequalsidewallexposuretosun,heterogeneoussnowcover,

vegetation,soilmoisture

Whiteman(2000)

Cross-ValleyWinds

BaderandWhiteman(1989),Whiteman(2000)

TheDiurnalPBLCycle

• Nighttime(decoupled)period• Morningtransition• DaytimeCBL• Eveningtransition

Page 7: ThermallyDrivenFlows-2017steenburgh/classes/6250/lectures/... · 2017. 9. 15. · •Winds tend to be higher near mouth of a valley because –Winds accelerate with distance down

9/15/17

7

DiurnalPBLEvolutionoveraPlain

Whiteman(2000)

DiurnalPBLEvolutionoverValley

Whiteman(2000)

NighttimeDecoupledPeriod

• ValleyflowdecoupledfromresidualCBLaloft

• Downvalleyanddownslopewindsprevail

Whiteman(2000)

Discussion

• WhatisgoingonintheWasatchWeatherWeeniesbannerbelow?Describethecloudsandhypothesizewhytheylookthewaytheydo

MorningTransition• CBLbeginstodevelopoverheated

slopes

• Upslopeflowsdevelopalongvalleysidewals,thenshallowup-valleyflowalongvalleyaxis

• Topofinversionsinksduetocompensatingsubsidence

• Downvalley flowpersistsinshrinkingstable-corealoft

• StablecoreeventuallydestroyedbyCBLgrowthandup-valleyflowextendsthroughvalleydepth

• Valleymayeventuallycouplewithambientsynopticfloworplain-mountaincirculation

Whiteman(2000)

MorningTransition

Whiteman(1980)

Page 8: ThermallyDrivenFlows-2017steenburgh/classes/6250/lectures/... · 2017. 9. 15. · •Winds tend to be higher near mouth of a valley because –Winds accelerate with distance down

9/15/17

8

DaytimeCBL• Convectionoccursaboveall

slopes

• Upslopeandup-valleyflowspredominatewithinvalley

• Windstransitiontothelarge-scaleflowabovethevalley

• Windsinthevalleymaybecometurbulentandupperwindsmayoccasionallychannelintovalley

Whiteman(2000)

EveningTransition

• Beginsinlateafternoon• Downslopeflowsbeginfirstinshadedareasonsidwalls andvalley

floor,thenoverallsidewals• Valleyinversionwithdown-valleyflowgrowsindepth

Whiteman(1986)

DiurnalCycleHodograms

RightBankwindsturnclockwise

LeftBankwindsturn

counterclockwise

Hawkes(1947),Whiteman(2000)

Discussion

Howwelldothemeansummerwindsatthestationsabovematchthetheoryonthepriorslide?Explaindiscrepancies(Fullandhalfbarbdenote1and0.5ms-1,respectively)

Stewartetal.(2002)

DiurnalCycleofValleyDivergence

Convergence

Divergence

October2000

CourtesyMikeSplitt

BasinCirculationsNASA

Page 9: ThermallyDrivenFlows-2017steenburgh/classes/6250/lectures/... · 2017. 9. 15. · •Winds tend to be higher near mouth of a valley because –Winds accelerate with distance down

9/15/17

9

Discussion

Describethediurnalevolutionofwindsyouexpectinabasin.HowaretheyDifferentthaninavalley?Why?

NASA

BasinCirculations• Unlessperturbedbythelarger-scaleflow,enclosed

terrainfeaturesdevelopslopeflowsbutweakalong-basincirculations– Slopeflowstypicallyweakenasbasincoldpooldeepens

• Theabsenceofalong-basinadvectionandassociatedturbulenceresultsinalargerdiurnaltemperaturerange– Overnightminimumsareespeciallylow

• Basincoldpoolscanbediurnal(i.e.,developatnight)orpersistfordaysorweeks

Examples

Whiteman(2000)

Examples

CourtesyDaveWhiteman

PeterSinks

Clements(2001)

Utahall-timerecordlowof-57°C

NorthSink

Clements(2001)

Page 10: ThermallyDrivenFlows-2017steenburgh/classes/6250/lectures/... · 2017. 9. 15. · •Winds tend to be higher near mouth of a valley because –Winds accelerate with distance down

9/15/17

10

NorthSink

Clements(2001)

Vegetation“inversion”

Perimeter

Clements(2001)

Instrumentation

Clements(2001)

SurfaceTemperature

Clements(2001)

BigdiurnalcycleColdestairinbottomofbasin

Airtemperatureincreasesupwardalongbasinsidewalls

VerticalStructure

• Gradualcoolingofbasinairmass throughnight

• Downslopeflowearly,thenwindsbecomeweak

• Inversionattopofbasinstrengthens

Clements(2001)

Summary• Largespectrumofthermallydrivenflowsincomplexterrain

– Slopeflows– Valleyflows– Cross-valleyflows– Mountain-plaincirculations

• Typicaldiurnalevolutionunderlightforcingincludes– Nocturnalregime

• Downslopeanddown-valleyflows– Morningtransition

• Rapiddevelopmentofslopeandshallowup-valleyflows• Gradualerosionofelevateddown-valleyflowandstablecorealoft

– Afternoonregime• Upslopeandup-valley;possiblecouplingwithlarge-scaleflowaloft

– Eveningregime• Rapidonsetofdownslopethendownvalley withgradualdeepeningofcoldcore

• Basins– Weakslopeflowsinitiallyineveningthatweaken– Attainverycoldnocturnaltemperaturesduetolimitedflowsandturbulence

Page 11: ThermallyDrivenFlows-2017steenburgh/classes/6250/lectures/... · 2017. 9. 15. · •Winds tend to be higher near mouth of a valley because –Winds accelerate with distance down

9/15/17

11

ReferencesBader,D.C.,andC.D.Whiteman,1989:Numericalsimulationofcross-valleyplumedispersionduringthemorningtransitionperiod.J.Appl.Meteor.,28,652-664.

Clements,C.B.2001:ColdAirPoolEvolutionandDynamicsinaMountainBasin.UniversityofUtahM.S.Thesis,100pp.

Hawkes,H.B.,1947:Mountainandvalleywindswithspecialreferance tothediurnalmountainswindsoftheGreatSaltLakeregion.Ph.D.dissertation,OhioStateUniversity,312pp.

Horst,T.W.,andJ.C.Doran,1986:Nocturnaldrainageflowonsimpleslopes.Bound.-LayerMeteor.,34,263–286.

Pamperin,H.,andG.Stilke,1985:NocturnalboundarylayerandLLJinthepre-alpineregionneartheoutletoftheInnValley.Meteor.Rundsch.,38,145–156.

Reiter,E.R.,andM.Tang,1984:Plateaueffectsondiurnalcirculationpatterns.Mon.Wea.Rev.,112,638–651.

Stewart,J.Q.,C.D.Whiteman,W.J.Steenburgh,andX.Bian,2002:AclimatologicalstudyofthermallydrivenwindsystemsoftheUSIntermountainWest.Bull.Amer.Meteor.Soc.,83,699-708.

Whiteman,C.D.,1980.BreakupofTemperatureInversionsinColoradoMountainValleys.Ph.D.dissertation,ColoradoStateUniversity. AvailablefromUniversityMicrofilms,AnnArbor,MichiganorasAtmosphericSciencePaperNo.328fromDepartmentofAtmosphericScience,ColoradoStateUniversity,FortCollins,Colorado80523.

Whiteman,C.D.,1986:TemperatureinversionbuildupinColorado'sEaglevalley.Meteor.Atmos.Physics,35,220-226.

Whiteman,C.D.,2000:MountainMeteorology:FundamentalsandApplications.OxfordUniversityPress,355pp.

Zardi,D.,andC.D.Whiteman,2013:Diurnalmountainwindsystems.MountainWeatherResearchandForecasting:RecentProgressandCurrentChallenges.T.Chow,S.deWekker,andB.Snyder,Eds.,Springer,35–119.