theory.pdf

40
Pergamon Int. Z Impact Engng, Vol. 19, Nos. 5--6, pp. 531-570, 1997 © 1997 Elsevier Science Ltd Printed in Great Britain. All fights reserved PII:S0734-743X(97)00016-X 0734-743X/97 $17.00+0.00 DYNAMIC UNIAXIAL CRUSHING OF WOOD S.R. REID* and C. PENG Department of Mechanical Engineering, UMIST, PO Box 88, Sackville Street, Manchester, M60 1QD, U.K. (Received 30 October 1996; in revised form 30 January 1997) Summary--Experimental results are provided from a series of tests on the uniaxial dynamic crushing of cylindrical specimens of five species of wood selected for the density range they cover and tested up to impact velocities of approximately 300 ms -1. An account of the macro-deformation and micro-deformation modes resulting from quasi- static and dynamic uniaxial compression is given. Measurements of the force pulses generated by the impact of the wood specimens on the end of a Hopkinson bar load cell show that significant enhancements of the initial crushing strengths of the specimens occur under dynamic loading conditions. The deformation mechanisms of wood are localised under quasi-static compression and under dynamic loading conditions they become even more localised and propagate through the material as crushing wave fronts which have some of the characteristics of shock waves. A simple shock model based upon a rate-independent, rigid, perfectly-plastic, locking (r-p-p-l) idealisation of the stress-strain curves for wood is proposed to provide a fast order understanding of the dynamic response. This model is particularly successful in predicting the dynamic enhancement of the crushing strength of specimens loaded across the grain as confirmed by comparisons between the experimental data and theoretical results. It is less successful for those compressed along the grain. The source of the discrepancy is discussed and explanations are provided for the fairly constant crushing stress enhancement factor observed at low to moderate impact velocities, for the high impact velocity at which shock-type response is initiated and for the existence of clearly delineated crush fronts which characterise these specimens. © 1997 Elsevier Science Ltd. Keywords: cellular materials, wood, impact energy absorption, crushing strength, microinertia, shock waves. NOTATION Ao CL Cs hcell L Lo M At* mw Sr t u v Vc Vcrit vl Vo Vs x Xo 7 OL El /91 cross-sectional area of the cylindrical specimen longitudinal elastic wave speed in 0 ° specimens shock speed relative to the projectile axial length of wood cell length of the uncrushed portion of wood specimen initial length of the wood specimen mass of the backing disc combined mass of wood specimen and backing disc mass of the wood specimen dynamic crushing stress enhancement factor, Sr = grD/O'cr time displacement of the end mass (backing disc) M velocity at time t lowest impact velocity at which crushing is initiated in 0 ° specimens critical impact velocity for full specimen locking 0 ° specimen velocity at which crushing ceases impact velocity impact velocity at which shock waves are generated in 0 ° specimens current length of the crushed material strained to el initial length of the crushed portion = Po/pt = 1 - el locking strain parameter locking strain density of the crushed material * Corresponding author. 531

Upload: omkarkocharekar

Post on 17-Aug-2015

233 views

Category:

Documents


8 download

TRANSCRIPT

Pe r gamon Int. ZImpact Engng, Vol. 19, Nos. 5--6, pp. 531-570,1997 1997 Elsevier Science Ltd Printed inGreat Britain. All fights reserved PII:S0734-743X(97)00016-X0734-743X/97 $17.00+0.00 DYNAMICUNIAXIALCRUSHINGOFWO O DS. R. REI D*a ndC. P ENG Department ofMechanicalEngineering, UMIST,POBox88,SackvilleStreet,Manchester,M601QD,U.K. (Received30October1996;inrevised f orm30January1997) Summar y- - Exper i ment alresults are provi ded from aseries oftests on the uniaxial dynamic crushing ofcylindrical speci mens offivespecies of woodselected forthedensityrangetheycoverandtesteduptoi mpact velocities ofapproximately 300 ms -1.An account ofthe macro-deformation and micro-deformation modes resulting from quasi- staticand dynamic uniaxialcompression is given. Measurements ofthe force pulses generated by the i mpactofthe wood specimens onthe end ofaHopkinson bar load cell show thatsignificant enhancement s ofthe initial crushing strengthsof thespecimensoccurunderdynamicloadingconditions.Thedeformationmechanismsof woodare localised underquasi-staticcompression andunderdynamicloadingconditionstheybecomeevenmorelocalised and propagate through the material as crushing wave fronts whi ch havesome ofthe characteristics ofshock waves. Asimpleshockmodelbaseduponarate-independent, rigid,perfectly-plastic, locking(r-p-p-l)idealisationofthe st ress-st rai n curves for wood is proposed to provide af as torder understanding ofthe dynamic response. This modelisparticularlysuccessfulinpredictingthedynamicenhancement of thecrushingstrengthof speci mensloaded acrossthegrainasconfi rmedbycomparisonsbet weentheexperimentaldataandtheoreticalresults.Itisless successful forthosecompressed alongthegrain.Thesourceofthediscrepancy isdiscussed andexplanationsare provided for the fairlyconstant crushingstress enhancementfactor observed atlowtomoderateimpact velocities, forthehi ghimpactvelocityatwhi chshock-type responseisinitiatedandfortheexistence ofclearlydelineated crushfrontswhi chcharacterise t hesespecimens. 1997ElsevierScienceLt d.Keywords:cellularmaterials,wood,impact energyabsorption, crushingstrength,microinertia,shockwaves. NOTATION Ao CL Cs hcell L Lo M At* mw Sr t u v Vc Vcrit vl Vo Vs x Xo 7 OL El /91 cross- sect i onal areao f t hecyl i ndri cal speci men l ongi t udi nal el ast i cwavespeedi n0 speci mens shockspeedrelat ivet ot heproject i l e axiall engt ho f wo o dcel ll engt ho f t heuncrushedport i ono f woodspeci men initiall engt ho f t hewoodspeci men masso f t hebacki ngdi sc combi nedmasso f woodspeci menandbacki ngdi sc masso f t hewo o dspeci men dynami ccrushi ngstressenhancement factor,Sr = g r D / O ' c rt i me di spl acement o f t heendmass(backi ngdi sc)M vel oci t yatt i met l owes t i mpact vel oci t yatwhi chcrushi ngi sinit iat edi n0 speci mens criticalimpact vel oci t yforfullspeci menl ocki ng 0 speci menvel oci t yatwhi chcrushi ngceases i mpact vel oci t y i mpact vel oci t yatwhi chshockwavesaregenerat edin0 speci mens currentl engt ho f t hecrushedmaterialstrainedt oel init iall engt ho f t hecrushedport i on = P o/ pt= 1-ell ocki ngstrainparameter l ocki ngstrain densi t yo f t hecrushedmaterial *Corresponding author. 531 532S RReidandC.Peng Do P~ 17 I-Ilk O" O"A O-comp O'cr(O) crD(0) O"R O"T Crys initialdensity cellwallmaterialdensity,po/p~=relativedensity specificenergy(energyperunitmass)ofspeci men mi ni mumvalueof 17toproducefulllockingof thespeci men stressbehindcrushingwavefrontattimet axialstaticcrushingstress appliedstressinaxialdirectioncorrespondingtouniaxialyieldinthecellwalls crushingstressforgrainorientationat0tothedirectionof loading initialdynami ccrushstressforgrainorientationat0tothedirectionof loading radialstaticcrushingstress tangentialstaticcrushingstress yieldstressof cellwallmaterial 1.I NTRODUCTI ON Therehavebeennumerousstudiesof cellularstructuresandcellularmaterialssuchasmet al ring systems,honeycombs, pol ymeri cfoamsandwood,someofwhichhavebeenrevi ewedinthecontextofdynami c compressi on by Reide t al . [ 1].Manyaspects ofthebehavi our ofcellularsolidsaresummari sed wellinthebook by Gi bsonandAshby[2].Onereasonfor thisinterestis thecurrentandpotentialuseofthesematerialsfor packagi ng, asi mpact energyabsorbersandtheiruseascorematerialsinlightweight sandwichstructures.Gi bsonandAshbydevot eachapterof theirbook[2]totheselectionof materials forlowspeedi mpact applications.Woodinparticular,whilstbeingoneof theoldestconstructional materials,hasalsobeenusedasaprotectivematerialforhighvelocityi mpact eventsforcenturies(see Johnson[3,4])andisoftenusedasani mpact energyabsorbingmaterialincont ai nment structures surroundingsyst emswhichmaydisintegrateor,forexampl e, aspackagi ngmaterialintransportation flasks for nuclearfuel.Theresponseofwoodathighratesofloadingisthereforeofsome interest.There havebeenfewsystematicstudiesofthebehavi our ofwoodunderi mpact loadingconditionsasnotedby Johnson[3].Thispaperpresentstheresultsof onesuchstudyinwhichspeci mensof woodwere subjectedtouniaxialstrainunderquasi-staticandi mpact loadingconditions. Anintroductiontothestudy ofwoodunderdynami c uniaxialcrushingconditionsandwhenpenetrated byflat-endedcylindricalprojectilewasgiven byReide t al . [5],whoprovi dedexperi ment al datafroma preliminarystudyof YellowPineandAmeri canOak.Thesensitivityof thecrushingstressesof these woodstoloadingratewasnoted.Forexampl eatani mpact vel oci t yof around100ms -1thecrushing strength(i.e.thestressatwhichinelasticdeformat i onisinitiated)ofthetwowoodsincreasedbyfactors ofbet ween2and4dependinguponthedensityofthewoodandtheorientationofthegrainwithrespecttothedirectionof loading. Inthepresentpaper,moreextensivei mpact testdatathanthosegivenin[1,5]areprovi dedonthe significantchangesinthecrushingstressesof fivespeciesof wood,Balsa,YellowPine,Redwood,Ameri canOakandEkkiasthei mpact velocityisincreased.Thewoodstestedhaddensitiesranging approxi mat el y from 260- 1200kgm3 andweresubjectedtouniaxialcompressi on underi mpactloading conditionsati mpact velocitiesintherange30- 300ms1 approximately. Loadi ngbot halongthegrain andacrossthegrainisconsideredandthedeformat i onmechani smscorrespondingtoeachare contrasted. Themai nemphasi sinthepaperisplacedonpredictingtheinitialcrushingstrengthsof thevarious specimenstestedintermsof thei mpact velocity,thedensityof thewoodanditsmaterialproperties. Simpletheoreticalmodel saredevel opedtodescribetheeffectsof phenomenawhicharegovernedby inertialeffectsactiveatthescaleof thecellularstructure,i.e.microinertialeffects.Fr omamaterials scienceperspective, themodel sarebasedonthepremi sethatwoodisrate-insensitive,theexplanation for theenhancement ofthecrushingstressesbeingsoughtintheinfluenceoftheseinertialeffects rather thaninviscoelasticorviscoplasticeffects.Inthissenseasimilarapproachisfol l owedtothatproposed byJahsman[6]inaveryinteresting,earlierstudyof thedynami cbehavi ourof syntacticfoams.Thepredictionsof asi mpl eshockmodelarepresentedinwhichtheenhancement of thecrushing stressisattributedprimarilytothepropagat i onof aplanesurfaceof stressdiscontinuitythroughthe cellular material.Despiteitssimplicity,it isshownthatthemodelagreeswellwithexperi ment al datafor Dynamic uniaxial crushing of wood533 crushingacrossthegrainbutthat,forarangeof velocitiesuptoacertainvaluewhichdependsonthe densityofthewood,it underestimatestheenhancement oftheinitialcrushingstressalongthegrain.The reasonsfor thisarediscussedandanot hermicroinertialeffectissuggestedasthesourceofthecrushing stressenhancement forwoodloadedinthisdirection. To illustratetherangeofphenomenai nvol ved whenwoodiscrushed,thequasi-staticbehavi our ofthe uniaxialcrushingofwoodsisbri efl ydescribedinthenext section.Thisalsoprovi desareferencepoint forthediscussionof thedynami ctestdatawhichfollows. 2.QUASI-STATICCOMPRESSI ON Typicalst ress-st rai ncurvesfor uniaxialcompressi ontestsonavarietyofwoodsaregi venbyGi bson andAshby[2]summari si ngtheirearlierworkwithEasterlingandHarryson[7]andwithMaiti[8].A detailedaccount ispresentedof thedeformat i onmechani smsi nvol vedwhenwoodiscompressedinits threeprincipaldirectionsnamel yaxial(alongthegrain),radial(acrossthegraintransverse tothegrowth rings)andtangential(acrossthegrainparalleltothegrowthrings).Elasticdeformat i onoccursby distortionsof thecellstructurewhicharedistributedthroughoutthevol umeof thespecimen. Inelastic deformat i onoccursastheresultof thecol l apseandgrossdeformat i onof thecellsinamanner qualitativelysi mi l ar to thatobserved inmacroscopi c cellularsyst ems as discussedbyseveralauthorsand summari sedin[1].Inelasticdeformat i oninwoodtendstobealocalisedphenomenon, especi al l yfor speci mens l oadedal ong thegrain.Followingtheattainmentoftheinitialcrushingstress,thedeformat i on progressesthroughthegrowthandmultiplicationofcrushingzonesatanappliedloadwhichiscloseto theinitialcrushingload. Fig.1showstypicall oad-compressi oncurvesforcylindricalspeci mensof thewoodstestedinthis study.Thespeci mens werenomi nal l y 75mmindi amet er and75mm highandwerecontainedinathick- wal l edcylindricalsteelvesselof 75mminternaldi amet ertoi mposeuniaxialstrainconditions.The moi st urecontentof thespeci mensweremeasuredintheconventionalmanner usingamoi st uremeter. For theBalsa,Pine,RedwoodandOak speci mens themoi st ure contentwaswithintherangeof9to12%. The Ekki speci mens hadahighmoi st urecontentintherange15-24%. Ekki isnormal l y usedinamari ne environment. (Notethat,inthispaper,theonl ydetaileddatapresentedforspeci mensof Ekki relateto thoseloadedacrossthegrain.)Freespeci menstendtosplitandfracture(seeFig.2),althoughtheir behavi our uptoand j ust beyondinitialcrushingisvery closetothatshowninFig.1 sincethePoi sson' s ratiosfor woodtendtoberelativelysmall[2,9].Forspeci mensloadedalongthegrain,thereisadistinct loaddropaftertheinitiationofcrushingfol l owedbyaloadplateauforallofthewoods.Forspeci mens loadedacrossthegrain,crushingcontinuesessentiallyatorslightlyabovethecrush-initiationload, increasingatanincreasingrate(i.e.thecurveisconvextowardsthedi spl acement axis)withdisplace- ment.Thereis nostrain-softening.Therateofincreaseoftheloadissignificantly higherfor woodswith higherinitialdensitiessuchasOakandEkki.Inallcases,thedeformat i onreachesastagewherethe crushingoftheindividualcellsbecomesexhaustedandfurtherdeformat i onistheresultof solidphase compressi onof thecellwallmaterial.Thisgivesamuchstifferresponseasthematerial' l ocksup' .Theessentialdifferencesbet weenloadingalongthegrainandtransversetothegrainlieinthe differencesinthecol l apsemechani smsinducedinthecellularstructureof thewood.Theresponseto compressi onalongthegrainisext remel ycompl exandtheinitiationof crushingcaninvolvefailureofthepyrami dal endcapsof thecellsforlowdensitywoodssuchasBal sa[7]ortheonsetof various buckl i ngfailuressuchasconcert i naprogressi veaxialcrushingof thecells(fol d-mi crobuckl i ng, see [2,9])or Eul er-t ype buckl i ngwhichcanleadtoki nk-bandformat i on especi al l yinthemoredensewoods [9].Fig.2showsanexampl eof thet ypeof deformat i onthatoccursinfree(i.e.withoutanylateral constraint)speci mensofhighdensity(inthiscaseEkki )l oadedalongthegrain.Compressi on acrossthe grain(despitetheinfluenceof theraysinenhancingthecrushstressbyapproxi mat el y40%whenthe wood iscrushedintheradialasopposed tothetangentialdirection)issomewhatmorestraightforward.Ithasbeendescribedint ermsof plasticbendi ngcol l apseof at wo-di mensi onal hexagonal cellulararray whichprovi desagoodapproxi mat i ontothestructureof manywoods[7].Underquasi-staticloading conditionsthedeformat i on alsotendstobemoredispersedthroughthevol ume ofthespeci menthanthat producedbyloadingalongthegrain. Theconsequencesof theseobservationsonthestructuralf or mof thecellstructureandthe mechani smsof failurearethatsi mpl erelationshipscanbeformul at edbet weentheinitialcrushing 5 3 4 S. R. Rei dandC. Peng 5 0 04 5 0400 : }50 z:~00 ~. oO o200 1.50 100 5O 0 5 0 0(a) (~~0ak / / / [ / / / , - . 0~Re d wo o d . - " "O' P i n e --~_--. . . . . . . . . . . . . . . ~-" ~/"-.. l tittiitI iiiI I I I I J [ I ii~ I E I : ii~ I ii; I 4iI I iI I I I I010~30:504 0 5 0 6 0Di s p l a c e me n t ( n a m)45 O 4 0 03 5 0z3 0 025 0s20 01 o( 1 O0 50 0 t0E k k ~9 ( ' ( a k~'' -. /"i / / i9 0 P i n et t/t, / t~J / / - 9 0 ~B a l s a01 0 ' ~ 0:301 0 5 0 6 0Di s p l a c e n l e n t ( r a m)Fig.1.Quasi-static uniaxialload-displacementcurvesforavariety ofwoods: (a)along(0); (b)across(90 )thegrain s t r e s s e s a ndt he r e l a t i v e d e n s i t y o f t he wo o d , i . e. t he a v e r a g e d e n s i t y o f t he w o o d s a mp l e , P0,d i v i d e d b yt he d e n s i t y o f t he c e l l wa l l ma t e r i a l , Ps.T h e s e aree x p r e s s e d as f o l l o w s [ 2] :era150 (Po/Ps) MN m ~2(1) err= 1.4crT= 7 0 ( po/p.~,) 2 MN m - 2 , ( 2 )Dynamic uniaxial crushing of wood535 IFig. 2.Compressedfree Ekki specimens: (a) kink bands in 0 specimen; (b) shear failure in 90 specimen. wherethesufficesA,RandTrefertothethreeprincipaldirectionsof thewoodstructure,viz.axial, radialandtangential.Psisvirtuallythesameforallwoodsandhasavalueof 1500kgm -3[2].The numeri cal factorsarederivedempi ri cal l ywhilsttheindicesarisenaturallyf r omtheparticularcollapse mechani smsconsideredinthestructuralmodels. Thedifferencesincompressi vestrengthintheradial andtangentialdirectionsarerelativelysmallwhencomparedwithdifferencesbet weenthestrength alongthegrainandthatacrossthegrain.Inthetestsreported, thespeci mensl oadedacrossthegrain werecutwiththegrainperpendi cul artotheiraxis(i.e.thedirectionof loading)butweregenerally neitherfullyradialnorfullytangentialspecimens. Therefore, nodistinctionismadehereinbet weenthe tangentialandradialdirections.Asinglecrushingstress t ransverse tothegraindefi ned bycrcr(90)equal t oO"Rhasbeenused.Speci menscutinthiswayarereferredtoas90 speci mensherein.Theaxial crushingstress is referred toastrot(0),theangl esi mpl y indicatingthedirectionofl oadi ngrelative tothe graindirectionandsuchspeci mensarereferredtoas0 specimens. Compari sonsbet weenEqns(1)and (2)andthemeasuredinitialcrushingstressesareshowninTable1.Thelowvaluesforthe90 Ekkispeci mensareduetotheveryhighmoi st urecont ent ( ~20%) of thespeci menstested.The' f r ee'speci menhadasi mi l armoi st urecontenttothespeci menstesteddynamically.Asnotedabove, theinelasticdeformat i ontendstobelocalisedinwood.Itdevel ops bythegrowthoflocalcrushzonesandcrushbands,ofteninitiatedattheendsof thespeci menadjacent totheloading platens.Overal l deformat i onof thelaterallyconstrainedspeci menoccursbythepropagat i onof crush 536S.R.ReidandC.Peng Table1.Uniaxialquasi-staticparameters for wood specimens testedunder laterallyconstrained conditions (uniaxialcompression); 75mmdiameter75mmhigh WoodandgrainInitialdensity,Initialcrushstress,Theoreticalcrushstress,LockingSpecificlocking orientationP0(kg m3)a~r(N mm2)Eqns(1)or(2)(N mm -2)strain,c Ienergy(kJkgi) BalsaO'27727.027.70.6863.4 Balsa90:2641.62.20.6510 Y.PineO38343.338.30.6462.2 Y.Pine9 0 3965.l4.90.6015.2 Redwood0 '36743.036.70.6559.0 Redwood90'40910.55.20.5816.3 A.Oak0:72575.072.50.3330.4 A.Oak9 0 69512.315.00.3716.0 Ekki90'*10512434.4- -Ekki90"t 18318.243.50.133.7 * Freespecimen. fronts,thesebeingmorediffusefor90 specimensbutvery distinctfor 0 specimens.For0 specimens thedeformationoccursin'compressiblekinkbands'asshowninFig.3.Thesearesimilartothekink bandsproducedinthecompressivefailureofunidirectional,fibre-reinforcedpolymercomposites [10,11]buttheconsiderablecompressibilityarisingfromcellularcollapsemakesthemdistinctive.The anglebetweenthenormaltothekinkbandandthedirectionof loadingincreaseswiththedensityof the wood, theangle beingalmost zero for Balsa(giving theappearanceof a' pl ane' crush front),35 for Oak andapproximately45 forEkki.ThislatterfeaturehasbeenbrieflydiscussedbyReide t al . [1]. Aconsequenceof thelocalisednatureof thedeformationinwoodisthat,whilstitisconventionalto convertload-displacementcurvesintostress-straincurvesbydefiningstressasloaddividedbycross- sectionalareaandstrainas change inspecimenheight divided bytheundeformed height,itmustalways beborneinmindthatintheinelasticrangethestrainfieldishighlynon-uniformthroughoutthe specimen.However,therapidincreaseintheslopeoftheload-displacementcurvesoccurswhenthe crushed zoneshavegrown to encompass most of theinitialvolume ofthematerial.At thispointonecan logicallydefineacriticalstrain,thelockingstrain,e~,whichreflectsthetransitionfromthecellwall collapsemechanismtosolidphasecompressionofthemajorityofthecellwallmaterial.Usinganyof theconventionaldefinitionsof strainbeforelockingoccursproducesastrainmeasurewhichvaries accordingtothesizeof thespecimenandisthereforenotrepresentativeof thematerial.Adoptingthe procedure describedabove allowstheload-displacementcurvesto beconverted intostress-straincurves togiveanapproximatecontinuumrepresentationfortheuniaxialdeformationmodesof thewood specimens.Fig.4gives thestress-straincurves corresponding totheload-displacement curvesshownin Fig.1.Whendiscussingtheuniaxialcrushingofcellularmaterials,thekeypropertiesaretheinitial crushingstress,Crcr, andthelockingstrain,el,[2].Thesearelistedfor thefive woodsin TableItogether withthevaluesgiven by Eqns(1)and(2).Thegraphicalconstructionusedtodefinethesecharacteristic parametersfromthestress-straincurvesisalsoshowninFig.4.Itisnotedthatthecrushstressforthe EkkisampleissignificantlylessthanthevaluegivenbyEqn(2).Thisisbecauseofthehighmoisture content. Maitie t al . [8]discussedtheshapesofthestress-straincurvesforavarietyofcellularsolids includingwood.InparticulartheyproducedthefollowingequationtoestimateelforawoodofdensityPo, Cl - 1(~ (PO/P~ ).( 3)In Ref.[8]a valuea=2issuggested.Resultsfrom more recenttests[9]indicatethatthisissatisfactory for low densitywoods such asBalsa but it cannot beused for moderateand high densitywoods.For Pine andRedwood,c~= t.35ismoreappropriateandfor Oakc~ isapproximately equaltot .3.For thesamples of Ekkitested,thetransitiontolockingismoregradual.However,defininglockingasshowninFig.4 resultsinavaluefore~of0.13andavalueforc~of1.1.Theseresultssimplydemonstratethat characterisingtheinelasticpropertiesofcellularmaterialsintermsof thetwoparameters~rcr andel, whilstconvenient,becomesimprecisewhentherelativedensityofthematerialincreases.Jahsman[6] andothershaveusedmoreaccuraterepresentationsforthestress-straincurvesoftheirmaterials. Dynamicuniaxialcrushingof wood537 Fig.3.Split0 constrainedspecimens:(a)progressive' pl ane' crushfrontinBalsa;(b)multiplekinkbandsinOak. 5 3 8 S. R. Re i dandC. Pe ng " I (o)// '' L , : 9 0 / *i 8 0 ,0- i; : 6 H o" * . /4 0 " ' , . . . . . . . - "~ , / .. . . . . . o: ~ . t . . , ~1' 3 o i /10i~ 0 . 0 0, 10 . 2 0. 3 0B a l s a . . . . .i i i i i l i l l l J l l J l l [ i t ~ l ~ l l t t [ l l l l l , ~ l l , ~ l t l l ~0 . 4 0 . 5 0 , 6 0 . 7 0 . 8Ax i a l s t r a i nt 201 1 01 0 0%2 +k *9 0g oz7 0~'6 0% - - 5 0. ~4O 3 0:~201 0C] ( b )0E k k i i -.r !:! I //:~ 9 0 P i n et / 9 0 Oa ki/ i/" ~