theory and practice of waste management in eu

27
Theory and practice f t ti EU of waste management in EU: trends and perspectives Paul H. Brunner Vienna University of Technology Institute for Water Quality, Resources and Waste Management htt // i t i t http://www.iwa.tuwien.ac.at Perm November 5, 2009

Upload: others

Post on 28-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Theory and practice of waste management in EU

Theory and practicef t t i EUof waste management in EU trends and perspectives

Paul H BrunnerVienna University of Technology

Institute for Water Quality Resources and Waste Managementhtt i t i thttpwwwiwatuwienacat

PH Brunner 128Perm November 5 2009Perm November 5 2009

Content

1 Current state2 Goals and visions3 Future Challenges4 Future trends

PH Brunner 228Perm November 5 2009

1 Current state

bull ldquoAveragerdquo status quo landfilling with pretreatmentbull separate collectionseparate collectionbull mechanical-biological treatment (composting)bull incineration

L t ibull Least progressivebull Landfilling with some separation and MB treatment

bull Most progressiveMost progressivebull gt 50 recycling by separate collectionbull gt 40 incineration (gt 80 of non-recyclables)

Z l dfilli f t t d tbull Zero landfilling of untreated waste

PH Brunner 328Perm November 5 2009

2 Goals and Visions

1 Waste hierarchy Prevention recycling disposalPrevention recycling disposal

2 Conservation of Resources Thematic strategy conservation of resources EU directives on WEEE UVE Resource efficiency Recyling societyy g y

3 Environmental protection REACH process L d d i Lead cadmium mercury Regulation of MSW incineration and other treatments

4 Promote Lissabon processp WM technology for export outside of EU

PH Brunner 428Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization

PH Brunner 528Perm November 5 2009

Monitoring waste composition by MFA

Offgas

MSW

FURNACE

BOILER

ESPBAGHOUSE WET SCRUBBER DENOX

MSW

Iron scrap H2O

WASTE WATERWaste waterBottom ash

Filter residue

WASTE WATERTREATMENT

Filter residue

WaterAlkaline waste waterAcidic waste water

Q elle SGP VA

Sludge cake

Acidic waste water

PH Brunner 628Perm November 5 2009

Quelle SGP-VA

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)

PH Brunner 728Perm November 5 2009

Evaluation of waste treatment processes

X1kx1= X1Xe

Output1

X X

1

kx2= X2XeOutput

2Input

XE X2processA

x2 2 e

X3Output3

kx3= X3Xe

3

PH Brunner 828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems

PH Brunner 928Perm November 5 2009

Knowledge base comprehensive information about wm systems

PH Brunner 1028Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

PH Brunner 1128Perm November 5 2009

Knowledge base beyond waste management

flow 340 export 280

atmos-h

stock ~ 1 000 + 60

16

forestsoil

agricultsoil

urban area

phere0506 05lead [ty]

riversurface water surface water

06

02

150+06 240+09 30+02

2

06005

WWTP

landfill

filter residue andconstruction iron

~600+60

0 9 6003

014

sewer

consumer goods

used cars

household industry

construction iron

7

09 60

015 045 gt270

regional boundary

MSW56

gt330

PH Brunner 1228Perm November 5 2009

g y

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)

PH Brunner 1328Perm November 5 2009

Scarcity of resources the case of fuel oil

The stone age did not end because of scarcity of stones

$ 55$ 55

factor 45

$12

1870 1900 1950

PH Brunner 1428Perm November 5 2009

MFA for strategic resource management in the iron industry

34 1

11 708

08

primaryd ti waste

344consumpt

34

6 03 27

1

15

2p y

production production wastemagmnt44

15

4140

pedo- otherdisposal140

lithosphere

350

250

300 anthropogeniciron stock

344350

250

300 geogeniciron reserve

150

200

250

194150

200

250

140

2000 2050 21000

50

100

44

2000 2050 21000

50

100140

40 0

PH Brunner 1528Perm November 5 2009

2000 2050 21002000 2050 2100

PH Brunner 1628Perm November 5 2009

Quelle Christmann P (2004) Towards a thematic strategy on the sustainable use of natural resources The European Union 6th Environmental ActioProgramme

Scarcity of ldquofinal sinksrdquo the case of CO2

CO gt 20 euroCO gt 0 euroCO2 fossil -gt -20-euroCO2 biomass-gt -0-euro

PH Brunner 1728Perm November 5 2009

Concept of MFA based balance method

Material data of waste inputBiogenic matter C H O N S Cl

Fossil matter C H O N S Cl

800

Fossil matter C H O N S Cl

Balance equations400

600

O2 foss t waste

plant

Balance equations

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

0

200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

kg CO

Revision

of

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

80

90

100

m ]

Line 1

Line 280

90

100

m ]

Line 1

Line 2

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

Operating data from WTE plantWaste input flue gas volume

CO2 O2 steam production0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

PH Brunner 1828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 2: Theory and practice of waste management in EU

Content

1 Current state2 Goals and visions3 Future Challenges4 Future trends

PH Brunner 228Perm November 5 2009

1 Current state

bull ldquoAveragerdquo status quo landfilling with pretreatmentbull separate collectionseparate collectionbull mechanical-biological treatment (composting)bull incineration

L t ibull Least progressivebull Landfilling with some separation and MB treatment

bull Most progressiveMost progressivebull gt 50 recycling by separate collectionbull gt 40 incineration (gt 80 of non-recyclables)

Z l dfilli f t t d tbull Zero landfilling of untreated waste

PH Brunner 328Perm November 5 2009

2 Goals and Visions

1 Waste hierarchy Prevention recycling disposalPrevention recycling disposal

2 Conservation of Resources Thematic strategy conservation of resources EU directives on WEEE UVE Resource efficiency Recyling societyy g y

3 Environmental protection REACH process L d d i Lead cadmium mercury Regulation of MSW incineration and other treatments

4 Promote Lissabon processp WM technology for export outside of EU

PH Brunner 428Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization

PH Brunner 528Perm November 5 2009

Monitoring waste composition by MFA

Offgas

MSW

FURNACE

BOILER

ESPBAGHOUSE WET SCRUBBER DENOX

MSW

Iron scrap H2O

WASTE WATERWaste waterBottom ash

Filter residue

WASTE WATERTREATMENT

Filter residue

WaterAlkaline waste waterAcidic waste water

Q elle SGP VA

Sludge cake

Acidic waste water

PH Brunner 628Perm November 5 2009

Quelle SGP-VA

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)

PH Brunner 728Perm November 5 2009

Evaluation of waste treatment processes

X1kx1= X1Xe

Output1

X X

1

kx2= X2XeOutput

2Input

XE X2processA

x2 2 e

X3Output3

kx3= X3Xe

3

PH Brunner 828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems

PH Brunner 928Perm November 5 2009

Knowledge base comprehensive information about wm systems

PH Brunner 1028Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

PH Brunner 1128Perm November 5 2009

Knowledge base beyond waste management

flow 340 export 280

atmos-h

stock ~ 1 000 + 60

16

forestsoil

agricultsoil

urban area

phere0506 05lead [ty]

riversurface water surface water

06

02

150+06 240+09 30+02

2

06005

WWTP

landfill

filter residue andconstruction iron

~600+60

0 9 6003

014

sewer

consumer goods

used cars

household industry

construction iron

7

09 60

015 045 gt270

regional boundary

MSW56

gt330

PH Brunner 1228Perm November 5 2009

g y

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)

PH Brunner 1328Perm November 5 2009

Scarcity of resources the case of fuel oil

The stone age did not end because of scarcity of stones

$ 55$ 55

factor 45

$12

1870 1900 1950

PH Brunner 1428Perm November 5 2009

MFA for strategic resource management in the iron industry

34 1

11 708

08

primaryd ti waste

344consumpt

34

6 03 27

1

15

2p y

production production wastemagmnt44

15

4140

pedo- otherdisposal140

lithosphere

350

250

300 anthropogeniciron stock

344350

250

300 geogeniciron reserve

150

200

250

194150

200

250

140

2000 2050 21000

50

100

44

2000 2050 21000

50

100140

40 0

PH Brunner 1528Perm November 5 2009

2000 2050 21002000 2050 2100

PH Brunner 1628Perm November 5 2009

Quelle Christmann P (2004) Towards a thematic strategy on the sustainable use of natural resources The European Union 6th Environmental ActioProgramme

Scarcity of ldquofinal sinksrdquo the case of CO2

CO gt 20 euroCO gt 0 euroCO2 fossil -gt -20-euroCO2 biomass-gt -0-euro

PH Brunner 1728Perm November 5 2009

Concept of MFA based balance method

Material data of waste inputBiogenic matter C H O N S Cl

Fossil matter C H O N S Cl

800

Fossil matter C H O N S Cl

Balance equations400

600

O2 foss t waste

plant

Balance equations

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

0

200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

kg CO

Revision

of

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

80

90

100

m ]

Line 1

Line 280

90

100

m ]

Line 1

Line 2

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

Operating data from WTE plantWaste input flue gas volume

CO2 O2 steam production0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

PH Brunner 1828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 3: Theory and practice of waste management in EU

1 Current state

bull ldquoAveragerdquo status quo landfilling with pretreatmentbull separate collectionseparate collectionbull mechanical-biological treatment (composting)bull incineration

L t ibull Least progressivebull Landfilling with some separation and MB treatment

bull Most progressiveMost progressivebull gt 50 recycling by separate collectionbull gt 40 incineration (gt 80 of non-recyclables)

Z l dfilli f t t d tbull Zero landfilling of untreated waste

PH Brunner 328Perm November 5 2009

2 Goals and Visions

1 Waste hierarchy Prevention recycling disposalPrevention recycling disposal

2 Conservation of Resources Thematic strategy conservation of resources EU directives on WEEE UVE Resource efficiency Recyling societyy g y

3 Environmental protection REACH process L d d i Lead cadmium mercury Regulation of MSW incineration and other treatments

4 Promote Lissabon processp WM technology for export outside of EU

PH Brunner 428Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization

PH Brunner 528Perm November 5 2009

Monitoring waste composition by MFA

Offgas

MSW

FURNACE

BOILER

ESPBAGHOUSE WET SCRUBBER DENOX

MSW

Iron scrap H2O

WASTE WATERWaste waterBottom ash

Filter residue

WASTE WATERTREATMENT

Filter residue

WaterAlkaline waste waterAcidic waste water

Q elle SGP VA

Sludge cake

Acidic waste water

PH Brunner 628Perm November 5 2009

Quelle SGP-VA

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)

PH Brunner 728Perm November 5 2009

Evaluation of waste treatment processes

X1kx1= X1Xe

Output1

X X

1

kx2= X2XeOutput

2Input

XE X2processA

x2 2 e

X3Output3

kx3= X3Xe

3

PH Brunner 828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems

PH Brunner 928Perm November 5 2009

Knowledge base comprehensive information about wm systems

PH Brunner 1028Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

PH Brunner 1128Perm November 5 2009

Knowledge base beyond waste management

flow 340 export 280

atmos-h

stock ~ 1 000 + 60

16

forestsoil

agricultsoil

urban area

phere0506 05lead [ty]

riversurface water surface water

06

02

150+06 240+09 30+02

2

06005

WWTP

landfill

filter residue andconstruction iron

~600+60

0 9 6003

014

sewer

consumer goods

used cars

household industry

construction iron

7

09 60

015 045 gt270

regional boundary

MSW56

gt330

PH Brunner 1228Perm November 5 2009

g y

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)

PH Brunner 1328Perm November 5 2009

Scarcity of resources the case of fuel oil

The stone age did not end because of scarcity of stones

$ 55$ 55

factor 45

$12

1870 1900 1950

PH Brunner 1428Perm November 5 2009

MFA for strategic resource management in the iron industry

34 1

11 708

08

primaryd ti waste

344consumpt

34

6 03 27

1

15

2p y

production production wastemagmnt44

15

4140

pedo- otherdisposal140

lithosphere

350

250

300 anthropogeniciron stock

344350

250

300 geogeniciron reserve

150

200

250

194150

200

250

140

2000 2050 21000

50

100

44

2000 2050 21000

50

100140

40 0

PH Brunner 1528Perm November 5 2009

2000 2050 21002000 2050 2100

PH Brunner 1628Perm November 5 2009

Quelle Christmann P (2004) Towards a thematic strategy on the sustainable use of natural resources The European Union 6th Environmental ActioProgramme

Scarcity of ldquofinal sinksrdquo the case of CO2

CO gt 20 euroCO gt 0 euroCO2 fossil -gt -20-euroCO2 biomass-gt -0-euro

PH Brunner 1728Perm November 5 2009

Concept of MFA based balance method

Material data of waste inputBiogenic matter C H O N S Cl

Fossil matter C H O N S Cl

800

Fossil matter C H O N S Cl

Balance equations400

600

O2 foss t waste

plant

Balance equations

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

0

200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

kg CO

Revision

of

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

80

90

100

m ]

Line 1

Line 280

90

100

m ]

Line 1

Line 2

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

Operating data from WTE plantWaste input flue gas volume

CO2 O2 steam production0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

PH Brunner 1828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 4: Theory and practice of waste management in EU

2 Goals and Visions

1 Waste hierarchy Prevention recycling disposalPrevention recycling disposal

2 Conservation of Resources Thematic strategy conservation of resources EU directives on WEEE UVE Resource efficiency Recyling societyy g y

3 Environmental protection REACH process L d d i Lead cadmium mercury Regulation of MSW incineration and other treatments

4 Promote Lissabon processp WM technology for export outside of EU

PH Brunner 428Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization

PH Brunner 528Perm November 5 2009

Monitoring waste composition by MFA

Offgas

MSW

FURNACE

BOILER

ESPBAGHOUSE WET SCRUBBER DENOX

MSW

Iron scrap H2O

WASTE WATERWaste waterBottom ash

Filter residue

WASTE WATERTREATMENT

Filter residue

WaterAlkaline waste waterAcidic waste water

Q elle SGP VA

Sludge cake

Acidic waste water

PH Brunner 628Perm November 5 2009

Quelle SGP-VA

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)

PH Brunner 728Perm November 5 2009

Evaluation of waste treatment processes

X1kx1= X1Xe

Output1

X X

1

kx2= X2XeOutput

2Input

XE X2processA

x2 2 e

X3Output3

kx3= X3Xe

3

PH Brunner 828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems

PH Brunner 928Perm November 5 2009

Knowledge base comprehensive information about wm systems

PH Brunner 1028Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

PH Brunner 1128Perm November 5 2009

Knowledge base beyond waste management

flow 340 export 280

atmos-h

stock ~ 1 000 + 60

16

forestsoil

agricultsoil

urban area

phere0506 05lead [ty]

riversurface water surface water

06

02

150+06 240+09 30+02

2

06005

WWTP

landfill

filter residue andconstruction iron

~600+60

0 9 6003

014

sewer

consumer goods

used cars

household industry

construction iron

7

09 60

015 045 gt270

regional boundary

MSW56

gt330

PH Brunner 1228Perm November 5 2009

g y

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)

PH Brunner 1328Perm November 5 2009

Scarcity of resources the case of fuel oil

The stone age did not end because of scarcity of stones

$ 55$ 55

factor 45

$12

1870 1900 1950

PH Brunner 1428Perm November 5 2009

MFA for strategic resource management in the iron industry

34 1

11 708

08

primaryd ti waste

344consumpt

34

6 03 27

1

15

2p y

production production wastemagmnt44

15

4140

pedo- otherdisposal140

lithosphere

350

250

300 anthropogeniciron stock

344350

250

300 geogeniciron reserve

150

200

250

194150

200

250

140

2000 2050 21000

50

100

44

2000 2050 21000

50

100140

40 0

PH Brunner 1528Perm November 5 2009

2000 2050 21002000 2050 2100

PH Brunner 1628Perm November 5 2009

Quelle Christmann P (2004) Towards a thematic strategy on the sustainable use of natural resources The European Union 6th Environmental ActioProgramme

Scarcity of ldquofinal sinksrdquo the case of CO2

CO gt 20 euroCO gt 0 euroCO2 fossil -gt -20-euroCO2 biomass-gt -0-euro

PH Brunner 1728Perm November 5 2009

Concept of MFA based balance method

Material data of waste inputBiogenic matter C H O N S Cl

Fossil matter C H O N S Cl

800

Fossil matter C H O N S Cl

Balance equations400

600

O2 foss t waste

plant

Balance equations

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

0

200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

kg CO

Revision

of

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

80

90

100

m ]

Line 1

Line 280

90

100

m ]

Line 1

Line 2

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

Operating data from WTE plantWaste input flue gas volume

CO2 O2 steam production0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

PH Brunner 1828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 5: Theory and practice of waste management in EU

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization

PH Brunner 528Perm November 5 2009

Monitoring waste composition by MFA

Offgas

MSW

FURNACE

BOILER

ESPBAGHOUSE WET SCRUBBER DENOX

MSW

Iron scrap H2O

WASTE WATERWaste waterBottom ash

Filter residue

WASTE WATERTREATMENT

Filter residue

WaterAlkaline waste waterAcidic waste water

Q elle SGP VA

Sludge cake

Acidic waste water

PH Brunner 628Perm November 5 2009

Quelle SGP-VA

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)

PH Brunner 728Perm November 5 2009

Evaluation of waste treatment processes

X1kx1= X1Xe

Output1

X X

1

kx2= X2XeOutput

2Input

XE X2processA

x2 2 e

X3Output3

kx3= X3Xe

3

PH Brunner 828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems

PH Brunner 928Perm November 5 2009

Knowledge base comprehensive information about wm systems

PH Brunner 1028Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

PH Brunner 1128Perm November 5 2009

Knowledge base beyond waste management

flow 340 export 280

atmos-h

stock ~ 1 000 + 60

16

forestsoil

agricultsoil

urban area

phere0506 05lead [ty]

riversurface water surface water

06

02

150+06 240+09 30+02

2

06005

WWTP

landfill

filter residue andconstruction iron

~600+60

0 9 6003

014

sewer

consumer goods

used cars

household industry

construction iron

7

09 60

015 045 gt270

regional boundary

MSW56

gt330

PH Brunner 1228Perm November 5 2009

g y

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)

PH Brunner 1328Perm November 5 2009

Scarcity of resources the case of fuel oil

The stone age did not end because of scarcity of stones

$ 55$ 55

factor 45

$12

1870 1900 1950

PH Brunner 1428Perm November 5 2009

MFA for strategic resource management in the iron industry

34 1

11 708

08

primaryd ti waste

344consumpt

34

6 03 27

1

15

2p y

production production wastemagmnt44

15

4140

pedo- otherdisposal140

lithosphere

350

250

300 anthropogeniciron stock

344350

250

300 geogeniciron reserve

150

200

250

194150

200

250

140

2000 2050 21000

50

100

44

2000 2050 21000

50

100140

40 0

PH Brunner 1528Perm November 5 2009

2000 2050 21002000 2050 2100

PH Brunner 1628Perm November 5 2009

Quelle Christmann P (2004) Towards a thematic strategy on the sustainable use of natural resources The European Union 6th Environmental ActioProgramme

Scarcity of ldquofinal sinksrdquo the case of CO2

CO gt 20 euroCO gt 0 euroCO2 fossil -gt -20-euroCO2 biomass-gt -0-euro

PH Brunner 1728Perm November 5 2009

Concept of MFA based balance method

Material data of waste inputBiogenic matter C H O N S Cl

Fossil matter C H O N S Cl

800

Fossil matter C H O N S Cl

Balance equations400

600

O2 foss t waste

plant

Balance equations

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

0

200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

kg CO

Revision

of

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

80

90

100

m ]

Line 1

Line 280

90

100

m ]

Line 1

Line 2

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

Operating data from WTE plantWaste input flue gas volume

CO2 O2 steam production0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

PH Brunner 1828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 6: Theory and practice of waste management in EU

Monitoring waste composition by MFA

Offgas

MSW

FURNACE

BOILER

ESPBAGHOUSE WET SCRUBBER DENOX

MSW

Iron scrap H2O

WASTE WATERWaste waterBottom ash

Filter residue

WASTE WATERTREATMENT

Filter residue

WaterAlkaline waste waterAcidic waste water

Q elle SGP VA

Sludge cake

Acidic waste water

PH Brunner 628Perm November 5 2009

Quelle SGP-VA

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)

PH Brunner 728Perm November 5 2009

Evaluation of waste treatment processes

X1kx1= X1Xe

Output1

X X

1

kx2= X2XeOutput

2Input

XE X2processA

x2 2 e

X3Output3

kx3= X3Xe

3

PH Brunner 828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems

PH Brunner 928Perm November 5 2009

Knowledge base comprehensive information about wm systems

PH Brunner 1028Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

PH Brunner 1128Perm November 5 2009

Knowledge base beyond waste management

flow 340 export 280

atmos-h

stock ~ 1 000 + 60

16

forestsoil

agricultsoil

urban area

phere0506 05lead [ty]

riversurface water surface water

06

02

150+06 240+09 30+02

2

06005

WWTP

landfill

filter residue andconstruction iron

~600+60

0 9 6003

014

sewer

consumer goods

used cars

household industry

construction iron

7

09 60

015 045 gt270

regional boundary

MSW56

gt330

PH Brunner 1228Perm November 5 2009

g y

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)

PH Brunner 1328Perm November 5 2009

Scarcity of resources the case of fuel oil

The stone age did not end because of scarcity of stones

$ 55$ 55

factor 45

$12

1870 1900 1950

PH Brunner 1428Perm November 5 2009

MFA for strategic resource management in the iron industry

34 1

11 708

08

primaryd ti waste

344consumpt

34

6 03 27

1

15

2p y

production production wastemagmnt44

15

4140

pedo- otherdisposal140

lithosphere

350

250

300 anthropogeniciron stock

344350

250

300 geogeniciron reserve

150

200

250

194150

200

250

140

2000 2050 21000

50

100

44

2000 2050 21000

50

100140

40 0

PH Brunner 1528Perm November 5 2009

2000 2050 21002000 2050 2100

PH Brunner 1628Perm November 5 2009

Quelle Christmann P (2004) Towards a thematic strategy on the sustainable use of natural resources The European Union 6th Environmental ActioProgramme

Scarcity of ldquofinal sinksrdquo the case of CO2

CO gt 20 euroCO gt 0 euroCO2 fossil -gt -20-euroCO2 biomass-gt -0-euro

PH Brunner 1728Perm November 5 2009

Concept of MFA based balance method

Material data of waste inputBiogenic matter C H O N S Cl

Fossil matter C H O N S Cl

800

Fossil matter C H O N S Cl

Balance equations400

600

O2 foss t waste

plant

Balance equations

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

0

200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

kg CO

Revision

of

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

80

90

100

m ]

Line 1

Line 280

90

100

m ]

Line 1

Line 2

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

Operating data from WTE plantWaste input flue gas volume

CO2 O2 steam production0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

PH Brunner 1828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 7: Theory and practice of waste management in EU

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)

PH Brunner 728Perm November 5 2009

Evaluation of waste treatment processes

X1kx1= X1Xe

Output1

X X

1

kx2= X2XeOutput

2Input

XE X2processA

x2 2 e

X3Output3

kx3= X3Xe

3

PH Brunner 828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems

PH Brunner 928Perm November 5 2009

Knowledge base comprehensive information about wm systems

PH Brunner 1028Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

PH Brunner 1128Perm November 5 2009

Knowledge base beyond waste management

flow 340 export 280

atmos-h

stock ~ 1 000 + 60

16

forestsoil

agricultsoil

urban area

phere0506 05lead [ty]

riversurface water surface water

06

02

150+06 240+09 30+02

2

06005

WWTP

landfill

filter residue andconstruction iron

~600+60

0 9 6003

014

sewer

consumer goods

used cars

household industry

construction iron

7

09 60

015 045 gt270

regional boundary

MSW56

gt330

PH Brunner 1228Perm November 5 2009

g y

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)

PH Brunner 1328Perm November 5 2009

Scarcity of resources the case of fuel oil

The stone age did not end because of scarcity of stones

$ 55$ 55

factor 45

$12

1870 1900 1950

PH Brunner 1428Perm November 5 2009

MFA for strategic resource management in the iron industry

34 1

11 708

08

primaryd ti waste

344consumpt

34

6 03 27

1

15

2p y

production production wastemagmnt44

15

4140

pedo- otherdisposal140

lithosphere

350

250

300 anthropogeniciron stock

344350

250

300 geogeniciron reserve

150

200

250

194150

200

250

140

2000 2050 21000

50

100

44

2000 2050 21000

50

100140

40 0

PH Brunner 1528Perm November 5 2009

2000 2050 21002000 2050 2100

PH Brunner 1628Perm November 5 2009

Quelle Christmann P (2004) Towards a thematic strategy on the sustainable use of natural resources The European Union 6th Environmental ActioProgramme

Scarcity of ldquofinal sinksrdquo the case of CO2

CO gt 20 euroCO gt 0 euroCO2 fossil -gt -20-euroCO2 biomass-gt -0-euro

PH Brunner 1728Perm November 5 2009

Concept of MFA based balance method

Material data of waste inputBiogenic matter C H O N S Cl

Fossil matter C H O N S Cl

800

Fossil matter C H O N S Cl

Balance equations400

600

O2 foss t waste

plant

Balance equations

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

0

200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

kg CO

Revision

of

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

80

90

100

m ]

Line 1

Line 280

90

100

m ]

Line 1

Line 2

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

Operating data from WTE plantWaste input flue gas volume

CO2 O2 steam production0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

PH Brunner 1828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 8: Theory and practice of waste management in EU

Evaluation of waste treatment processes

X1kx1= X1Xe

Output1

X X

1

kx2= X2XeOutput

2Input

XE X2processA

x2 2 e

X3Output3

kx3= X3Xe

3

PH Brunner 828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems

PH Brunner 928Perm November 5 2009

Knowledge base comprehensive information about wm systems

PH Brunner 1028Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

PH Brunner 1128Perm November 5 2009

Knowledge base beyond waste management

flow 340 export 280

atmos-h

stock ~ 1 000 + 60

16

forestsoil

agricultsoil

urban area

phere0506 05lead [ty]

riversurface water surface water

06

02

150+06 240+09 30+02

2

06005

WWTP

landfill

filter residue andconstruction iron

~600+60

0 9 6003

014

sewer

consumer goods

used cars

household industry

construction iron

7

09 60

015 045 gt270

regional boundary

MSW56

gt330

PH Brunner 1228Perm November 5 2009

g y

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)

PH Brunner 1328Perm November 5 2009

Scarcity of resources the case of fuel oil

The stone age did not end because of scarcity of stones

$ 55$ 55

factor 45

$12

1870 1900 1950

PH Brunner 1428Perm November 5 2009

MFA for strategic resource management in the iron industry

34 1

11 708

08

primaryd ti waste

344consumpt

34

6 03 27

1

15

2p y

production production wastemagmnt44

15

4140

pedo- otherdisposal140

lithosphere

350

250

300 anthropogeniciron stock

344350

250

300 geogeniciron reserve

150

200

250

194150

200

250

140

2000 2050 21000

50

100

44

2000 2050 21000

50

100140

40 0

PH Brunner 1528Perm November 5 2009

2000 2050 21002000 2050 2100

PH Brunner 1628Perm November 5 2009

Quelle Christmann P (2004) Towards a thematic strategy on the sustainable use of natural resources The European Union 6th Environmental ActioProgramme

Scarcity of ldquofinal sinksrdquo the case of CO2

CO gt 20 euroCO gt 0 euroCO2 fossil -gt -20-euroCO2 biomass-gt -0-euro

PH Brunner 1728Perm November 5 2009

Concept of MFA based balance method

Material data of waste inputBiogenic matter C H O N S Cl

Fossil matter C H O N S Cl

800

Fossil matter C H O N S Cl

Balance equations400

600

O2 foss t waste

plant

Balance equations

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

0

200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

kg CO

Revision

of

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

80

90

100

m ]

Line 1

Line 280

90

100

m ]

Line 1

Line 2

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

Operating data from WTE plantWaste input flue gas volume

CO2 O2 steam production0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

PH Brunner 1828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 9: Theory and practice of waste management in EU

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems

PH Brunner 928Perm November 5 2009

Knowledge base comprehensive information about wm systems

PH Brunner 1028Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

PH Brunner 1128Perm November 5 2009

Knowledge base beyond waste management

flow 340 export 280

atmos-h

stock ~ 1 000 + 60

16

forestsoil

agricultsoil

urban area

phere0506 05lead [ty]

riversurface water surface water

06

02

150+06 240+09 30+02

2

06005

WWTP

landfill

filter residue andconstruction iron

~600+60

0 9 6003

014

sewer

consumer goods

used cars

household industry

construction iron

7

09 60

015 045 gt270

regional boundary

MSW56

gt330

PH Brunner 1228Perm November 5 2009

g y

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)

PH Brunner 1328Perm November 5 2009

Scarcity of resources the case of fuel oil

The stone age did not end because of scarcity of stones

$ 55$ 55

factor 45

$12

1870 1900 1950

PH Brunner 1428Perm November 5 2009

MFA for strategic resource management in the iron industry

34 1

11 708

08

primaryd ti waste

344consumpt

34

6 03 27

1

15

2p y

production production wastemagmnt44

15

4140

pedo- otherdisposal140

lithosphere

350

250

300 anthropogeniciron stock

344350

250

300 geogeniciron reserve

150

200

250

194150

200

250

140

2000 2050 21000

50

100

44

2000 2050 21000

50

100140

40 0

PH Brunner 1528Perm November 5 2009

2000 2050 21002000 2050 2100

PH Brunner 1628Perm November 5 2009

Quelle Christmann P (2004) Towards a thematic strategy on the sustainable use of natural resources The European Union 6th Environmental ActioProgramme

Scarcity of ldquofinal sinksrdquo the case of CO2

CO gt 20 euroCO gt 0 euroCO2 fossil -gt -20-euroCO2 biomass-gt -0-euro

PH Brunner 1728Perm November 5 2009

Concept of MFA based balance method

Material data of waste inputBiogenic matter C H O N S Cl

Fossil matter C H O N S Cl

800

Fossil matter C H O N S Cl

Balance equations400

600

O2 foss t waste

plant

Balance equations

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

0

200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

kg CO

Revision

of

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

80

90

100

m ]

Line 1

Line 280

90

100

m ]

Line 1

Line 2

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

Operating data from WTE plantWaste input flue gas volume

CO2 O2 steam production0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

PH Brunner 1828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 10: Theory and practice of waste management in EU

Knowledge base comprehensive information about wm systems

PH Brunner 1028Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

PH Brunner 1128Perm November 5 2009

Knowledge base beyond waste management

flow 340 export 280

atmos-h

stock ~ 1 000 + 60

16

forestsoil

agricultsoil

urban area

phere0506 05lead [ty]

riversurface water surface water

06

02

150+06 240+09 30+02

2

06005

WWTP

landfill

filter residue andconstruction iron

~600+60

0 9 6003

014

sewer

consumer goods

used cars

household industry

construction iron

7

09 60

015 045 gt270

regional boundary

MSW56

gt330

PH Brunner 1228Perm November 5 2009

g y

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)

PH Brunner 1328Perm November 5 2009

Scarcity of resources the case of fuel oil

The stone age did not end because of scarcity of stones

$ 55$ 55

factor 45

$12

1870 1900 1950

PH Brunner 1428Perm November 5 2009

MFA for strategic resource management in the iron industry

34 1

11 708

08

primaryd ti waste

344consumpt

34

6 03 27

1

15

2p y

production production wastemagmnt44

15

4140

pedo- otherdisposal140

lithosphere

350

250

300 anthropogeniciron stock

344350

250

300 geogeniciron reserve

150

200

250

194150

200

250

140

2000 2050 21000

50

100

44

2000 2050 21000

50

100140

40 0

PH Brunner 1528Perm November 5 2009

2000 2050 21002000 2050 2100

PH Brunner 1628Perm November 5 2009

Quelle Christmann P (2004) Towards a thematic strategy on the sustainable use of natural resources The European Union 6th Environmental ActioProgramme

Scarcity of ldquofinal sinksrdquo the case of CO2

CO gt 20 euroCO gt 0 euroCO2 fossil -gt -20-euroCO2 biomass-gt -0-euro

PH Brunner 1728Perm November 5 2009

Concept of MFA based balance method

Material data of waste inputBiogenic matter C H O N S Cl

Fossil matter C H O N S Cl

800

Fossil matter C H O N S Cl

Balance equations400

600

O2 foss t waste

plant

Balance equations

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

0

200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

kg CO

Revision

of

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

80

90

100

m ]

Line 1

Line 280

90

100

m ]

Line 1

Line 2

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

Operating data from WTE plantWaste input flue gas volume

CO2 O2 steam production0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

PH Brunner 1828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 11: Theory and practice of waste management in EU

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

PH Brunner 1128Perm November 5 2009

Knowledge base beyond waste management

flow 340 export 280

atmos-h

stock ~ 1 000 + 60

16

forestsoil

agricultsoil

urban area

phere0506 05lead [ty]

riversurface water surface water

06

02

150+06 240+09 30+02

2

06005

WWTP

landfill

filter residue andconstruction iron

~600+60

0 9 6003

014

sewer

consumer goods

used cars

household industry

construction iron

7

09 60

015 045 gt270

regional boundary

MSW56

gt330

PH Brunner 1228Perm November 5 2009

g y

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)

PH Brunner 1328Perm November 5 2009

Scarcity of resources the case of fuel oil

The stone age did not end because of scarcity of stones

$ 55$ 55

factor 45

$12

1870 1900 1950

PH Brunner 1428Perm November 5 2009

MFA for strategic resource management in the iron industry

34 1

11 708

08

primaryd ti waste

344consumpt

34

6 03 27

1

15

2p y

production production wastemagmnt44

15

4140

pedo- otherdisposal140

lithosphere

350

250

300 anthropogeniciron stock

344350

250

300 geogeniciron reserve

150

200

250

194150

200

250

140

2000 2050 21000

50

100

44

2000 2050 21000

50

100140

40 0

PH Brunner 1528Perm November 5 2009

2000 2050 21002000 2050 2100

PH Brunner 1628Perm November 5 2009

Quelle Christmann P (2004) Towards a thematic strategy on the sustainable use of natural resources The European Union 6th Environmental ActioProgramme

Scarcity of ldquofinal sinksrdquo the case of CO2

CO gt 20 euroCO gt 0 euroCO2 fossil -gt -20-euroCO2 biomass-gt -0-euro

PH Brunner 1728Perm November 5 2009

Concept of MFA based balance method

Material data of waste inputBiogenic matter C H O N S Cl

Fossil matter C H O N S Cl

800

Fossil matter C H O N S Cl

Balance equations400

600

O2 foss t waste

plant

Balance equations

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

0

200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

kg CO

Revision

of

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

80

90

100

m ]

Line 1

Line 280

90

100

m ]

Line 1

Line 2

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

Operating data from WTE plantWaste input flue gas volume

CO2 O2 steam production0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

PH Brunner 1828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 12: Theory and practice of waste management in EU

Knowledge base beyond waste management

flow 340 export 280

atmos-h

stock ~ 1 000 + 60

16

forestsoil

agricultsoil

urban area

phere0506 05lead [ty]

riversurface water surface water

06

02

150+06 240+09 30+02

2

06005

WWTP

landfill

filter residue andconstruction iron

~600+60

0 9 6003

014

sewer

consumer goods

used cars

household industry

construction iron

7

09 60

015 045 gt270

regional boundary

MSW56

gt330

PH Brunner 1228Perm November 5 2009

g y

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)

PH Brunner 1328Perm November 5 2009

Scarcity of resources the case of fuel oil

The stone age did not end because of scarcity of stones

$ 55$ 55

factor 45

$12

1870 1900 1950

PH Brunner 1428Perm November 5 2009

MFA for strategic resource management in the iron industry

34 1

11 708

08

primaryd ti waste

344consumpt

34

6 03 27

1

15

2p y

production production wastemagmnt44

15

4140

pedo- otherdisposal140

lithosphere

350

250

300 anthropogeniciron stock

344350

250

300 geogeniciron reserve

150

200

250

194150

200

250

140

2000 2050 21000

50

100

44

2000 2050 21000

50

100140

40 0

PH Brunner 1528Perm November 5 2009

2000 2050 21002000 2050 2100

PH Brunner 1628Perm November 5 2009

Quelle Christmann P (2004) Towards a thematic strategy on the sustainable use of natural resources The European Union 6th Environmental ActioProgramme

Scarcity of ldquofinal sinksrdquo the case of CO2

CO gt 20 euroCO gt 0 euroCO2 fossil -gt -20-euroCO2 biomass-gt -0-euro

PH Brunner 1728Perm November 5 2009

Concept of MFA based balance method

Material data of waste inputBiogenic matter C H O N S Cl

Fossil matter C H O N S Cl

800

Fossil matter C H O N S Cl

Balance equations400

600

O2 foss t waste

plant

Balance equations

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

0

200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

kg CO

Revision

of

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

80

90

100

m ]

Line 1

Line 280

90

100

m ]

Line 1

Line 2

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

Operating data from WTE plantWaste input flue gas volume

CO2 O2 steam production0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

PH Brunner 1828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 13: Theory and practice of waste management in EU

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)

PH Brunner 1328Perm November 5 2009

Scarcity of resources the case of fuel oil

The stone age did not end because of scarcity of stones

$ 55$ 55

factor 45

$12

1870 1900 1950

PH Brunner 1428Perm November 5 2009

MFA for strategic resource management in the iron industry

34 1

11 708

08

primaryd ti waste

344consumpt

34

6 03 27

1

15

2p y

production production wastemagmnt44

15

4140

pedo- otherdisposal140

lithosphere

350

250

300 anthropogeniciron stock

344350

250

300 geogeniciron reserve

150

200

250

194150

200

250

140

2000 2050 21000

50

100

44

2000 2050 21000

50

100140

40 0

PH Brunner 1528Perm November 5 2009

2000 2050 21002000 2050 2100

PH Brunner 1628Perm November 5 2009

Quelle Christmann P (2004) Towards a thematic strategy on the sustainable use of natural resources The European Union 6th Environmental ActioProgramme

Scarcity of ldquofinal sinksrdquo the case of CO2

CO gt 20 euroCO gt 0 euroCO2 fossil -gt -20-euroCO2 biomass-gt -0-euro

PH Brunner 1728Perm November 5 2009

Concept of MFA based balance method

Material data of waste inputBiogenic matter C H O N S Cl

Fossil matter C H O N S Cl

800

Fossil matter C H O N S Cl

Balance equations400

600

O2 foss t waste

plant

Balance equations

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

0

200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

kg CO

Revision

of

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

80

90

100

m ]

Line 1

Line 280

90

100

m ]

Line 1

Line 2

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

Operating data from WTE plantWaste input flue gas volume

CO2 O2 steam production0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

PH Brunner 1828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 14: Theory and practice of waste management in EU

Scarcity of resources the case of fuel oil

The stone age did not end because of scarcity of stones

$ 55$ 55

factor 45

$12

1870 1900 1950

PH Brunner 1428Perm November 5 2009

MFA for strategic resource management in the iron industry

34 1

11 708

08

primaryd ti waste

344consumpt

34

6 03 27

1

15

2p y

production production wastemagmnt44

15

4140

pedo- otherdisposal140

lithosphere

350

250

300 anthropogeniciron stock

344350

250

300 geogeniciron reserve

150

200

250

194150

200

250

140

2000 2050 21000

50

100

44

2000 2050 21000

50

100140

40 0

PH Brunner 1528Perm November 5 2009

2000 2050 21002000 2050 2100

PH Brunner 1628Perm November 5 2009

Quelle Christmann P (2004) Towards a thematic strategy on the sustainable use of natural resources The European Union 6th Environmental ActioProgramme

Scarcity of ldquofinal sinksrdquo the case of CO2

CO gt 20 euroCO gt 0 euroCO2 fossil -gt -20-euroCO2 biomass-gt -0-euro

PH Brunner 1728Perm November 5 2009

Concept of MFA based balance method

Material data of waste inputBiogenic matter C H O N S Cl

Fossil matter C H O N S Cl

800

Fossil matter C H O N S Cl

Balance equations400

600

O2 foss t waste

plant

Balance equations

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

0

200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

kg CO

Revision

of

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

80

90

100

m ]

Line 1

Line 280

90

100

m ]

Line 1

Line 2

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

Operating data from WTE plantWaste input flue gas volume

CO2 O2 steam production0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

PH Brunner 1828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 15: Theory and practice of waste management in EU

MFA for strategic resource management in the iron industry

34 1

11 708

08

primaryd ti waste

344consumpt

34

6 03 27

1

15

2p y

production production wastemagmnt44

15

4140

pedo- otherdisposal140

lithosphere

350

250

300 anthropogeniciron stock

344350

250

300 geogeniciron reserve

150

200

250

194150

200

250

140

2000 2050 21000

50

100

44

2000 2050 21000

50

100140

40 0

PH Brunner 1528Perm November 5 2009

2000 2050 21002000 2050 2100

PH Brunner 1628Perm November 5 2009

Quelle Christmann P (2004) Towards a thematic strategy on the sustainable use of natural resources The European Union 6th Environmental ActioProgramme

Scarcity of ldquofinal sinksrdquo the case of CO2

CO gt 20 euroCO gt 0 euroCO2 fossil -gt -20-euroCO2 biomass-gt -0-euro

PH Brunner 1728Perm November 5 2009

Concept of MFA based balance method

Material data of waste inputBiogenic matter C H O N S Cl

Fossil matter C H O N S Cl

800

Fossil matter C H O N S Cl

Balance equations400

600

O2 foss t waste

plant

Balance equations

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

0

200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

kg CO

Revision

of

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

80

90

100

m ]

Line 1

Line 280

90

100

m ]

Line 1

Line 2

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

Operating data from WTE plantWaste input flue gas volume

CO2 O2 steam production0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

PH Brunner 1828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 16: Theory and practice of waste management in EU

PH Brunner 1628Perm November 5 2009

Quelle Christmann P (2004) Towards a thematic strategy on the sustainable use of natural resources The European Union 6th Environmental ActioProgramme

Scarcity of ldquofinal sinksrdquo the case of CO2

CO gt 20 euroCO gt 0 euroCO2 fossil -gt -20-euroCO2 biomass-gt -0-euro

PH Brunner 1728Perm November 5 2009

Concept of MFA based balance method

Material data of waste inputBiogenic matter C H O N S Cl

Fossil matter C H O N S Cl

800

Fossil matter C H O N S Cl

Balance equations400

600

O2 foss t waste

plant

Balance equations

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

0

200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

kg CO

Revision

of

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

80

90

100

m ]

Line 1

Line 280

90

100

m ]

Line 1

Line 2

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

Operating data from WTE plantWaste input flue gas volume

CO2 O2 steam production0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

PH Brunner 1828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 17: Theory and practice of waste management in EU

Scarcity of ldquofinal sinksrdquo the case of CO2

CO gt 20 euroCO gt 0 euroCO2 fossil -gt -20-euroCO2 biomass-gt -0-euro

PH Brunner 1728Perm November 5 2009

Concept of MFA based balance method

Material data of waste inputBiogenic matter C H O N S Cl

Fossil matter C H O N S Cl

800

Fossil matter C H O N S Cl

Balance equations400

600

O2 foss t waste

plant

Balance equations

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

0

200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

kg CO

Revision

of

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

80

90

100

m ]

Line 1

Line 280

90

100

m ]

Line 1

Line 2

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

Operating data from WTE plantWaste input flue gas volume

CO2 O2 steam production0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

PH Brunner 1828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 18: Theory and practice of waste management in EU

Concept of MFA based balance method

Material data of waste inputBiogenic matter C H O N S Cl

Fossil matter C H O N S Cl

800

Fossil matter C H O N S Cl

Balance equations400

600

O2 foss t waste

plant

Balance equations

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

mI

c m + c m

mB + mF + mI + mw

= awaste

= 1

0

200

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

kg CO

Revision

of

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

cB mB + cF mF

HVB mB + HVF mF -245mW

dO2-CO2 mB + dO2-CO2 mF

= cwaste

= HVwaste

= dO2-CO2waste

O2CB mB + O2

CF mF = O2

Cwaste

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

80

90

100

m ]

Line 1

Line 280

90

100

m ]

Line 1

Line 2

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

30

40

50

60

70

o o

f energ

y fr

om

enic

sourc

es

[

Operating data from WTE plantWaste input flue gas volume

CO2 O2 steam production0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

0

10

20

30

010707 010807 010907 011007

Rati

obio

ge

PH Brunner 1828Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 19: Theory and practice of waste management in EU

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development

PH Brunner 1928Perm November 5 2009

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 20: Theory and practice of waste management in EU

Energy from biomass

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom biomasssupply in phh from biomass

biomass as a fuel 7800 m2capita 85 kgca

biomass harvesttransport

pre-treatment

incine-ration

Heat-exchange turbine generator grid

PH Brunner 2028Perm November 5 2009

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 21: Theory and practice of waste management in EU

Solar energy utilization

solar energy electrons

sun -gt electron area used for total supply in phh

waste generatedfrom fuelsupply in phh from fuel

biomass as a fuel

h t lt i ll

7800 m2capita

80 2 it

85 kgcyear

0 k photovoltaic cells 80 m2capita 0 kgcyear

PV cell utilization

PH Brunner 2128Perm November 5 2009

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 22: Theory and practice of waste management in EU

3 Future challenges

1 Knowledge base (Definition implementation ownership)1 Waste characterization2 Processes (TK)3 WM systems4 RM and EM systems4 RM and EM systems

2 Economic development (scarcity of resources)3 Technological development (new technologies for sorting)4 Social development (acceptance for new logistics GDP)

PH Brunner 2228Perm November 5 2009

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 23: Theory and practice of waste management in EU

Glas collection in Switzerland -gt new products

17RefillingImport

[kg(cyr)]

30 47 +0914

270128

28Tradeamp

ConsumptProduction

Primaryraw materials

Waste

47 09

13 2540

distribution Stock

40

27Collection

Other use

System Boundary Switzerland

PH Brunner 2328Perm November 5 2009

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 24: Theory and practice of waste management in EU

Globalization of reources management Ex waste management

30ada

y]

kgc

apita

20

on ra

te [k

Vienna

10

ener

atio

00100 1 000 10 000 100 000Was

te g

e

DhakaDamascus

100 1000 10000 100000

Gross Domestic Product GDP [eurocapita]

W

Source Brunner amp Fellner

PH Brunner 2428Perm November 5 2009

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 25: Theory and practice of waste management in EU

Globalization of reources management cost of waste management

C ll ti T t

12

Collection + TransportTreatmentDisposal

9

9

010

5929

8290

Vienna106eurocapitaa

Damascus38 eurocapitaa

Dhaka07 eurocapitaap

04 of GDP38 eurocapitaa

03 GDP07 eurocapitaa

02 GDP

Source Brunner amp Fellner

PH Brunner 2528Perm November 5 2009

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 26: Theory and practice of waste management in EU

4 Future trends

1 Waste to energy2 Less landfilling -gt more ldquofinal sinksrdquog3 Advanced mechanical sorting ()4 Convenience and consumer behaviour5 Legislative interventions versus market forces

PH Brunner 2628Perm November 5 2009

Th kThank you

PH Brunner 2728Perm November 5 2009

Page 27: Theory and practice of waste management in EU

Th kThank you

PH Brunner 2728Perm November 5 2009