theory of strain derivative of electronic dielectric constant of ionic crysts

3
Solid State Communications, Vol. 20, PP. 725—727, 1976. Pergamon Press. Printed in Great Britain THEORY OF STRAIN DERWAT1VE OF ELECTRONIC DIELECTRIC CONSTANT OF IONIC CRYSTALS O.P. Sharma,* H.P. Sharma and Jal Shanker Department of Physics, Agra College, Agra-282002, India (Received 16 July 1976 by MF. Collins) A theoretical method for evaluating the strain derivative of the electronic dielectric constant of ionic crystals has been developed. The analysis pre- sented here is based on the shell model and takes account of the exchange charge polarizations. Values of strain derivative of the electronic constant dielectric calculated for 6 alkali halides and MgO show a remarkable agree- ment with experimental data on photoelastic constants. A THEORETICAL analysis of strain derivative of the R de = 2ir(e + 2)2 [3a dal (2) electronic dielectric constant (e) yields valuable infor- dR 9R 2e [~ mation regarding the photoelastic behaviour of ionic where solids.1’2 The experimental values of strain derivative of a = a. 1. + a_ (3) can be obtained from the photoelastic constants (Pu Subscripts “+“ and “—“ represent for cation and anion and P12) using the following relation’ respectively. Burstein and Smith 8 have calculated R de dc/dR by assuming that polarizabilities of ions do not —— e(~u + 2pj~) (I) change under hydrostatic pressure i.e. da/dR = 0. In 6 dR this case equation (2) will be reduced to the following where R is the interionic separation changing under form hydrostatic pressure. The most striking feature of the ~ = (~ + 2)( 1) (4) experimental data on photoelastic constants available dR for many ionic crystals is that the experimental values It should be mentioned here that the values of dc/dR of dc/dR are negative for alkali halides and positive for obtained by Burstein and Smith from equation (4) differ MgO. There have been several theoretical attempts35 from the experimental values. For MgO even the sign of to evaluate dc/dR and to explain the distinct behaviour dc/dR predicted from equation (4) is wrong. This illus- of MgO but none of them has been capable for under- strates the failure of the assumption that a does not standing the photoelastic behaviour of MgO. Recently change under compression. In fact a should change Sharma et a!.6 have proposed a semiempirical analysis when the crystal is compressed and its variation da/dR of the photoelastic effect of ionic crystals. An interesting can be calculated in a manner described below. and remarkable feature of their analysis is the investi- According to the theory of exchange charge polar- gation of the fact that under hydrostatic compression izations and shell model analysis developed by DO, one the electronic polarizability of cation increases and that can correlate the crystalline state polarizabiities (ar) of anion decreases. In the present paper a theoretical with the corresponding free state values (af) as follows: basis has been provided for these loosening and tighten- = a~+ i+—I (5) ing effects of cations and anions respectively. We pro- { D 12 pose a method based on the shell model analysis for cal- n+ej culating dc/dR. The effect of exchange charge polariz- ations has also been taken into account following the a~_ = af __~ 2 (6) n ..e] model of Dick and Overhauser7 (hereafter to be referred to as DO). The strain derivative of electronic dielectric con- where D is the exchange charge polarization parameter stant can be obtained by differentiating the Lorentz— and n÷e(n_e) represents the shell charge of cation (anion). Lorenz relation with respect to R. Thus, for NaCI Now differentiating equations (5) and (6) with respect structure, one finds4 to R and remembering that D cx exp (—Rip) as suggested by DO and Hardy,9 we obtain * P.G. College, Ambah (M.P.) India. = ~ (1 + P...) (7) dR n+ep \ n~e 725

Upload: op-sharma

Post on 15-Jun-2016

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Theory of strain derivative of electronic dielectric constant of ionic crysts

Solid StateCommunications,Vol. 20,PP.725—727,1976. PergamonPress. Printedin GreatBritain

THEORYOF STRAIN DERWAT1VE OFELECTRONIC DIELECTRIC CONSTANTOFIONIC CRYSTALS

O.P.Sharma,*H.P. Sharmaand Jal Shanker

Departmentof Physics,AgraCollege,Agra-282002,India

(Received16 July 1976 byMF. Collins)

A theoreticalmethodfor evaluatingthe strainderivativeof the electronicdielectricconstantof ionic crystalshasbeendeveloped.The analysispre-sentedhereis basedonthe shell model andtakesaccountof the exchangechargepolarizations.Valuesof strainderivativeof the electronicconstantdielectriccalculatedfor 6 alkali halidesandMgO showa remarkableagree-mentwith experimentaldataon photoelasticconstants.

A THEORETICALanalysisof strainderivativeof the R de = — 2ir(e + 2)2 [3a dal(2)

electronicdielectricconstant(e) yieldsvaluableinfor- � dR 9R2e [~

mationregardingthe photoelasticbehaviourof ionic wheresolids.1’2The experimentalvaluesof strainderivativeof a = a.

1.+ a_ (3)� canbe obtainedfrom thephotoelasticconstants(Pu Subscripts“+“ and“—“ representfor cationandanionandP12) usingthe following relation’ respectively.BursteinandSmith

8 havecalculated

R de — dc/dRby assumingthatpolarizabilitiesof ionsdonot—— — e(~u+ 2pj~) (I) changeunderhydrostaticpressurei.e. da/dR= 0. In6 dR — this caseequation(2) will bereducedto thefollowing

whereR is the interionicseparationchangingunder formhydrostaticpressure.The moststriking featureof the ~ = — (~+ 2)(�— 1) (4)experimentaldataon photoelasticconstantsavailable � dR �

formanyionic crystalsis that the experimentalvalues It shouldbementionedherethat thevaluesof dc/dRof dc/dR are negativefor alkali halidesandpositive for obtainedby BursteinandSmith from equation(4)differMgO. Therehavebeenseveraltheoreticalattempts35 from theexperimentalvalues.ForMgO eventhe sign ofto evaluatedc/dR andto explainthe distinct behaviour dc/dR predictedfrom equation(4)is wrong.This illus-of MgO but noneof themhasbeencapableforunder- stratesthefailure of the assumptionthata doesnotstandingthe photoelasticbehaviourof MgO. Recently changeundercompression.In factashouldchangeSharmaeta!.6 haveproposeda semiempiricalanalysis when thecrystalis compressedandits variationda/dRof the photoelasticeffectof ionic crystals.An interesting canbecalculatedin a mannerdescribedbelow.andremarkablefeatureof their analysisis the investi- Accordingto thetheoryof exchangechargepolar-gation of thefact thatunderhydrostaticcompression izationsandshell modelanalysisdevelopedby DO, onetheelectronicpolarizabilityof cationincreasesandthat cancorrelatethecrystallinestatepolarizabiities(ar)of aniondecreases.In thepresentpapera theoretical with the correspondingfree statevalues(af) asfollows:basishasbeenprovidedfor theselooseningandtighten-

= a~+ i+—I (5)ingeffectsof cationsandanionsrespectively.Wepro- { D 12posea methodbasedon the shell modelanalysisfor cal- n+ejculatingdc/dR. Theeffect of exchangechargepolariz-ationshasalsobeentakeninto accountfollowing the a~_= af — __~ 2 (6)

n..e]model of Dick andOverhauser7(hereafterto bereferredto as DO).

The strain derivativeof electronicdielectric con- whereD is the exchangechargepolarizationparameterstantcanbe obtainedby differentiatingthe Lorentz— andn÷e(n_e)representstheshell chargeof cation(anion).Lorenz relationwith respectto R. Thus,for NaCI Now differentiatingequations(5) and(6)with respectstructure,onefinds4 toR andrememberingthatD cx exp(—Rip)assuggested

by DO andHardy,9we obtain

* P.G.College,Ambah(M.P.) India. = — ~ (1 + P...) (7)dR n+ep \ n~e

725

Page 2: Theory of strain derivative of electronic dielectric constant of ionic crysts

726 THEORYOF STRAIN DERWATIVE Vol. 20,No.7

Table1. ValuesofD/n+e,D/n_e,da+/dR(in A2) alternatively be determinedfrom equations(5) and(6)andda_/dR(in A2) if we know the ratio ar/ar for the polarizabilities of ions.

D D da da A methodfor evaluatinga~/a~hasrecentlybeenpro-Crystal — — __± — posedby Jai Shanker andVerma’~ using the polariz-

fl+� fl_C dR dR ability-radiuscuberelation. Accordingto this relation

LiF 0.90 0.19 —0.35 + 1.12 we canwrite for a given ionNaC1 0.37 0.13 —0.60 +2.74 a / \3

KC1 0.19 0.13 —1.11 + 2.50 -I = (9)KBr 0.19 0.11 —1.12 +2.92 a~ \rfJIU 0.19 0.10 — 1.06 + 3.71 Valuesof a~/afcanbe estimatedfrom equation(9)RbC1 0.24 0A8 —2.69 + 3.52 usingfree ion radii (re) from Pauling’3andcrystalradiiMgO 0.58 0.26 — 0.52 + 4.47 (re,) correspondingto electrondensitymeasurements

citedby Sysio.’4 ForMgO, thecrystal radii of ionsweretakenfrom BisaryaandJai Shanker.’5Valuesof

Table2. Valuesof(R/e)(dc/dR)__________________________________________________ D/n.

1.eandDin_c are thencalculatedfrom equations(5)

Present Burstein Van Expen- and(6)andhavebeenlistedin Table1. InsertingtheseCrystal study & Smith

8 Vechten’8 mental valuesofD/n+c andD/n...e in equations(7) and(8)and

takingp from Tosi” anda~form Pauling’6we haveLiF —0.57 — 1.89 — 1.24 — 0.53k estimateddajdRandda_/dR(Table 1). In view ofNaC1 — 0.82 — 2.47 — 1.53 — 0.97a equation(3), we canwriteKC1 — 1.33 —2.25 — 1.49 — o.91~KBr —1.38 —2.51 —1.59 — 1.33a = ~ (10)KI — 1.47 —2.90 — 1.72 — 1.4s~ dR dR dRRbCl — 1.73 — 2.26 — 1.50 — 1 •441) Fromequations(2) and(10)wehaveevaluatedMgO + 0.69 —3.39 — 1.48 + 0.86’~ (R/c)(de/dR)for LiF, NaC1,KU, KBr, K!, RbCl and~

a Fromreference8. MgO takingvaluesof � from LowndesandMartin.’7b From reference18. Thesevaluesof (R/c)(dc/dR)havebeenlistedin Table2

Fromreference4. andcomparedwith experimentalvaluesobtainedfromthe photoelasticconstants.Forthe sakeof contrastwe

and da 2aD / D havealsoincludedin Table2 thevaluesof (R/e)(dc/dR)— = + ~ ~i——I (8) calculatedby BursteinandSmith8 andby VanVechten.’8dR n_ep ‘~ n_c,

It is interestingto observefromTable2 that theEquations(7) and(8) havebeenderivedconsideringa~ valuesof (R/c)(de/dR)calculatedin thepresentstudyandnc to beindependentofR and thereforewill not are verycloseto the experimentalvaluesin contrasttochangeunderthe effectof pressureasalsosuggestedby thoseobtainedby BursteinandSmith. In caseof MgOHavinga.’°p is therepulsivehardnessparameterandits wehaveobtaineda positivevalue for (R/c)(dc/dR)invaluesfor alkali halideshavebeenlistedby Tosi.11 It is conformitywith experimentaldata.In thecaseof alkalipredictedfrom equations(7) and(8) that (da+/dR)is halidesour valuesof (R/c)(dc/dR)are closerto thosenegativeandda_/dRispositive. This impliesthatpolar- obtainedby VanVechtenfrom Phillips—VanVechtenizability of cation increasesandthatof anion decreases dielectrictheory.’9 However,it shouldbementionedwhenthe crystalis compressed.In orderto evaluate thateventhemethodof VanVechtenis not capableofda+/dRandda_/dRfrom equations(7) and(8)weneed explainingthe positivevalueof (R/c)(de/dR)in MgO. Inthevaluesof D andne.DO evaluatedthemagnitudesof this respect,the methoddescribedin this papershowsathesequantitiesbut thevaluesobtainedby them are significant improvementas it yieldsnegativevaluesofsupposedto behighly uncertainfor the reasonsdis- (R/e)(de/dR)for alkali halidesanda positivevalue forcussedat lengthby Havinga.’°ValuesofD/ne can MgO in accordwith theexperimentalobservations.

REFERENCES

1. MEULLER H.,Phy& Rev.47,947(1935).

2. VEDAM K. & RAMSHESHAN,Progressin CrystalPhysics(Editedby KRISHNAN R.S.), Wiley, Interscience,NewYork, Vol. 1(1958).

3. YAMASHITA J.& KUROSAWA T., J. Phys.Japan 10, 610 (1955).

Page 3: Theory of strain derivative of electronic dielectric constant of ionic crysts

Vol. 20, No.7 THEORYOF STRAIN DERIVATWE 727

4. VEDAM K. & SCHMIDT E.D.D., Phys.Rev. 146, 548 (1966).

5. AGGARWALL K.G. & SZIGETI B., J. Phys.C3, 1097 (1970).

6. SHARMA H.P.,JAI SHANKER & VERMA M.P., J. Phys.Chem.Solids(in press).

7. DICK B.G.& OVERHAUSERA.W., Phys.Rev.112,90(1958).

8. BURSTEIN E. & SMITH P.L, Phys.Rev.74, 229 (1948).

9. HARDY J.R., PhiL Mag. 7, 663 (1962).

10. HAVINGA E.E.,Phys.Rev. 119, 1193(1960).

11. TOSI M.P.,SolidStatePhys.AcademicPress,N.Y. 16, 1 (1964).

12. JAI SHANKER& VERMA M.P., Phys.Rev.B12, 3449(1975).

13. PAULING L., TheNatureofthe ChemicalBondIthaca:CornellUniv. Press.(1960).

14. SYSIOP.A., Acta Cryst. B25, 2374(1969).

15. BISARYA S.D. & JAI SHANKER, Pramana2, 196 (1974).

16. PAULING L.,Froc. R. Soc.A114, 181 (1927).

17. LOWNDESR.P.& MARTIN D.H., Proc.R. Soc.A308,473 (1969).

18. VAN VECHTENJ.A.,Phys.Rev. 182, 891 (1969).

19. PHILLIPSJ.C. Rev.Mod. Phys.42,317 (1970).