thermal cracking analysis model and pavement … · ; slide no. 1 thermal cracking analysis model...

47
www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

Upload: ngohuong

Post on 18-May-2018

234 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 1

Thermal Cracking Analysis Model AND

Pavement Temperature Profile Prediction Model

Page 2: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 2

THERMAL CRACKING ANALYSIS PACKAGE (TCAP)

Comprehensive Evaluation of Thermal Cracking in Asphalt Pavements

Page 3: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 3

Thermal Cracking Analysis Influential Factors • Pavement Structure

Asphalt layer thickness. Interface condition.

• Environmental Conditions Pavement temperatures. Cooling/warming rates.

• Asphalt mixture properties Viscoelastic properties Thermal Volumetric properties Fracture and Crack Initiation Properties

• Asphalt mixture aging Property change with oxidative aging

Page 4: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 4

Thermal Cracking Analysis Existing Models • Aging of asphalt binder over time is not considered

“viscoelastic, fracture, and volumetric properties of asphalt material constant over time.”

• Thermal coefficient of contraction (CTC) is considered constant with temperature and usually estimated.

• Tensile strength is considered constant with temperature.

• Pavement temperature model (currently EICM) can be improved.

Page 5: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 5

Thermal Cracking Analysis Supportive Experimental Plan (Morian, N. 2014)

Asphalt Binder Testing

• 15 asphalt binder types Unmodified, polymer modified, lime modified

• Testing

Carbonyl Area (FT-IR) Binder Master Curves and LSV

1 mm film asphalt binder pan aging over different times and durations

(50, 60, 85 and 100°C up to 320 days)

Asphalt Mixture Testing (partial factorial) • 5 Agg. Sources (Abs. from 0.9 to 5.97%) • 3 Gradations (coarse, interm. & fine) • 2 Binders (PG64-22, PG64-28 SBS mod.) • Binder Contents (3.62 to 9.14% TWM) • 3 Air Void levels (4, 7, 11%) • Testing

Dynamic modulus (E*) Uniaxial Thermal Stress & Strain

Test (UTSST)

Asphalt Mixture aging: 4 Levels (0, 3, 6, and 9 months at 60°C)

Page 6: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 6

Thermal Cracking Analysis Proposed Model

Step 1 Pavement Temperature Profile

and History Prediction

Step 2 Oxidative Aging Prediction

Step 3 Thermal Stress Calculation

Step 4 Thermal Cracking Event

Probability

Pavement temperature at depth z (Step 1) Asphalt binder aging properties • Kinetics (Ea, and APα) • Hardening parameters (HS, m) Asphalt mixture properties • Air void size • Effective aging zone

Predict Carbonyl (CA) as a function of time and depth

Climatic and meteorological data: • air temperature • solar radiation and • Wind speed Layer properties: • Pavement layers’ thicknesses • Thermal diffusivity Surface radiation properties • Albedo, emissivity, absorption coefficients

1-D Heat Diffusion Equation TEMPS Software

Predicted hourly thermal stress • Considering aging effect • temperature dependent CTC Predicted carbonyl (CA) (Step 2) Asphalt mixture crack initiation stress (CIS) • Measured using UTSST (i.e., thermal loading) • Age-dependent Coefficient of thermal contraction • Temperature dependent CTC • Obtained from the thermal strain curve

Compare 𝝈 𝒕,𝑪𝑪 to % of CIS Numbers of events over design life

Predicted pavement temperature (Step 1) (over time and at depth z) Predicted carbonyl (CA) (Step 2) (over time and at depth z) Asphalt mixture Relaxation modulus • Directly from the E* complex modulus • based on continuous relaxation spectrum • Age dependent Coefficient of thermal contraction (CTC) • Temperature dependent CTC • Obtained from the thermal strain curve • Age dependent

1-D Linear viscoelastic model

Page 7: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 7

Thermal Cracking Analysis Prediction of Field Aging (Numerical solution using FCVM)

Pavement location: Reno, NV Aggregate: Northern Nevada Binder type: PG64-28 (SBS mod.) Binder content: 5.22% Air voids: 7%

Ea= 72.53 kJol/mol APα = 4.08 E+8 ln(CA/day) HS = 2.7 (1/CA) m = 9.24 (poise) Air void diameter = 0.5 mm Eff. aging zone = 1.0 mm (film thickness)

Page 8: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 8

Thermal Cracking Analysis Lab Simulation of Field Aging

NV_PG64-28(SBS)_5.22%AC_7.0%Va long-term lab aging

Field aging (Reno, NV)

3 months at 60°C 5.9 years 6 months at 60°C ~ 10.9 years 9 months at 60°C ~16.7 years

0.5 months at 85°C Over 20 years Modeling of fast-rate aging is needed

X

Page 9: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 9

Thermal Cracking Analysis Thermal Stress Calculation

• 1D linear viscoelastic constitutive equation with oxidative aging effect.

𝜎𝑇𝑇 𝑡,𝐶𝐶 = � 𝐸(𝜉 𝑡 − 𝜉′ 𝑡 ,𝐶𝐶)𝜕𝜀𝑇𝑇(𝑡,𝐶𝐶)

𝜕𝑡′𝑑𝑡𝑑

𝑡

0

Relaxation Modulus Function of time,

temperature, and aging

Thermal strain rate Function of temperature and

age-dependent CTC

Page 10: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 10

Thermal Cracking Analysis Age-Dependent Relaxation Modulus • Relaxation modulus determined from dynamic complex modulus.

– Continuous relaxation spectrum directly obtained by inverse Laplace Fourier Transform of complex E* (2S2P1D, Olard & Di Benedetto, 2003).

Ideal viscoelastic model

Page 11: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 11

Thermal Cracking Analysis Evolution of 2S2P1D Coefficient with Aging

Consistent trends were found for the evaluated mixtures!

1

10

100

1,000

0.00 0.20 0.40 0.60

E0 (M

Pa)

CA-CA0

1,000

10,000

100,000

0.00 0.20 0.40 0.60

E∞ (M

Pa)

CA-CA0

0.10

1.00

10.00

0.00 0.20 0.40 0.60

δ

CA-CA0

0.30

0.40

0.50

0.00 0.20 0.40 0.60

k

CA-CA0

0.01

0.10

1.00

0.00 0.20 0.40 0.60

h

CA-CA0

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0.00 0.20 0.40 0.60

T0

CA-CA0

0.005.00

0.00 0.20 0.40 0.60CTCL

(E

05/

°C)

CA CA0 NV19I28_5.22_4%_60°C NV19I28_5.22_7%_60°C NV19I28_5.22_11%_60°C

(𝟐𝟐𝟐𝟐𝟐𝟐 𝒄𝒄𝒄𝒄𝒄)𝒋 = 𝑪𝒋 × 𝒄𝑩𝒋(𝑪𝑪−𝑪𝑪𝟎)

Page 12: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 12

Thermal Cracking Analysis Evolution of 2S2P1D Coefficient with Aging

2S2P1D coeff. CA Va (%) Abs. (%) LSVTank

(poise)B.C. (%) Retained # 8 Passing # 200

E0 √ √ √ √ √

E∞ √ √ √ √ √ √ √

δ √ √ √ √ √ √

k √ √ √ √

h √ √ √

T0 √ √ √

Mixture variable

Page 13: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 13

Thermal Cracking Analysis Evolution of 2S2P1D Coefficient with Aging

y = 0.569x + 20.553 R² = 0.770

0

100

200

300

0 100 200 300

Pred

icted

E0 (

MPa)

Measured E0 (MPa)

E0 (MPa) Line of Eguality

y = 0.822x + 3,334.734 R² = 0.849

0

10,000

20,000

30,000

40,000

0 10,000 20,000 30,000 40,000Pr

edict

ed E

∞ (M

Pa)

Measured E∞ (MPa) E∞ Line of Eguality

y = 0.851x + 0.163 R² = 0.884

0.0

1.0

2.0

3.0

4.0

0.0 1.0 2.0 3.0 4.0

Pred

icted

δ

Measured δ

δ Line of Eguality

y = 0.761x + 0.098 R² = 0.775

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

Pred

icted

k

Measured k k Line of Eguality

y = 0.525x + 0.074 R² = 0.545

0.0

0.1

0.2

0.3

0.0 0.1 0.2 0.3

Pred

icted

h

Measured h h Line of Eguality

y = 0.553x + 0.002 R² = 0.689

0.E+00

5.E-03

1.E-02

2.E-02

2.E-02

0.E+00 5.E-03 1.E-02 2.E-02 2.E-02

Pred

icted

T0

Measured T0

T0 Line of Eguality

Page 14: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 14

Thermal Cracking Analysis Temperature and Age-Dependent CTC •

-0.0015

-0.001

-0.0005

0

-50 -40 -30 -20 -10 0 10 20

Ther

mal S

train

(mm/

mm)

Temperature (°C)

CTCl

CTCg

Tg

Unrestrained Specimen

Restrained Specimen

Dummy Specimen

Uniaxial Thermal Stress & Strain Test (UTSST)

𝜀𝑡𝑇 =∆𝑙𝑙0

= 𝐶 + 𝐶𝐶𝐶𝑔 𝐶 − 𝐶𝑔 + 𝑙𝑙 1 + 𝑒(𝑇−𝑇𝑔)

𝑅

𝑅(𝐶𝑇𝐶𝑙−𝐶𝑇𝐶𝑔)

𝜀 𝐶(𝑡) = � 𝐶𝐶𝐶(𝐶(𝑡)) × 𝑑𝐶𝑑𝑇(𝑡)

𝑇0

𝐶𝐶𝐶 𝐶 = 𝐶𝐶𝐶𝑔 + (𝐶𝐶𝐶𝐿 − 𝐶𝐶𝐶𝑔) × 𝑒(

𝑇−𝑇𝑔𝑅 )

(1 + 𝑒𝑇−𝑇𝑔𝑅 )

Page 15: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 15

Thermal Cracking Analysis Age-Dependent Crack Initiation Stress (CIS)

0

2000

4000

6000

8000

10000

-30 -20 -10 0 10 20

Stiffn

ess (

MPa)

Temperature (°C)

Crack Initiation (CI)

Glassy Hardening

Viscous-Glassy Transition

Viscous Softening Fracture

Crack Initiation Temp. (CIT)

Page 16: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 16

Thermal Cracking Analysis Age-Dependent Crack Initiation Stress (CIS)

• Validation of CIS with VECD. – Elastic-Viscoelastic Correspondence Principle

𝜎𝑇𝑇 𝑡 = 𝐸𝑅 × I × 𝜀𝑇𝑇𝑅 (𝑡) 𝜀𝑇𝑇𝑅 𝑡 =

1𝐸𝑅

� −𝐸𝑟(𝜉(𝑡) − 𝜉(𝑡′))𝜕𝜀𝑇𝑇(𝑡′)𝜕𝑡𝑑 𝑑𝑡𝑑

𝑡

0

0

0.5

1

1.5

2

2.5

3

-40 -30 -20 -10 0 10 20

The

rmal

Stre

ss (M

Pa)

Temperature (°C)

Mesured thermal stress from UTSSTPredicted stress without continuum damageing

Damage Initiation Temperature (DIT)

0

0.5

1

1.5

2

2.5

3

0 1 2 3

Ther

mal S

tress

(MPa

)

Thermal Pseudo-Strain * Ι

Start of nonlinearity due to damage

Page 17: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 17

Thermal Cracking Analysis Age-Dependent Crack Initiation Stress (CIS)

• Validation of CIS with VECD.

y = 1.24x + 4.54 R² = 0.93

-40

-30

-20

-10

0

10

-40 -30 -20 -10 0 10

Dama

ge In

itiatio

n Tem

pera

ture

(°C)

Crack Initiation Temperature (°C)

Various mixtures with different binder grades, aggregates, and mix designs.

Page 18: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 18

Thermal Cracking Analysis Age-Dependent Crack Initiation Stress (CIS)

Similar trends were observed for all evaluated mixtures!

𝑪𝑪𝟐 = 𝑬 × 𝒄𝑭(𝑪𝑪−𝑪𝑪𝟎)

0.1

1.0

10.0

0.00 0.20 0.40 0.60

Crac

k init

iation

stre

ss (M

Pa)

CA-CA0

-40

-30

-20

-10

0

0.00 0.20 0.40 0.60Crac

k init

iation

temp

eratu

re (°

C)

CA-CA0

Page 19: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 19

Thermal Cracking Analysis Age-Dependent Crack Initiation Stress (CIS)

CA Va (%) Abs. (%)

LSVTank (poise)

B.C. (%)

Retained # 8

Passing # 200

CIS √ √ √ √ √

CIT √ √ √ √ √ √

Mixture variable

y = 0.98x R² = 0.89

-40

-30

-20

-10

0

10

-40 -30 -20 -10 0 10

Pred

icted

Cra

ck in

i. Tem

p (°C

)

Measured Crack ini. Temp (°C) Crack initiation temperature Line of equality

y = 0.97x R² = 0.72

0

1

2

3

4

5

0 1 2 3 4 5

Pred

icted

Cra

ck in

i stre

ss (M

Pa)

Measured Crack ini stress (MPa)

Crack initiation stress Line of equality

Page 20: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 20

Thermal Cracking Analysis Thermal Cracking Event Probability

• The accumulative events during which thermal stress reaches a defined percentage of the asphalt mixture Crack Initiation Stress (CIS) over the analysis period! Possible Cracking events

Page 21: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 21

MATLAB Graphical User Interface (GUI) Thermal Cracking Analysis Package (TCAP)

Page 22: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 22

Examples: TCAP Analysis

• Pavement Location – Reno, Nevada

• Asphalt Mixtures: – Polymer-modified PG64-28; 3 air void levels: NV_5.22PG64-28_4%; NV_5.22PG64-28_7%; NV_5.22PG64-28_11%

• Design Period

– 20 years

Page 23: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 23

Examples: TCAP analysis Effect of Oxidative Aging on Thermal Stresses

Difference in predicted thermal stresses between aging and no-aging effect analyses.

4% Air Voids

7% Air Voids

11% Air Voids

Page 24: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 24

Examples: TCAP analysis Thermal Stress vs. Crack Initiation Stress (CIS)

Page 25: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 25

Examples: TCAP analysis

Effect of Mixtures Air Voids

Cracking likelihoods increase for mixture with higher air voids level….

∼11 yrs

Acc. CI = Weighted average of number of events at which thermal stresses reach different % of CIS.

𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝐶 𝐼𝑙𝑑𝑒𝐼 =∑𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝐶 𝑒𝑒𝑒𝑙𝑡𝑖 %𝐶𝐶𝐶 × 𝐶%

∑ 𝐶 % ,

𝐶 = 100, 80, 70, 60, 50

Page 26: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 26

Examples: TCAP analysis Effect of Modification (Two field projects from Reno, NV)

Un-modified PG64-22 (Moana, 2006)

SBS polymer-modified PG64-28 (Sparks, 2008)

Page 27: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 27

TCAP Implementation

Asphalt Mixture(s) (Agg., Binder, Mix Design)

Pavement Structure & Location

Pavement Temperature Prediction

Oxidative Aging Prediction

Materials Input Complex modulus (E*), CTC, CIS

Thermal Cracking Analysis ✔ Pass ✖ Fail

• Level 1: Measured kinetics (Mix-aged) • Level 2: Accelerated Aging • Level 3: Database

• Level 1: Measured (Full Testing) • Level 2: Measured (Reduced Testing) • Level 3: Predictive Equations

• Climatic/meteorological data • Material thermal prop. • Surface radiation prop.

Page 28: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 28

Future Research and Improvements

• Field validation of TCAP model.

• Sensitivity analysis of TCAP model.

• Level 3 material input: – Regression models for materials oxidative aging, viscoelastic,

and crack initiation properties.

• Development of a stand-alone TCAP software.

Page 29: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 29

TEMPERATURE ESTIMATE MODEL FOR PAVEMENT STRUCTURES (TEMPS)

Pavement Temperature Profile History

Page 30: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 30

Pavement Temperature Profile Prediction

Improvement of the Heat Transfer model [Han et al., 2011 (TAMU)]

Enhanced boundary conditions. Variable pavement surface radiation properties.

Application of Finite Control Volume method (FCV) with

Implicit Scheme [Zia et al., 2014 (UNR)] Considering discontinuity in pavement layers’ material. Improving the time efficiency of calculation.

Page 31: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 31

Pavement Temperature Profile Prediction Heat Transfer Model Concept

Heat Transfer Balance Between Pavement Structure & Surrounding Environment

Solar Radiation (Albedo)

Incoming (Absorption) and Outgoing (Emissivity) Radiation Heat Convection

(Wind speed)

Heat Diffusion

Page 32: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 32

Pavement Temperature Profile Prediction Numerical Computation: Finite Control Volume Method (FCVM)

Energy Balance in Each of Control Elements

Page 33: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 33

Pavement Temperature Profile Prediction Standalone Software: TEMPS (Alpha Version) Temperature Estimate Model for Pavement Structures (TEMPS)

• Materials • Climatic Data • Surface Characteristics • Pavement Structure • Mesh Generator

Page 34: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 34

Pavement Temperature Profile Prediction TEMPS – Materials Input

Page 35: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 35

Pavement Temperature Profile Prediction TEMPS – Climatic Data Input

Page 36: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 36

Pavement Temperature Profile Prediction TEMPS – Surface Characteristics Input

Page 37: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 37

Pavement Temperature Profile Prediction TEMPS – Pavement Structure

Page 38: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 38

Pavement Temperature Profile Prediction TEMPS – Mesh Generator

Page 39: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 39

Pavement Temperature Profile Prediction TEMPS – Run Analysis

Time Efficiency of Computation: Implicit Scheme Run time for 1 years analysis period (3.10 GHz proc. and 4.00 GB RAM) < 10 seconds using 1 hour time step* * Note: 1 hour time step was chosen without jeopardizing the model accuracy for prediction.

Page 40: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 40

Pavement Temperature Profile Prediction TEMPS – Output Results

Page 41: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 41

Pavement Temperature Profile Prediction TEMPS – Output Results

Page 42: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 42

Pavement Temperature Profile Prediction TEMPS – Output Summary

Page 43: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 43

Pavement Temperature Profile Prediction TEMPS – Output Summary

Page 44: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 44

Pavement Temperature Profile Prediction TEMPS – Predicted versus Measured Great Falls, MT at depth of 0.09 m (3.5 inch)

-20-10

01020304050

11/5/2001 12/25/2001 2/13/2002 4/4/2002 5/24/2002 7/13/2002 9/1/2002 10/21/2002 12/10/2002 1/29/2003

Temp

eratu

re (°

C)

Predicted TemperatureMeasured Temperature (LTPP)

-20-10

01020304050

11/5/2001 12/25/2001 2/13/2002 4/4/2002 5/24/2002 7/13/2002 9/1/2002 10/21/2002 12/10/2002 1/29/2003

Temp

eratu

re (°

C)

Calibrated TemperatureMeasured Temperature (LTPP)

Particle Swarm Optimization (PSO) Algorithm: Single yearly surface characteristics

Page 45: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 45

Pavement Temperature Profile Prediction TEMPS – Predicted versus Measured Great Falls, MT at depth of 0.09 m (3.5 inch)

-20

-10

0

10

20

30

40

50

-20 -10 0 10 20 30 40 50

Max D

aily C

alibr

ated T

empe

ratur

e (De

gree

s C)

Max Daily Measured Temperature (Degrees C)

-20

-10

0

10

20

30

40

50

-20 -10 0 10 20 30 40 50

Max D

aily P

redic

ted Te

mper

ature

(Deg

rees

C)

Max Daily Measured Temperature (Degrees C)

Particle Swarm Optimization (PSO) Algorithm: Single yearly surface characteristics

Optimization need to be refined to include monthly surface characteristics

Page 46: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 46

Pavement Temperature Profile Prediction TEMPS – Additional Improvements

• Optimize the surface characteristics for the US (Albedo, Emissivity, Absorption) using Particle Swarm Optimization (PSO) Algorithm – Monthly or seasonal values.

• Create/Include input files for LTPP SMP sections. • Provide a summary of the average 7-day pavement

temperature at various depths. • Provide a summary of pavement cooling/warming rates

Page 47: Thermal Cracking Analysis Model AND Pavement … ·  ;  Slide No. 1 Thermal Cracking Analysis Model AND Pavement Temperature Profile Prediction Model

www.wrsc.unr.edu ; www.arc.unr.edu Slide No. 47