the!effect!of!geometric!representation!of!vector

64
The Effect of Geometric Representation of Vector Operations on the Development of the Force Concept Principal Investigator: Colleen Megowan CoInvestigator: Kley Feitosa Action Research required for the Master of Natural Science degree with concentration in Physics July 2013

Upload: others

Post on 18-Dec-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The!Effect!of!Geometric!Representation!of!Vector

                               

The  Effect  of  Geometric  Representation  of  Vector  Operations  on  the  Development  of  the  Force  Concept  

 Principal  Investigator:  Colleen  Megowan  

Co-­‐Investigator:  Kley  Feitosa      

Action  Research  required  for  the  Master  of  Natural  Science  degree  with  concentration  in  Physics  

 July  2013  

                                   

   

Page 2: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors     2  

Table  of  Contents  

ABSTRACT  ................................................................................................................................................  3  

RATIONALE  ..............................................................................................................................................  3  

LITERATURE  REVIEW  ...........................................................................................................................  5  

METHOD  ....................................................................................................................................................  8  

SUBJECTS:  ....................................................................................................................................................................  8  

PROCEDURE  FOR  TREATMENT  ................................................................................................................................  9  

QUALITATIVE  DATA  SPECIFICS  ............................................................................................................................  13  

DATA  ANALYSIS  ...................................................................................................................................  16  

VCQ  PRE-­‐TEST  .......................................................................................................................................................  16  

EXPOSING  STUDENTS  TO  GRAPHICAL  ADDITION  OF  VECTORS  ......................................................................  21  

TREATMENT:  AN  ALTERNATIVE  APPROACH  TO  TEACHING  AND  ADDING  FORCES  ...................................  23  

THE  NET  FORCE  CONCEPT  ....................................................................................................................................  30  

MATHEMATICAL  METHOD  -­‐  THE  “VECTOR  COMPONENTS”  CONCEPT  .........................................................  43  

COMPARISON  OF  SOLUTION  METHOD  ................................................................................................................  44  

FCI  PRE-­‐TEST  AND  VCQ/FCI  POST  TEST  ........................................................................................................  47  

FCI  RESULTS  ...........................................................................................................................................................  48  

STUDENT  SURVEYS  .................................................................................................................................................  50  

CONCLUSION  .........................................................................................................................................  53  

WORKS  CITED  .......................................................................................................................................  56  

APPENDIX  ..............................................................................................................................................  57  

 

   

Page 3: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors     3  

Abstract    

While  vectors  play  a  significant  role  in  understanding  basic  concepts  in  

physics,  most  high  school  and  college  students  demonstrate  only  rudimentary  

working  knowledge  of  vectors  even  after  taking  a  yearlong  Physics  course.  In  

developing  the  force  model,  careful  consideration  to  the  vector  concept  and  its  

operations  is  necessary,  yet  studies  have  shown  that  most  instructors  and  textbooks  

hastily  introduce  students  to  abstract  orthogonal  decomposition  of  vectors  when  

solving  force  problems.  The  purpose  of  this  study  was  to  evaluate  how  students’  

understanding  of  vectors  and  forces  were  impacted  by  introducing  them  to  

graphical  addition  of  vectors  before  algebraic  manipulation  of  vector  components.  

The  research  did  not  find  any  substantial  positive  correlation  between  graphical  

methods  of  vector  addition  and  improved  understanding  of  forces  and  vectors.  

However,  most  students,  particularly  students  who  struggle  with  math,  benefited  

from  the  geometrical  approach  and,  consequently,  improved  their  ability  to  solve  

dynamics  questions.  Likewise,  students  who  have  learned  how  to  add  vectors  

graphically  increased  their  problem-­‐solving  skills  and  added  another  useful  “tool”  to  

their  repertoire.  

Rationale       One  of  the  key  tenets  of  modeling  is  to  develop  in  students  the  ability  to  

represent  the  physical  world  in  multiple  ways  (Wells,  Hestenes,  &  Swackhamer,  

1995).  Students  are  encouraged  to  explain  the  model  in  various  graphical  and  

mathematical  representations,  thus  deepening  their  own  understanding  of  physics.  

Page 4: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors     4  

Vectors  play  a  significant  role  in  geometrically  representing  and  developing  several  

physics  concepts.  If  students  are  to  achieve  success  in  physics,  strong  basic  working  

knowledge  of  vectors  is  essential.  However,  research  has  shown  that  more  than  half  

of  the  students  enrolling  in  college  Physics  do  not  possess  such  knowledge,  

including  students  who  had  been  exposed  to  vectors  in  their  high  school  Physics  and  

Math  classes  (Knight,  1995;  Nguyen  &  Meltzer,  2003).  This  is  a  dismal  number.  How  

can  teachers  improve  on  developing  students’  understanding  of  vectors?    To  answer  

this  question  we  will  have  to  look  at  how  the  concept  of  vectors  is  usually  

introduced  in  the  high  school  classroom.  

  It  is  typical  in  the  modeling  curriculum  to  avoid  the  word  “vector.”  Students  

initially  develop  concepts  of  displacement,  velocity  and  acceleration  in  one-­‐

dimension,  thus  an  explicit  use  of  “+”  or  “-­‐”  signs  preceding  the  numerical  quantity  is  

more  than  enough  to  describe  direction.  Teachers  usually  introduce  geometrical  

representation  of  vectors,  i.e.  arrows  having  a  magnitude  (length)  and  direction,  

with  motion  maps  and  free-­‐body  diagrams,  but  little  geometric  manipulation  is  

done,  if  any  at  all.  When  teachers  introduce  forces,  students  go  from  concrete  

physical  models  of  forces,  based  on  their  own  experiences,  to  abstract  mathematical  

models  of  adding  horizontal  and  vertical  vector  components.  In  the  process  of  

developing  the  idea  and  model  of  forces,  there  seems  to  be  a  rapid  and  precocious  

jump  to  algebraic  manipulation  of  vector  quantities.  Students  are  quickly  introduced  

to  orthogonal  vector  components  when  forces  “at  an  angle”  (in  two-­‐dimensions)  are  

present.    Almost  no  time  is  given  to  developing  geometrical  manipulation  of  vectors,  

Page 5: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors     5  

so  it’s  no  surprise  students  rarely  use  vector  ideas  to  solve  mechanics  problems  at  

the  end  of  their  Physics  course.    

  The  purpose  of  the  study  is  to  analyze  students’  development  of  the  “free”  

vector  concept  by  emphasizing  geometric  vector  operations.  I  encouraged  students  

to  draw  scaled  vectors  on  graph  paper  and  perform  simple  operations  (i.e.  adding  

and  subtracting)  geometrically.  After  exhausting  geometric  addition  of  vectors,  I  

introduced  students  to  algebraic  manipulations  of  vectors.  I  used  screencasts,  think-­‐

aloud  interviews  and  student  artifacts,  like  worksheets  and  tests,  as  the  primary  

source  for  evaluating  students’  progress  towards  a  deeper  understanding  of  vectors  

and  forces.  Conceptual  gains  were  measured  with  the  pre  and  post-­‐treatment  scores  

of  the  Force  Concept  Inventory  (FCI)  and  the  Vector  Concept  Quiz  (VCQ).    

Literature  Review    

There  are  large  numbers  of  students  that  go  through  introductory  Physics  

courses  without  significantly  learning  vector  concepts.  Vectors  are  used  extensively  

in  physics,  yet  very  little  attention  is  given  to  how  and  to  what  extent  students  learn  

about  them.  Studies  have  found  that  about  half  of  students  who  have  completed  an  

introductory  Physics  course  have  no  useful  knowledge  of  vectors  (Knight,  1995;  

Nguyen  &  Meltzer,  2003).    

Students’  lack  of  qualitative  understanding  of  vectors  becomes  apparent  

when  they  begin  to  study  forces.  After  traditional  instruction,  the  number  of  

students  who  make  use  of  vectors  to  solve  problems  involving  forces  and  

acceleration  is  minimal  (Flores  &  Kanim,  2004).  Additionally,  in  the  modeling  

Page 6: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors     6  

materials,  force  vectors  in  two-­‐dimensions  are  quickly  introduced,  thus  prompting  

teachers  to  introduce  students  to  mathematical  algorithms  for  solving  problems.  

Most  instructors  first  introduce  the  idea  of  a  vector  geometrically  but  hastily  lead  

students  into  breaking  vectors  into  orthogonal  (perpendicular)  components  to  solve  

problems  algebraically  (Nguyen  &  Meltzer,  2003;Flores  &  Kanim,  2004;  Megowan,  

2005).  Dr.  David  Hestenes  characterizes  this  practice  of  breaking  vectors  into  

components  as  the  “vector  coordinate  virus.”    Students  start  to  believe  that  

components  are  more  important  than  the  vectors  themselves  (Hestenes,  1992).  

Despite  teachers’  efforts,  research  has  shown  that  more  than  50%  of  students  

cannot  carry  out  two-­‐dimensional  vector  addition,  even  after  a  full  semester  of  

Physics  (Nguyen  &  Meltzer,  2003).    

One  potential  explanation  for  students’  difficulties  with  reasoning  about  

vectors  may  rest  in  the  fact  that  teachers  devote  very  little  time  to  geometrical  

representation  and  manipulation  of  vectors.  Arons,  in  his  book  Teaching  

Introductory  Physics,  suggests  that  “many  students  would  benefit  from  more  

exercise  and  drill  in  graphical  handling  of  vector  arithmetic  than  usually  available  in  

textbooks”  (Arons,  1997).      Flores  and  Kanim  also  state  that  after  instruction  is  

modified  to  include  more  emphasis  on  graphical  vector  manipulation,  students’  

ability  to  add  vectors  in  two-­‐dimensions  improves  greatly  (Flores  &  Kanim,  2004).    

Graphical  addition  of  vectors  reinforces  the  idea  of    “free  vector”  in  space.  The  “free  

vector”  concept  is  what  Poynter  designates  as  the  highest  stage  in  student  

conceptual  understanding  of  vectors.  By  “free  vector,”  she  means  a  vector  that  can  

be  translated  (moved  freely)  as  long  as  magnitude  and  direction  do  not  change  

Page 7: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors     7  

(Poynter  &  Tall,  2005a;  Watson, Spyrou & Tall, 2002).  Adding  vectors  graphically  

also  requires  students  to  translate  vectors  on  paper,  which  in  turn  helps  them  stay  

away  from  the  notion  that  vectors  are  “attached  to  points”  (i.e.  forces  in  a  free-­‐body  

diagrams)  and  cannot  be  moved  (Arons,  1997).    

Anna  Poynter  has  spent  several  years  studying  students’  vector  concepts  and  

their  implications  for  Physics  and  Math  classrooms.  She  developed  a  framework  in  

which  students’  cognitive  development  of  vector  concept  experiences  five  distinct  

stages.  In  the  “embodied  world”  (the  physical  world),  the  highest  stage  is  the  idea  of  

the  two-­‐dimensional  “free  vector.”    An  effective  way  to  promote  students  to  this  

highest  stage  is  by  focusing  on  the  effect  of  the  action  rather  than  the  action  itself.  

She  points  out  that  a  student  whose  focus  is  on  the  effect  of  a  vector  translation  is  

usually  more  successful  in  understanding  vectors  in  different  contexts  (i.e.  as  a  

displacement  or  a  force)  and  understanding  the  commutative  property  of  vector  

addition  (Poynter  &  Tall,  2005a).    

We  have  seen  how  emphasis  on  graphical  operation  of  vectors  should  

promote  better  understanding  of  vectors,  however,  Knight  and  Arons  suggest  yet  

another  way  to  strengthen  students’  concept  of  vectors  by  using  computer-­‐aided  

instruction  (Knight,  1995;  Arons,  1997).  With  the  help  of  computers,  students  can  go  

one  step  further  and  easily  examine  the  effects  of  changing  or  translating  vectors.  

Computer  software  allows  students  to  make  quick  changes  to  vectors  (i.e.  size  and  

direction),  modify  their  arrangement,  and  immediately  observe  the  effect  of  the  

changes—something  that  would  be  difficult  and  time  consuming  on  paper.  The  use  

of  simulations  allows  students  to  easily  control  the  visual  representations  (vectors)  

Page 8: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors     8  

and  immediately  help  them  establish  “cause-­‐and-­‐effect  relationships”  (Perkins,  

Adams,  Dubson,  Finfelstein,  Reid  &  Wieman,  2006).  

After  students’  vector  concepts  have  been  developed  carefully  by  geometrical  

operations  and  representation,  they  will  be  ready  for  the  introduction  of  orthogonal  

components.  Students  should  be  led  to  verbally  articulate  vector  representation  at  

different  angles.  Beside  only  breaking  down  vectors  into  horizontal  and  vertical  

components,  they  should  also  be  asked  to  break  vectors  into  parallel  and  

perpendicular  components  of  inclined  surfaces  (Knight,  2004).  

As  outlined  above,  students  have  little  understanding  of  vectors  even  after  a  

whole  year  of  physics  instruction.  The  common  practice  of  introducing  orthogonal  

components  of  two-­‐dimensional  vectors  and  quickly  moving  towards  algebraic  

solution  of  problems  doesn’t  seem  to  be  an  effective  way  to  develop  the  “free  vector”  

concept.    Students  should  benefit  from  geometrically  adding  and  representing  

vectors.  Additionally,  the  use  of  computer  simulations  should  help  students  

concentrate  on  the  effect  of  adding  vectors  rather  than  the  action  itself.    Modifying  

instruction  in  the  modeling  cycle  to  address  these  shortcomings  is  the  purpose  of  

this  study.  

Method  

Subjects:  Investigator:    I  work  at  Escola  Maria  Imaculada  (Chapel  School),  an  American  

private  school  located  in  São  Paulo,  Brazil.  The  school  has  a  student  body  of  

approximately  700  students  from  K-­‐12  and  serves  mostly  affluent  families  who  seek  

bilingual  education  for  their  children.  The  student  breakdown  is  in  the  vicinity  of  

Page 9: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors     9  

70%  Brazilian  and  30%  from  other  nationalities,  mostly  Asians.  I  taught  three  

different  Physics  classes;  two  regular  Physics  courses  of  19  and  10  students  each  

(29  students  total;  a  mix  of  sophomore  and  juniors  in  each  class),  and  one  

International  Baccalaureate  (IB)  course  of  10  students  (9  seniors  and  1  junior).  It’s  

important  to  note  that  students  in  the  second  year  IB  class  (equivalent  to  an  honors  

class)  are  seemingly  stronger  than  others,  and  they  all  have  had  a  year  of  regular  

Physics  with  me.  I  did  not  teach  these  second  year  students  by  the  modeling  

curriculum,  and  they  did  not  receive  the  treatment  for  vectors  described  below.    

Procedure  for  Treatment  1. Permission:  

All  participating  students,  along  with  their  parents  or  guardians,  signed  an  

assent/consent  form  acknowledging  their  participation  in  the  study.  If  permission  

was  not  received  from  both  a  student  and  a  parent  or  guardian,  that  student  was  not  

included  in  the  study.  The  names  of  individuals  participating  in  the  study  were  kept  

confidential.    

2. Pre-­‐assessment  of  students’  abilities:  

During  the  first  two  weeks  of  instruction,  I  examined  students’  basic  knowledge  

of  two  different  concepts.  Students  took  two  pre-­‐tests:  the  Force  Concept  Inventory  

(FCI)  and  the  Vector  Concept  Quiz  (VCQ).  The  FCI  assessed  their  basic  

understanding  of  force  concepts,  and  the  VCQ  assessed  the  students’  ability  to  

interpret  and  carry  basic  operations  with  vectors.      

3. Unit  1:  

Page 10: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    10  

In  regular  Physics,  I  started  the  year  by  going  over  unit  1  of  the  modeling  

cycle.  During  this  time,  I  gave  students  the  pre-­‐tests,  and  we  got  acquainted  with  

modeling  techniques  and  the  use  of  graphical  software  (logger  pro).  During  the  first  

week  I  also  introduced  students  to  software  applications  for  recording  

“screencasts”;  i.e.  Jing  (http://www.techsmith.com/jing.html)  by  Techsmith,  

Screenr  (http://www.screenr.com;  web  based)  and  screencast-­‐o-­‐matic  

(http://www.screencast-­‐o-­‐matic.com;  web  based).  

4. Treatment:  

I  applied  the  treatment  from  Modeling  Physics  units  2-­‐5  (“Constant  Velocity”  

through  “Unbalanced  Forces”).  The  goal  of  this  research  was  to  not  rush  students  

into  breaking  two-­‐dimensional  vectors  into  orthogonal  components  for  an  algebraic  

solution  of  vector  problems.  I  judiciously  emphasized  the  geometrical  

representation  and  graphical  solution  of  vector  addition  during  the  treatment.    

I  based  the  treatment  mostly  on  three  simple  modifications  to  the  modeling  

cycle:  1)  the  introduction  of  vector  concepts  after  the  constant  velocity  unit,  2)  the  

use  of  computer-­‐aided  simulations  to  visually  represent  vector-­‐addition  problems,  

and  3)  the  emphasis  on  geometrical  addition  of  vectors  prior  to  algebraic  

manipulation  of  vector  components,  especially  when  dealing  with  vectors  at  an  

angle  (not  collinear);  which  is  common  in  units  4  and  5.      

Unit  2  –  I  introduced  the  vector  concept  of  velocity  at  the  end  of  unit  2.  Students  

worked  through  the  entire  unit  without  modifications,  completing  the  end  of  the  

unit  assessment  just  as  presented  in  the  modeling  materials.  After  completing  unit  2,  

I  introduced  the  idea  of  velocity  vectors  by  developing  a  “relative  velocity”  activity  

Page 11: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    11  

with  students.  I  gave  them  an  extra  worksheet  with  parallel  and  perpendicular  

velocity  addition  questions.  I  used  the  worksheet  to  introduce  students  to  scaling  

and  graphical  addition  of  vectors.  Students  were  not  allowed  to  solve  for  the  

resultant  vector  algebraically,  even  if  they  already  knew  how  to  deploy  this  method.  

After  everyone  completed  the  assignment,  I  collected  the  worksheet  from  students  

for  analysis.    

Unit  3  –  I  didn’t  make  any  modifications  to  unit  3  (“Constant  Acceleration”).    

Units  4  and  5  –  The  students’  first  encounter  with  vectors  in  two-­‐dimensions  

happens  in  unit  4.  I  introduced  students  to  the  idea  of  forces  as  vectors  by  using  a  

scaffolding  activity  that  involved  force  tables  (see  appendix).  The  activity  was  structured  

in  three  stages  with  each  stage  followed  by  a  worksheet  that  included  modified  

problems  from  the  modeling  worksheets  and  some  additional  problems.  In  stage  1,  

students  worked  on  the  idea  of  two  collinear  forces  acting  in  equilibrium.  In  stage  2,  

students  developed  the  concept  of  four  orthogonal  forces  acting  in  equilibrium.  In  

stage  3,  they  developed  the  concept  of  three  or  more  forces  acting  at  an  angle  in  

equilibrium.  I  followed  each  activity  by  giving  worksheets  where  students  had  to  

first  scale  force  vectors  on  graph  paper  and  then  add  them  graphically  with  the  aid  

of  rulers  and  protractors.  This  prompted  students  to  translate  vectors  as  “free”  

moveable  vectors  when  working  from  free  body  diagrams  to  graphical  

representation  of  vector  addition.  All  worksheets  for  unit  4  and  5  in  the  modeling  

cycle  were  modified  to  not  include  inclined-­‐plane  questions  or  any  question  that  

prompted  students  to  use  trig  in  its  solution  (see  appendix).  At  the  completion  of  unit  5,  I  

introduced  students  to  the  ideas  of  orthogonal  components  of  vectors  and  algebraic  

Page 12: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    12  

methods  of  solving  for  the  resultant  vector.  I  encouraged  students  to  revisit  

previously  given  worksheets  and  rework  the  problems  algebraically,  but  few  

proceeded  to  do  so.  I  also  introduced  inclined-­‐plane  problems  at  the  end  of  unit  5.    

Treatment  ended  at  the  end  of  Unbalanced  Forces  Particle  Model  (UFPM),  and  

when  students  took  the  unit  5  assessment  they  had  the  choice  to  solve  problems  

either  graphically  or  algebraically.  I  collected  most  of  the  worksheets  and  all  of  the  

assessments  for  units  4  and  5  for  analysis  of  students’  solving  procedures.  I  asked  

students  to  record  screencasts  of  vector  addition  problems  and  various  PhET  

(Wieman,  Adams,  Loeblein  &  Perkins,  2010)  simulations  involving  forces  and  

vectors  during  the  development  of  units  4  and  5.    

For  the  remaining  units  (6-­‐9),  students  could  choose  their  method  for  solving  

vector  quantities  problems.  At  the  end  of  the  course  I  administered  a  student  survey  

to  probe  into  their  feelings  and/or  reactions  to  graphical  addition  of  vectors.        

5. Assessment:  

Students  were  assessed  in  different  ways.  They  took  the  pre  and  post  tests  of  the  

FCI  and  the  VCQ.    I  applied  both  post-­‐tests  in  the  last  week  of  school.  I  collected  most  

of  the  worksheets  in  units  4  and  5  and  all  of  the  end-­‐of-­‐unit  assessments.  I  asked  

students  to  produce  somewhere  between  three  to  five  screencasts,  no  longer  than  

five  minutes  each,  on  various  topics  throughout  treatment.  At  the  end  of  the  course  I  

asked  students  to  solve  two  very  similar  inclined  plane  balanced-­‐force  (equilibrium)  

problems;  the  first  problem  students  had  to  solve  by  geometric  addition  of  vectors,  

and  the  second  problem  by  algebraic  addition  of  vector  components  (see  appendix).  The  

purpose  was  to  compare  students’  solving  ability  using  different  methods.  Also  I  

Page 13: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    13  

invited  a  total  of  five  students  in  regular  Physics  to  think-­‐aloud  recorded  interview  

sessions  after  the  treatment.  No  more  than  one  think-­‐aloud  interview  per  student  

was  recorded.  

Modeling  Cycle  Units   Treatment   Duration   Assessment  and  

Collected  Artifacts  

Unit  1  Scientific  Thinking   No  Treatment   1-­‐2  weeks   Pre-­‐Test  of  

FCI  and  VCQ  

Unit  2  Uniform  Velocity  

Introduce  Velocity  Vector  /  Start  Scaling  and  Graphical  

Addition  of  Vectors.  2-­‐3  weeks   Velocity  Vector  Worksheet  

Unit  3  Uniform  Acceleration   No  Treatment   3  weeks   No  Assessment  

Unit  4  Balanced  Forces  

3  Stages  Scaffolding  Force  Activity  /  Graphical  Addition  of  

Vectors  3-­‐4  weeks  

All  worksheets  and  Assessments.  Phet  

Simulations  Screencasts  

Unit  5  Unbalanced  Forces  

Graphical  Addition  of  Vectors  and  Introduction  to  Orthogonal  

Components  of  Vectors  3-­‐4  weeks  

All  Worksheets  and  Assessments.  Phet  

Simulations  Screencasts  

Units  6-­‐9   No  Treatment   16  weeks  Post-­‐Test  of  FCI  and  VCQ,    Student’s  Interviews  and  

Survey  Table  1-­‐  Summary  of  Treatment  

Qualitative  Data  Specifics       The  number  of  students  participating  in  the  treatment  was  very  small  

(twenty-­‐six  in  all).  The  low  number  of  participants  in  the  study  unlocked  a  new  

possibility  for  collection  of  data  by  allowing  me  to  look  more  closely  into  students’  

work  and  thought  processes.  I  chose  “screencasts”  as  one  of  the  tools  for  collecting  

qualitative  data,  because  it  offered  me  the  ability  to  listen  in  on  students’  thinking  

when  answering  problems  or  “playing”  with  simulations.  I  had  seen  screencasts  in  

Page 14: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    14  

use  by  other  physics  teachers  in  the  blogosphere,  and  I  had  limitedly  explored  its  

use  in  my  own  classroom  the  school  year  before  the  study.    

Screencasts  record  students’  computer  screen  and  audio  input  for  a  

maximum  of  five  minutes,  which  is  the  case  for  most  of  the  free  available  software.  

In  my  study,  I  encouraged  students  to  use  one  of  the  following  three  free  softwares:    

• Jing  (http://www.techsmith.com/jing.html)  by  Techsmith    

• Screenr  (http://www.screenr.com)  web  based    

• Screencast-­‐o-­‐matic  (http://www.screencast-­‐o-­‐matic.com)  web  based  

When  “screencasting”  the  solution  to  a  specific  problem,  I  asked  students  to  

scan  (or  take  a  picture)  of  the  completed  work  and  go  over  it  in  detail,  step-­‐by-­‐step,  

in  less  than  five  minutes.  Students  had  to  show  me  how  much  they  understood  of  

the  problem  and  the  basic  physics  concepts.    

When  screencasting  PhET  simulations  on  forces  or  vectors,  I  asked  students  

to  “explore”  before  recording.  The  main  goal  with  simulations  was  for  students  to  

demonstrate  learned  concepts  through  the  ease  and  power  of  Internet  simulations.  

Students  had  the  freedom  to  create  and  script  whatever  they  wanted  as  long  as  it  

gave  me  insight  into  their  thinking  and  knowledge  of  physics.    

All  screencasts  were  assigned  after  I  had  introduced  and  discussed  the  

concept  in  class,  except  for  one  (vector  addition).  All  screencasts  were  also  

supposed  to  be  done  at  home,  where  everyone  had  computers  and  a  quiet  place  to  

record.  I  gave  students  one  week  to  complete  and  submit  screencasts,  and  I  could  

not  make  the  assessment  worth  more  than  4%  of  their  overall  class  grade,  because  

Page 15: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    15  

the  work  was  done  and  completed  outside  of  the  classroom  (this  is  part  of  school  

policy).  

I  assigned  a  total  of  seven  screencast  activities  to  my  students.  The  table  

below  lists  all  the  specific  questions  and  simulations  assigned  to  them:  

Unit   Screencasts  Collected  

2   • One  question  on  one  of  the  worksheets  from  unit  2  (practice)  

4  • Screencast  of  problem  4  of  stage  three  worksheet  • Screencast  of  PhET  “Motion  and  Forces:  Basics”  

(http://phet.colorado.edu/en/simulation/forces-­‐and-­‐motion-­‐basics)  

5  

• Screencast  of  PhET  “Motion  and  Forces”  (http://phet.colorado.edu/en/simulation/forces-­‐and-­‐motion)  

• Screencast  of  PhET  “Ramp:  Forces  and  Motion”  (http://phet.colorado.edu/en/simulation/ramp-­‐forces-­‐and-­‐motion)  

• Screencast  of  PhET  “Vector  Addition”  (http://phet.colorado.edu/en/simulation/vector-­‐addition)  

• Screencast  of  question  17  on  unit  test.    

Table  2  -­‐  Screencasts  Assigned  

    The  first  screencasts  were  mainly  assigned  with  the  objective  of  

troubleshooting  the  system  and  making  sure  students  were  comfortable  with  the  

process.  In  the  beginning,  I  had  to  help  some  students  fix  “computer  issues”  related  

to  recording  and  submitting  screencasts.    

  Getting  students  to  submit  screencasts  was  always  a  struggle.  I  had  to  give  

them  constant  reminders,  but  I  still  failed  to  collect  work  from  several  of  my  low  

performing  students.  I  was  not  surprised  to  notice  that  submission  rates  for  high  

achieving  students  were  much  better.  As  the  year  and  units  progressed,  the  

submission  rate  declined  with  an  increasing  number  of  students  claiming  “technical  

difficulties”  for  failing  to  submit  work.  I  collected  less  than  20%  of  the  screencasts  

assigned,  and  most  of  these  were  from  responsible  students  who  knew  the  content  

Page 16: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    16  

very  well.  I  do  not  have  the  answer  as  to  why  I  only  managed  to  collect  a  dismal  

number  of  screencasts.  Perhaps  the  stakes  were  too  low  (minimal  points),  perhaps  

students  never  felt  confident  in  their  work  and  thought  they  had  nothing  to  gain  

from  submitting  this  type  of  assessment.  I’ll  never  know,  so  this  led  me  to  depend  

more  on  other  student  artifacts,  (i.e.  worksheets,  tests  and  field  notes)  as  sources  of  

qualitative  data.    

 Figure  1  -­‐  Frequency  of  Screencast  Submission

Data  Analysis  

VCQ  Pre-­‐Test    

I  gave  the  Vector  Concept  Quiz  (VCQ)  pre-­‐test  (see  appendix)  to  all  my  students  in  

the  first  week  of  school.  I  used  the  pre-­‐test  to  measure  students’  basic  initial  ability  

to  understand  and  add  vectors.  The  VCQ  was  developed  by  Nguyen  &  Meltzer  from  

Page 17: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    17  

Iowa  State  University  and  was  used  on  thousands  of  students  during  the  academic  

year  of  2000-­‐2001.  The  test  is  composed  of  seven  questions,  all  presented  in  

graphical  form,  and  covers  concepts  like  properties  and  addition  of  vectors.  The  

table  below  shows  the  breakdown  of  questions  and  the  concepts  it  evaluates:  

Question  Number   Concepts  Evaluated  

1  &  2   Properties  of  vectors.  Listing  vectors  of  equal  magnitude  (question  1)  and  direction  (question  2).  

3   Finding  the  resultant  vector  direction.  Orthogonal  (perpendicular)  vector  addition.  

4   Finding  and  drawing  the  resultant  vector  of  two  collinear  (parallel)  vectors.  The  vectors  are  in  opposing  direction.  

5  &  6   Finding  and  drawing  the  resultant  vector  of  two  vectors  at  an  angle  (neither  collinear  nor  orthogonal).  

7   Comparison  of  the  magnitude  of  resultant  vector  by  adding  two  equal  vectors  at  two  different  angles.    

Table  3  -­‐  Concepts  Evaluated  in  VCQ  (Nguyen  &  Meltzer,  2003)  

Each  question  was  assigned  one  point  (max  pts.  =  7)  and  students  only  

received  the  mark  if  they  answered  the  entire  question  correctly.  Before  the  

treatment  (MEAN  SCORE  =  3.16,  SD  =  1.84)  a  high  number  of  students  answered  

question  3  correctly.  As  I  will  discuss  further  in  the  paper,  I  believe  there  was  a  

disproportionate  number  of  correct  answers  to  question  3,  and  this  may  indicate  a  

problem  with  the  question  itself.  The  histogram  of  the  pre-­‐test  below  confirms  

students’  incomplete  understanding  of  vectors  entering  my  Physics  course.  

Page 18: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    18  

  Looking  at  the  breakdown  for  each  question  (graph  1)  and  the  percentage  of  

correct  responses,  it  became  apparent  that  students  initially  had  some  basic  

knowledge  of  words  like  “magnitude”  and  “direction”  as  they  relate  to  vectors.  This  

can  be  observed  by  the  percentage  of  correct  responses  to  the  first  four  questions  in  

the  pre-­‐test,  all  with  averages  higher  than  50%.    

 

0  

20  

40  

60  

80  

100  

1   2   3   4   5   6   7  

%  Correct  

Question  Number  

VCQ  Pre-­‐Test    

Figure  3  -­‐  Question  Breakdown  in  VCQ  

Figure  2  -­‐  VCQ  Pre-­‐Test  Scores

Page 19: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    19  

   

Questions  5,  6  and  7,  all  of  which  address  addition  of  vectors  at  an  angle,  are  

of  special  interest  to  this  study.  Questions  5  and  6  (see  below)  overlaid  the  vectors  

on  top  of  a  grid  encouraging  students  to  draw  solutions,  with  question  6  asking  for  

an  explanation  of  reasoning.      

 

 

In  the  pre-­‐test,  only  14%  of  students  answered  questions  5  and  6  correctly.  

Looking  more  closely  at  question  6—because  it  asks  students  to  provide  an  

explanation  to  their  answer—of  the  students  who  attempted  to  solve  the  question,  

most  suggested  the  idea  that  vector  B  should  point  in  a  direction  that  makes  vector  

R  “cut”  right  in  the  middle  of  them.  Students  cultivate  this  idea  that  the  resultant  

Figure  4  -­‐  Questions  5  &  6  in  VCQ  (Nguyen  &  Meltzer,  2003)  

Page 20: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    20  

vector  is  one  that  separates  the  other  two  vectors  right  in  the  middle,  no  matter  the  

size  of  the  vectors  being  added.  Below  are  some  excerpts  of  students’  explanations  

to  question  6:  

 

STUDENT  A:  R  must  be  in  the  middle  of  A  and  B,  so  B  is  horizontal.  

STUDENT  B:  Since  the  resultant  is  almost  90°  towards  A,  B  should  be  almost  

180°  towards  A.  

STUDENT  C:  The  angle  from  A  to  R  has  to  be  equal  to  from  R  to  B.  

 

I  found  little  evidence  of  a  specific  method  of  adding  vectors  in  both  questions  

5  and  6.  Students  mostly  tried  to  draw  a  vector  B  about  the  same  length  as  A  in  a  

direction  that  would  make  R  appear  in  the  middle  of  them.  This  line  of  thinking  may  

be  the  reason  why  so  many  students  (90%)  answered  question  3  correctly  (“D”)  in  

the  pre-­‐test.    

 

Question  3  doesn’t  ask  for  an  explanation,  and  students  could  have  gotten  

away  with  thinking  that  the  direction  of  the  resultant  vector  is  simply  a  vector  that  

Figure  5  -­‐  Question  3  in  the  VCQ  

Page 21: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    21  

“cuts”  through  the  middle  of  the  two.  Nguyen  &  Meltzer  found  similar  results  for  

question  3  in  their  study  and  concluded  that  this  question  was  perhaps  flawed  and  

provided  no  significant  insight  into  students’  vector  thinking.    

  When  analyzing  question  7,  I  noticed  that  a  few  students  answered  it  

correctly  but  didn’t  provide  an  explanation,  which  makes  it  difficult  to  understand  

how  much  of  their  response  was  pure  guess.  The  most  common  misconception  was  

to  think  of  vectors  as  scalar;  thus  two  vectors  of  equal  size  added  together  give  you  

the  same  magnitude  for  the  resultant  vector  despite  the  different  angles  between  

them.  Students  used  words  like  “same  length,”  “equal  size,”  and  “same  magnitude”  

when  referring  to  vectors  in  figures  A  and  B  to  justify  their  answers.  Another  

notable  misconception  was  to  believe  resultant  from  A  was  larger  because  of  a  

larger  angle  between  the  vectors.    

  The  VCQ  pre-­‐test  led  me  to  conclude  that  students  starting  Physics  have  

some  kind  of  correct  intuition  about  vector  properties  like  magnitude,  direction,  and  

collinear  vector  addition  (maybe  because  they  can  somehow  get  away  with  treating  

vectors  as  scalars).  But  students  have  little  to  no  idea  about  adding  vectors  at  an  

angle,  which  is  one  of  the  main  challenges  teachers  face  in  teaching  dynamics  and  is  

the  focus  of  this  study.    

Exposing  Students  to  Graphical  Addition  of  Vectors    

In  Modeling  Physics  curriculum,  the  ideas  of  quantities  like  velocity,  

displacement  and  forces  as  being  vectors  are  not  thoroughly  developed  or  

addressed.  In  unit  2,  we  construct  the  constant  velocity  particle  model  and  use  “+”  

and  “-­‐”  signs  to  depict  the  vector  nature  of  velocity.  The  arithmetic  is  simple  and  

Page 22: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    22  

straightforward,  but  I  still  wanted  my  students  to  graphically  entertain  the  idea  of  

velocity  as  vectors.    After  a  brief  introduction  to  vectors,  primarily  discussing  how  

an  arrow  could  represent  a  vector’s  magnitude  and  direction  (by  its  length  and  the  

direction  it  points),  I  left  students  to  work  on  a  velocity  addition  worksheet  (see  

appendix  B)  on  their  own.  The  worksheet  given  to  the  students  was  divided  into  two  

parts:  the  first  introducing  students  to  the  addition  of  collinear  vectors,  and  the  

second  the  addition  of  orthogonal  vectors.  More  than  80%  of  the  students  were  able  

to  correctly  answer  questions  about  velocity  addition  in  one-­‐dimension.  This  

reinforces  students’  aptitude  to  add  vectors  in  one-­‐dimension  during  early  stages  of  

instruction.  

Although  students  had  no  trouble  properly  answering  questions  involving  

addition  of  one-­‐dimensional  vectors,  their  drawn  vector-­‐diagrams  on  graph  paper  

had  serious  shortcomings.  It  was  very  difficult  for  students  to  scale  up  vectors  

properly  or  consistently  on  a  piece  of  paper.  Some  students  drew  lines,  not  arrows,  

to  represent  velocity,  and  the  ones  who  attempted  to  include  arrows  would  draw  

“arrow  heads”  after  scaling  vectors,  hence  overextending  the  length  of  the  vector.  

Subtracting  vectors  was  not  easy  for  students  either.  They  didn’t  think  vectors  could  

“run”  on  top  of  each  other  or  probably  didn’t  like  the  aesthetic  aspect  of  it.  This  led  

some  students  to  abandon  the  head-­‐to-­‐tail  method  of  vector  addition.    

The  second  part  of  the  worksheet  addressed  for  the  first  time  in  the  course  

perpendicular  velocity  addition.  The  question  asked  students  to  calculate  the  

ground  speed  of  a  plane  flying  with  side  winds  at  90°  to  the  direction  of  flight.  It’s  

important  to  note  that  some  of  my  students  have  seen  similar  questions  in  their  

Page 23: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    23  

Math  class.  Several  students  didn’t  answer  the  question  and  claimed  they  didn’t  

understand  the  problem,  though  some  of  them  attempted  to  draw  a  vector  diagram  

for  the  question.  Most  students  lacked  a  proper,  well-­‐defined  method  and  seemed  to  

be  confused  with  the  direction  that  vectors  (arrows)  should  point.  Other  students  

(53%)  correctly  used  Pythagorean’s  theorem  (i.e.  they  didn’t  stick  to  graphical  

methods  but  resorted  to  math)  to  solve  the  question  although  most  of  their  

diagrams  lacked  an  appropriate  system  to  represent  the  addition  of  vectors.  It  was  

clear  that  students  were  unfamiliar  with  graphical  vector  diagrams  and  operations.  

Before  starting  unit  4,  I  worked  in  class  on  graphical  addition  of  vectors  so  students’  

transition  into  treatment  procedures  would  be  smoother.  I  didn’t  want  students  

resorting  to  math  or  the  Pythagorean  theorem  for  their  solutions.    

Treatment:  An  Alternative  Approach  to  Teaching  and  Adding  Forces       Forces  are  an  abstract  and  difficult  concept  to  teach,  even  to  the  experienced  

modeling  teacher.  The  treatment  included  a  three-­‐stage  scaffold  activity  to  help  

students  move  from  the  abstract  idea  of  forces  to  a  more  kinesthetic  and  concrete  

visualization  of  the  concept.  For  this  activity  we  set  up  a  ring  stand  in  the  middle  of  

the  room,  and  then  we  put  a  ring  with  ropes  attached  to  it  so  students  could  pull  and  

“feel”  the  forces  (see  diagram  on  next  page).  The  goal  was  to  keep  the  ring  in  static  

equilibrium  so  that  it  wouldn’t  touch  the  stand  and  then  discuss  how  changes  

conveyed  to  one  rope  would  affect  the  other  forces  if  the  ring  were  to  remain  in  

equilibrium.  Before  allowing  students  to  play  with  the  set  up,  I  asked  them  to  

discuss  some  question  in  small  groups  and  whiteboard  their  prediction.  We  tried  to  

keep  the  emphasis  on  the  effects  of  changes  in  forces.  Because  forces  are  vectors,  

Page 24: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    24  

changes  could  be  interpreted  as  in  magnitude  and  direction.  After  discussing  

questions  for  each  stage,  a  quick  “play”  time  with  the  apparatus  followed,  and  I  gave  

the  students  a  worksheet  where  they  were  strictly  instructed  to  use  only  graphical  

addition  of  vectors  to  solve  force  problems.  At  the  end  of  stage  3,  students  were  also  

given  a  force  table  to  quantify  some  of  the  activities  in  stages  1,  2  and  3.  

 

 

 

 

Stage   Concepts   Socratic  Dialogue  Questions  

1   2  Collinear  Forces  

 1.  In  order  to  maintain  static  equilibrium  in  the  ring,  what  needs  to  happen  when  one  of  the  students  pulls  harder  on  the  rope?    2.  What  needs  to  happen  if  the  same  student  changes  direction,  but  not  strength  of  pull?    

2   4  Orthogonal  Forces  

 1.  In  order  to  maintain  static  equilibrium  in  the  ring,  what  needs  to  happen  if  only  one  force  changes  magnitude?    2.  How  do  the  forces  depend  on  each  other?    

3   3  Forces  at  an  Angle  

 1.  What  modification  do  we  need  to  make  to  maintain  equilibrium  if  we  only  have  3  students  pulling  on  the  ropes?  2.  When  in  equilibrium,  who  is  pulling  the  hardest?  How  do  you  know?    3.  Would  any  arrangement  allow  all  3  students  to  pull  with  the  same  force?    4.  If  one  student  increases  the  pulling  force,  how  does  it  affect  the  other  2  forces?    

Table  4  -­‐  Description  of  Force  Activity  1  

Figure  6-­‐  Diagram  of  Activity  Set-­‐Up  

Page 25: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    25  

  The  worksheets  following  both  the  first  two  activities  revealed  a  couple  of  

interesting  bits  about  students’  first  attempts  in  adding  force  vectors  geometrically.  

In  the  stage  2  worksheet,  question  1  asks:  

 

For  each  problem,  draw  a  force  diagram  and  add  the  force  vectors  graphically.    

1.  In  an  experiment  a  student  found  that  a  wooden  block,  of  mass  5  kg,  needed  a    force  of  4  N  to  make  it  slide  over  a  desk  at  constant  speed.  Find  the  normal  force  and  the  frictional  force  on  the  block.  

 

 

 

 

At  this  point  in  the  course  I  had  formally  introduced  scaling,  graphical  

representation  of  vectors  and  head-­‐to-­‐tail  method  of  vector  addition.  I  had  also  

instructed  students  on  the  use  of  rulers  and  protractors.  This  is  the  graphical  

representation  of  the  vector  addition  that  I  was  hoping  students  would  come  up  

with  for  the  question  above:    

 

 

 

 

 

 

 

5  kg  4  N  

Fearth  on  block  

Ftable  on  block  

Fstudent  on  block  Ftable  on  block  

Force  Diagram   Graphical  Addition  

Figure  7  -­‐  Question  in  Stage  2  Worksheet  

Page 26: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    26  

While  most  of  the  students  correctly  depicted  the  force  diagram  as  I  had  

expected,  none  of  them  added  the  vectors  the  way  I  had  imagined.  Perhaps  the  

question  was  too  easy  to  compel  a  graphical  approach  because  54%  of  the  students  

correctly  answered  the  question  by  only  drawing  the  force  diagram.  Another  27%  

added  the  horizontal  vectors  separately  from  vertical  ones,  and  18%  added  by  

overlapping  the  vectors  on  top  of  each  other  (see  table  4).  All  my  students  responded  

correctly  to  the  question,  and  this  led  into  a  whiteboard  discussion  about  multiple  

ways  to  represent  vector  addition  correctly.  I  used  this  question  to  stress  the  

commutative  property  of  vectors,  which  became  more  obvious  and  applicable  to  

students  during  stage  3.    

 

Percentage  of  Students   Method  of  Solution  55%   Force  diagram  only  

27%  

 

18%  

 

Table  5  -­‐  Method  of  Solution  

   

Stage  3  of  this  scaffolding  activity  really  addresses  the  issue  that  this  study  is  

trying  to  examine:  what  is  the  effect  of  graphical  addition  of  vectors  on  students’  

understanding  and  ability  to  solve  force  problems?  How  can  we  avoid  jumping  into  

Page 27: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    27  

trigonometry  and  complicated  math  algorithms  when  confronted  with  problems  of  

forces  at  an  angle?  Rulers,  graphing  paper,  and  protractors  replaced  students’  lack  

of  knowledge  in  trigonometry  and  vector  operations.    

  The  balanced  force  particle  model  is  a  great  way  to  introduce  graphical  

addition  of  vectors.  If  all  the  forces  are  balanced,  the  sum  of  all  force  vectors  are  

zero,  and  graphically  the  vectors  “close”  the  shape  that  is  being  drawn.  We  started  

working  with  only  three  balanced  forces  (the  geometrical  representation  always  

forming  a  triangle)  and  then  moved  onto  four  balanced  forces  problems.  At  the  end  

of  the  introduction  to  forces  at  an  angle  in  stage  3,  I  gave  students  another  

worksheet  and  asked  them  to  explain  the  solution  to  the  last  question  using  

screencasts.  I  encouraged  the  students  to  think  about  the  questions  that  were  

discussed  during  the  ring  activity  and  discuss  some  of  them  when  answering  the  

question.  Question  4  for  worksheet  3  asks:    

 

For  each  problem,  draw  a  force  diagram  and  add  the  force  vectors  graphically.  4. The  diagram  shows  a  box  of  mass  1.5  kg  resting  on  a  floor  with  a  force  10  N  acting  on  it.  

Calculate  the  normal  force  and  the  force  of  friction.    

 

 

 

 

Listening  to  screencasts  and  examining  worksheets  from  students,  I  came  to  

the  conclusion  that  most  students  approached  the  solution  in  the  following  way:  

1.5  kg  

10  N  

37o  

Figure  8  -­‐  Question  in  Stage  3  Worksheet  

Page 28: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    28  

 

 In  all  force  diagrams,  the  weight  force  was  drawn  at  about  the  same  length  as  the  normal  force.      

 

Students  then  would  draw  a  known  quantity  in  a  known  direction-­‐-­‐in  this  example,  the  gravitational  force  pointing  straight  downward.  (Appropriately  scaled)  

 

Followed  by  another  known  vector,  in  this  case  the  10  N  force  at  a  37  degrees  angle  with  the  horizontal.  

 Students  would  close  the  trapezoid  shape  knowing  that  the  last  2  vectors  had  a  90  degrees  angle  between  them.  They  would  measure  the  length  of  the  unknown  vectors  and  use  the  scale  to  come  up  with  the  final  answer.  (Fn  =  21  N,  Ff  =  8  N)  

Table  6  -­‐  Development  of  the  Solution  

Despite  my  insistence  on  the  use  of  arrows,  some  students  still  used  lines  to  

represent  vectors.  Students  who  missed  the  question  either  failed  to  have  a  proper  

force  diagram,  couldn’t  apply  a  consistent  scale,  or  misused  the  protractor.  Of  the  

majority  who  correctly  answered  the  question,  I  have  included  some  interesting  

comments  made  by  students  in  screencasts:  

15N  

15N  

10  N  

15N  

10  N  

?  

?  

Page 29: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    29  

STUDENT  A  (with  reference  to  solving  by  adding  vectors  graphically):  That  is  

an  easy  way  because  you  don’t  have  to  do  anything  mathematically.  

STUDENT  B:  The  larger  the  scale  is,  the  more  accurate  the  answer  will  be.    

STUDENT  B:  Doubling  the  10N  force  doubles  the  force  of  friction  and  increases  

the  normal  force  by  6N.  

 

I  was  puzzled  by  this  last  comment  from  the  student  until  I  noticed  that  the  

source  of  the  frictional  force  was  only  dependent  on  the  10  N  force,  but  only  part  of  

the  normal  force  was  dependent  on  the  same  10  N  force  (more  precisely,  6N  out  of  

21N).  The  student  correctly  grasped  how  changes  in  one  force  vector  had  an  effect  

on  other  vectors  in  a  visual  way.  If  I  were  to  ask  a  question  like  this  in  my  previous  

years  of  teaching,  I  would  have  seen  students  fumble  with  the  calculator  because  

they  thought  a  mathematical  algorithm  would  tell  them  what  the  answer  was  

supposed  to  be.  This  student  truly  understood  what  he  was  doing  and  was  able  to  

express  it  clearly.    

  Also  at  the  end  of  unit  4,  when  going  over  the  unit  assessment,  I  was  able  to  

observe  what  was  becoming  evident  in  classroom  work  from  some  of  my  students.  

One  student  clearly  used  trigonometry  and  geometrical  addition  of  vectors  to  

answer  questions.  He  used  both  methods  as  a  way  to  “check”  his  answer  and  make  

sure  he  didn’t  make  a  mistake  when  drawing  forces  on  graph  paper.  An  increasing  

number  of  students  started  using  a  mathematical  model  of  vector  components  

before  the  end  of  unit  4  (all  of  this  without  me  mentioning  anything  about  trig  or  

vector  components).  Students  began  to  ask  me  about  this  different  way  of  solving  

Page 30: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    30  

the  problem,  and  I  would  confirm  that  there  were  alternative  ways  of  arriving  to  an  

answer.  I  noticed  several  students  inquiring  others  about  this  different  method  that  

apparently  didn’t  require  graphing.  It  was  exciting  to  see  students  become  

interested  in  an  alternative  way  of  solving  problems  without  any  prompting  from  

me.    

The  Net  Force  Concept    

Building  the  “Unbalanced  Force  Particle  Model”  in  unit  5  was  a  big  challenge.    

For  the  initial  couple  of  weeks  into  this  new  unit,  students  went  back  to  only  dealing  

with  problems  in  one-­‐dimension,  like  the  classic  elevator  questions.  One-­‐

dimensional  problems  are  not  made  easy  by  the  arduous  task  of  adding  vectors  

graphically,  and  students  quickly  took  notice  of  that.  Even  when  dealing  with  

multiple  forces  at  perpendicular  angles,  they  quickly  assimilated  that  summing  

horizontal  and  vertical  forces  independently  was  enough  for  quickly  solving  the  

problem.  Because  time  was  short  and  I  did  not  think  this  process  was  detrimental  to  

them,  I  didn’t  push  too  hard  for  graphing  methods.    

Finally  when  they  were  once  again  faced  with  vectors  at  an  angle,  I  insisted  

that  students  use  the  graphical  addition  of  vectors  to  come  up  with  a  solution.  Using  

unit  4  as  the  basis,  I  encouraged  students  to  develop  the  graphical  solution  in  a  

manner  similar  to  the  previous  unit.  I  recorded  interviews  with  a  couple  of  students  

after  the  completion  of  unit  5  hoping  to  understand  a  little  bit  of  their  thinking  when  

solving  unbalanced  forces  problem.  I  decided  to  give  them  a  problem  that  could  

easily  be  solved  by  using  PhET’s  vector  addition  simulation,  making  it  simpler  for  

Page 31: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    31  

students  to  manipulate  vectors  so  they  could  concentrate  on  the  physics  concepts  

rather  than  graphing  skills.  The  question  asked:  

 

A  12  kg  box  is  pulled  by  a  85  N  force  at  an  angle  of  45°  above  the  horizontal.      The  frictional  force  is  30  Newtons.  

      a.   Draw  a  quantitative  force  diagram!!     b.     Find  the  acceleration  of  the  box  in  the  horizontal  direction.    

 

I  helped  the  students  determine  a  suitable  scale  (10  N  =  1  grid  box)  and  aided  

them  in  properly  graphing  the  85  N  force  at  an  angle  (again,  I  wanted  students  to  

focus  on  the  physics  rather  than  some  small  “technical”  issues).  The  first  student  I  

interviewed  was  Cindy,  a  sophomore  who  calls  herself  a  non-­‐math  student  and  who  

finished  the  course  with  a  “C.”  Her  pre-­‐FCI  score  was  5  and  her  post-­‐FCI  score  was  

15,  which  is  below  the  Newtonian  threshold.  The  Hake  gain  was  just  below  the  class  

average  of  0.46.  After  reading  the  problem  and  getting  herself  acquainted  with  the  

software,  she  started  putting  together  a  force  diagram  for  the  problem.  She  

managed  to  identify  the  correct  number  of  forces  (this  is  an  important  fact  as  we  

will  see  later)  and  managed  to  draw  them  to  scale  except  for  the  normal  force.  

Below  is  a  picture  of  her  initial  set  up.  

45°  

Page 32: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    32  

   

 

CINDY:  And  this  (pointing  to  the  normal  force)  is  less  than  this  (pointing  to  the  

gravitational  force).    

TEACHER:  Why?  Why  do  you  say  less?  

CINDY:  Because  it’s  being  pulled  up  .  .  .  so  the  box  exerts  less  force  on  earth  .  .  .  

because  this  is  being  pulled  up.  

TEACHER:  Do  you  know  how  much  that  should  be  up?  

CINDY:  Ya.  I  should  know  by  the  calculations,  but  I  don’t  know.    

TEACHER:  Okay,  fair  enough  .  .  .  does  the  problem  say  what  it  is?  

CINDY:  Ehhh  .  .  .  no.  

TEACHER:  Okay.  It  doesn’t  say.  

Page 33: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    33  

CINDY:  Oh  but  .  .  .  I  can  .  .  .  uhh  .  .  .  wait  .  .  .  it’s  85  like  up  and  then  down  .  .  .  no,  

but  then  this  is  another  thing  .  .  .    wait  .  .  .  I  know  how  to  do  this  (she  is  

looking  at  the  question  at  this  moment).  

TEACHER:  Can  you  go  back  to  your  drawing  there?  

CINDY:  Okay  

TEACHER:  Okay,  you  gotta  have  .  .  .  this  is  the  .  .  .  what  you  call  this  .  .  .  what  you  

have  on  the  screen  right  there?  

CINDY:  Ummmm,  force  diagram?  

TEACHER:  This  is  the  force  diagram  right?  Could  you  rearrange  those  vectors  

and  add  them  together  using  the  head  to  tail  method?  

CINDY:  (long  pause  and  then  she  starts  to  move  some  vectors  on  the  screen.  She  

makes  a  mistake  on  the  magnitude  of  the  normal  force,  which  she  

doesn’t  realize  at  first)  There  is  something  missing  here  (pointing  to  

the  gap  between  friction  and  normal  force).  Aaahhhhh.  

TEACHER:  Let  me  ask  you  another  question  .  .  .  let  me  ask  you  another  question.  

Can  you  show  me  with  your  mouse  which  one  is  the  normal  force?  (At  

this  point  I’m  attempting  to  bring  her  attention  back  to  the  mistake  on  

the  normal  force.)  

CINDY:  This  one  (correctly  points  to  the  normal  force).  

TEACHER:  Is  this  vector,  is  the  head  of  this  vector  at  the  tail  of  the  next  vector?    

CINDY:  Umm,  is  the  head  of  the  vector?  (She  sounds  confused.)  

Page 34: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    34  

 

 

 

 

 

 

 

 

 

 

We  proceed  to  clarify  the  fact  (in  the  next  minute  or  so)  that  the  normal  force  

is  not  correctly  set  up  as  can  be  observed  in  the  picture  above.  After  she  

understands  what  the  mistake  is,  she  pulls  the  normal  force  vector  downwards  and  

continues.    

TEACHER:  Now  do  you  think  this  is  the  correct  length  for  this  vector?  

CINDY:  Wait  this  is  seven  (she  is  looking  up  the  vector  magnitude).  

TEACHER:  Should  it  be  seven?  (pause)  That  is  my  question.  Should  it  be  less  or  

more,  what  do  you  think?    

CINDY:  It  should  be  less  because  (she  mumbles  something  I  don’t  understand).  I  

will  make  less,  and  I  will  put  it  in  here.  

TEACHER:  So  what  is  it  now?    

CINDY:  That  is  six  .  .  .  ooohhhh  that  is  what  we  calculated  .  .  .    aahhh,  so  .  .  .  oh  

what  is  this  thing  in  here  (pointing  to  the  gap  again).  

Page 35: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    35  

TEACHER:  I  ask  you,  what  you  think  that  thing  is?  What  kind  of  problem  is  this  

that  you’re  solving,  is  this  a,  ahh  .  .  .  it’s  balanced  forces  or  unbalanced  

forces  kind  of  problem?  

CINDY:  Unbalanced  force.  

TEACHER:  What  you  think  it  means  “  unbalanced  force?”  

CINDY:  Like  it’s  moving.  

TEACHER:  It’s  moving?  

CINDY:  Um  hum,  oh  oh  no  no,  it’s  accelerating.  

TEACHER:  It’s  accelerating.  

CINDY:  Umm  ya.  

TEACHER:  So,  if  it’s  accelerating  that  must  be  what?  (referring  back  to  the  gap)  

CINDY:  Ahhh,  there  must  be  like  it  plus  (it  is  hard  to  understand  what  she  is  

saying  but  then  she  proceeds)  .  .  .  in  the  forces  so  this  is,  so  this  is  what  

causes  the  acceleration?  

TEACHER:  Okay  .  .  .  we  have  a  name  for  this;  we  call  it  the  net  force.  

 

The  interview  continues  for  another  few  minutes  trying  get  her  to  answer  

part  b  of  the  question  (find  the  acceleration).  She  struggles  with  the  math  even  after  

my  repeated  attempts  to  walk  her  through  the  problem  step-­‐by-­‐step.  Finally,  after  a  

lot  of  guiding,  she  manages  to  correctly  divide  the  net  force  by  the  object’s  mass  and  

give  a  correct  answer  to  the  problem.  It  is  obvious  that  the  minimal  math  comprised  

in  the  problem  is  enough  to  stump  her  and  prevent  her  from  quickly  arriving  at  an  

Page 36: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    36  

answer.  On  the  other  hand,  I  was  stunned  by  how  much  conceptual  understanding  

she  was  able  to  verbalize  by  using  the  graphical  addition  of  vectors.    

Cindy’s  first  reaction  was  to  be  “uncomfortable”  that  vectors  wouldn’t  add  up  

to  “zero,”  therefore  their  geometrical  shapes  would  not  “close”  anymore.  Still  she  

managed  to  explain  the  concept  of  the  net  force  in  her  own  words  when  she  pointed  

to  the  gap  and  said,  “this  is  what  causes  the  acceleration.”  She  also  knew  that  the  

normal  force  had  to  be  smaller  than  the  gravitational  force,  a  difficult  concept  for  

some  students  to  grasp.    

In  the  beginning  of  the  interview  I  purposely  asked  her  how  many  forces  

were  acting  on  the  box,  to  which  she  answered  “four”  (correct).  At  the  end  of  the  

interview  I  gave  her  three  different  representations  of  the  graphical  addition  of  

vectors  (see  below)  for  the  same  problem  she  had  just  answered  (one  was  

incorrect)  and  asked  a  few  more  questions.  

 

 

 

 

 

 

 

 

 

 

Page 37: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    37  

TEACHER:  Now  and  one  final  question,  is  that  third  one,  the  one  on  the  right  

(referring  to  the  diagram  with  a  gap  on  the  right)  is  that  diagram  okay  

or  not?  What  is  the  difference  between  that  diagram  and  the  middle  

one?  

CINDY:  It’s  incomplete.  

TEACHER:  Is  incomplete?  Why?  

CINDY:  Becauuusee,  it’s  missing.  

TEACHER:  What  is  it  missing?  

CINDY:  The  net  force.  

TEACHER:  Okay,  one  final  question,  how  many  forces  should  you  have  on  your  

force  diagram?  

CINDY:  Five.  

TEACHER:  Five?  

CINDY:  Five,  you  know  what?  One,  two,  three,  four,  five  (she  counts  all  the  

forces  on  the  middle  diagram,  which  is  like  the  one  she  drew).  

TEACHER:  Okay.  

 

  Cindy’s  unmistakable  change  of  mind  when  it  came  to  the  number  of  forces  

that  belonged  in  free-­‐body  diagram  was  something  I  repeatedly  observed  among  my  

lower  preforming  students.  After  completing  the  graphical  addition  of  vectors,  some  

students  were  conflicted  about  the  number  of  forces  acting  on  the  object  in  the  first  

place.  I  probably  helped  reinforce  this  idea  by  always  asking  my  students  to  draw  

the  net  force  on  their  diagrams.  The  visual  aspect  of  the  net  force  is  a  positive  thing,  

Page 38: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    38  

giving  students  a  sense  that  there  is  an  overall  residual  force  accelerating  the  object  

in  a  specific  direction,  but  several  students  could  be  led  to  believe  that  the  net  force  

is  like  another  force  that  should  be  included  in  the  force  diagram.  

In  hindsight,  I  would  have  pushed  students  towards  the  third  diagram  above  

as  a  strategy  for  solving  unbalanced  forces  problems.  I  believe  it’s  good  to  reinforce  

to  the  students  that  you  only  draw  on  the  graph  real  forces  and  the  “gap”  exists  

because  there  is  a  net  overall  pull  in  a  certain  direction  that  gives  the  object  

acceleration.  Had  I  done  things  this  way,  I  believe  I  would  have  struggled  a  little  less  

with  my  students  down  the  road  about  drawing  net  forces  on  their  force  diagram.  

The  second  student  I  interviewed  was  Paul,  a  bright  junior  who  always  

insisted  on  finding  out  what  the  “right”  answer  was  for  each  assigned  problem.  Paul  

clearly  favored  the  mathematical  solution  over  graphical  addition,  claiming  it  gave  

him  a  more  precise  and  accurate  answer  in  less  time.    He  finished  the  course  with  an  

“A”.  His  pre-­‐FCI  score  was  8,  and  his  post-­‐FCI  score  was  29,  well  above  the  

Newtonian  threshold.  Hake  gain  was  0.95,  which  is  much  better  than  the  class  

average  of  0.46.  

I  gave  Paul  the  same  question  that  I  gave  Cindy  and  helped  him  set  up  the  

scale  and  the  first  diagonal  vector.  Paul  was  a  little  confused  when  he  initially  tried  

to  set  up  the  free-­‐body  diagram.  He  paused  for  long  periods  and  used  a  piece  of  

paper  to  jot  down  notes,  which  I  was  not  able  to  see.  The  interview  starts  at  the  

moment  he  is  trying  to  sort  out  part  “a”  of  the  question  (drawing  a  quantitative  force  

diagram).  

 

Page 39: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    39  

 

 

PAUL:  Let  me  just  get  a  paper  to  draw  the  diagram.  

TEACHER:  Okay,  no  problem.  

PAUL:  (Long  pause  –  sounds  like  he  is  trying  to  calculate  something.  A  little  

mumbling  and  another  long  pause)  The  frictional  force  .  .  .  oh  .  .  .  the  

force  to  the  right  in  this  case  would  be  thirty  newtons  .  .  .  so  if  the  force  

are  right  .  .  .  30  newtons  (another  long  pause)  one  second  (another  

long  pause  than  I  hear  him  mumbling  numbers).  

TEACHER:  (At  this  point  I  interrupt  and  try  to  help  him  with  the  question.)  How  

many  forces  do  you  have  in  your  force  diagram?  

PAUL:  Three  forces.  

TEACHER:  Can  you  name  them?  

Page 40: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    40  

PAUL:  Force  of  friction  to  the  right  .  .  .  or  the  force  of  the  ground  on  the  box  .  .  .  

aahhh,  the  force  of  the  earth  on  the  box,  the  force  of  gravity  

downwards  .  .  .  120  newtons  .  .  .  aannd  the  force  in  which  the  box  is  

pulled  in  the  diagonal  to  the  left  at  45  degrees  which  is  85  newtons.  

TEACHER:  Now  does  the  ground  exert  only  one  force  at  the  box?  

PAUL:  Ah,  the  ground  exerts  .  .  .  ahhh,  two  forces  the  frictional  force  and  the  

upwards  force.  

TEACHER:  Okay.  

PAUL:  Uhhh  .  .  .  (long  pause)  ahhhh.  

TEACHER:  (At  this  point  I  decided  it  was  best  to  show  him  the  force  diagram  

and  move  on  to  the  question.)  Uhmmm,  take  a  look  at  that  file  that  I’m  

sending  you.  

PAUL:  Wait  one  second  (he  downloads  the  file)  saving  the  file.  

TEACHER:  Okay.  

PAUL:  (After  looking  at  the  diagram  that  I  drew  for  him)  That  makes  life  easy.  

TEACHER:  Do  you  agree  with  that  force  diagram?    

PAUL:  Ya  I  do.  

TEACHER:  So  can  you  go  back  there  and  try  and  .  .  .  and  see  what  happens?  

PAUL:  I  will  just  draw  the  force  diagram  that  will  be  easier.  (He  starts  to  

reconstruct  the  force  diagram  that  I  showed  him.)  

PAUL:  (at  the  end,  in  reference  to  the  normal  force)  And  the  upper  force  on  the  

(I  can’t  tell  what  the  word  is  here)  I  have  no  idea  what  it  is.  (He  goes  on  

and  gives  a  brief  description  of  each  force  –  talks  about  how  the  normal  

Page 41: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    41  

force  should  be  less  than  gravity  –  and  how  that  is  the  only  force  he  

doesn’t  know  yet.)  

TEACHER:  Okay,  is  there  a  net  force  on  this  problem?  

PAUL:  Ummmm,  net  force  on  this  problem?  Prooobably,  yeah  there  is.  

TEACHER:  How  do  you  know?  

PAUL:  Because  there  is  a  force…  uh  “pera  ai”  (Portuguese,  meaning  wait)…  

wait  one-­‐second  .  .  .  let  me  take  a  look  at  that.  (long  pause)  Uhhhh,  how  

do  I  know  that?  It  does  have  a  net  force  because  the  box  ahhh  .  .  .  (long  

pause  again)  that  is  a  good  question.  

TEACHER:  Are  the  forces  balanced  or  unbalanced?  What  do  you  think?  

PAUL:  The  forces  are  .  .  .the  force  are  unbalanced.  

TEACHER:  If  the  forces  are  unbalanced,  describe  the  motion  of  the  object.  

PAUL:  The  object  is  accelerating.  

TEACHER:  Accelerating,  right?  Accelerates  in  what  direction?  

PAUL:  It  is  accelerating  to  the  left.  

TEACHER:  Okay,  so  is  there  a  net  force?  Yes  or  no?  

PAUL:  Ya,  there  is  a  net  force.  

TEACHER:  And  the  net  force  is  what  direction,  do  you  think?  

PAUL:  The  net  force  is  going  to  be  .  .  .  ah  the  net  force  is  going  to  be  to  the  left  .  .  

.  but  .  .  .  

Paul  proceeded  to  quickly  graph  the  force-­‐vector  addition  for  the  problem,  

and,  unlike  Cindy,  he  breezed  through  the  math  to  get  the  correct  answer  for  the  

acceleration  of  the  box.  I  gave  him  a  final  question  showing  three  different  

Page 42: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    42  

representations  of  the  force  diagram  and  asked  him  to  describe  which  one  was  

correct,  just  like  I  had  done  with  Cindy.  He  easily  identified  the  diagram  to  the  right  

as  the  correct  one  and  the  middle  one  as  another  correct  representation  by  showing  

the  net  force.    

I  was  perplexed  by  how  difficult  it  was  for  him  to  initially  set  up  the  force  

diagram  and  to  identify  the  kind  of  problem  he  was  solving.  After  conquering  this  

initial  “bump  on  the  road”  it  was  not  difficult  for  him  to  complete  the  question,  and  

he  felt  all  around  more  comfortable  solving  it.  Paul’s  difficulty  in  setting  up  the  

problem  and,  most  importantly,  identifying  the  kind  of  problem  he  was  solving,  is  

revealing  in  showing  how  important  the  initial  stages  are  in  problem  solving.  

Several  students  fall  short  of  understanding  some  initial  basic  ideas,  thus  making  

problem  solving  nearly  impossible.    

Comparing  Paul  and  Cindy’s  interviews,  Paul  had  a  harder  time  setting  up  the  

problem,  but  he  could  just  zip  through  the  math,  even  without  some  basic  

conceptual  understanding  of  the  problem.  Cindy  made  quicker  progress  by  using  

graphical  representation,  although  she  was  hindered  by  her  limited  mathematical  

skills.  I’m  compelled  to  hypothesize  that  graphical  addition  of  vectors  really  helps  

students  with  low  math  ability  but  does  little  to  help  students  with  a  strong  math  

background.    Exposing  students  to  another  representation  of  vector  addition  

improves  the  likelihood  of  successful  problem  solving.    

 

     

Page 43: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    43  

Mathematical  Method  -­‐  The  “Vector  Components”  Concept     I  have  anecdotal  evidence  that  several  of  my  students  were  already  using  trig  

to  solve  problems  involving  vector  addition,  even  before  I  introduced  vectors  

components  to  them.  A  few  students  had  recognized  that  there  were  alternative  

ways  of  solving  problems,  and  they  were  eager  to  avoid  all  the  time-­‐consuming  

strategy  of  adding  vectors  graphically.  I  introduced  the  idea  of  vector  components  

much  the  same  way  I  introduce  other  concepts  in  class.  I  directed  them  to  play  with  

PhET  simulations  of  vectors  and  discover  some  of  their  properties  on  their  own.  I  

asked  students  to  produce  screencasts  of  the  PhET  simulation  on  vectors  to  see  how  

much  they  already  understood  of  the  concept.  One  student  said,  

 

“This  vector  (referring  to  the  resultant  vector)  is  the  sum  of  the  broken  down  

vectors  on  the  y-­‐axis  (y  components)  and  the  sum  of  the  broken  down  vectors  

on  the  x-­‐axis  (x  components).”  

 

It’s  incredible  how  much  all  the  graphical  work  done  with  vectors  helped  

students  assimilate  properties  of  vectors  without  me  having  to  tell  them  about  it.    

The  student  above  demonstrated  how  easily  he  understood  the  idea  that  vectors  

could  be  broken  down  into  components  and  that  addition  of  vectors  could  be  done  

by  adding  orthogonal  components  independently.  All  I  had  to  do  to  help  them  was  to  

introduce  sine  and  cosine  equations  to  find  the  orthogonal  components.  I  avoided  

delving  into  conceptual  understanding  of  trigonometry  and  strictly  gave  them  an  

algorithm  to  find  the  vector  components.  Students  who  struggled  with  remembering  

Page 44: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    44  

the  trig  equations,  or  even  applying  the  algorithm,  I  encouraged  to  use  graph  paper  

and  protractors  to  find  vector  components  using  the  graphical  method.  One  

interesting  side  effect  of  teaching  geometrical  addition  of  vector  was  students’  

newfound  interest  in  trigonometry  and  math.  They  were  pleased  to  learn  a  shorter,  

alternative  way  to  solve  physics  problems.    

After  concluding  unit  5,  and  therefore  the  treatment,  students  had  the  choice  

of  solving  problems  by  either  graphical  or  algebraic  methods.  I  noticed  students’  

preferences  were  towards  the  algebraic  method  because  it  represented  the  “path  of  

least  resistance”  to  them.  With  the  exception  of  a  couple  of  students,  who  stuck  to  

graphical  methods  to  the  end  of  the  course,  most  students’  use  of  graphical  addition  

dwindled  progressively  with  the  course.    

Comparison  of  Solution  Method  Finally  during  the  last  week  of  the  course,  I  was  interested  in  comparing  

students’  ability  to  use  graphical  and  algebraic  methods  of  solution  when  solving  an  

inclined-­‐plane  question.  At  this  point,  most  students  were  using  trig  equations  when  

faced  with  forces  at  an  angle,  and  just  a  few  were  sticking  with  geometrical  addition.  

I  decided  to  give  my  students  two  inclined-­‐plane  questions:  the  first  one  to  be  

solved  by  adding  vectors  graphically,  and  the  second  one  by  using  trigonometry.  

They  were  both  similar  “balanced  forces  model”  types  of  questions,  and  students  

had  as  much  time  as  they  wished  to  work  on  each  question.  I  was  very  clear  that  

they  had  to  stick  to  the  asked  solution  method  even  if  they  didn’t  know  or  

remember  how  to  solve  the  problem  in  that  method.  I  chose  an  inclined  plane  

question  because  it  represents  one  of  the  most  challenging  types  of  problems  in  

Page 45: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    45  

dynamics  for  high  school  students,  and  the  understanding  of  vector  components  and  

their  addition  is  at  the  heart  of  it.      

 

Graphical  Solution   Algebraic  Solution    1/  The  diagram  below  shows  an  inclined  plane  (ramp).  Friction  prevents  the  mass  from  sliding  down  the  inclined  plane.                                                                                                                                                        a)  Calculate  the  size  of  the  frictional  force  acting  on          the  mass:  b)  Calculate  the  size  of  the  normal  reaction  force  between  the  inclined  plane  and  the  mass:    

 2/  A  mass  is  held  in  equilibrium  on  a  frictionless  inclined  plane  as  shown  in  the  diagram.        a)  Calculate  the  tension  force,  T,  in                                                                                                                        the  string:  b)  Calculate  the  normal  reaction  force  between  the  inclined  plane  and  the  3.4  kg  mass:  

Table  7  -­‐  Questions  using  2  solution  Methods  

I  was  hoping  for  a  higher  percentage  of  correct  responses  in  both  questions,  

but  this  was  the  end  of  the  school  year,  and  I  don’t  think  students  had  a  lot  of  

motivation  to  give  their  best  in  these  questions.  The  number  of  student  who  

correctly  answered  the  question  by  geometrical  addition  of  vectors  (36%,  or  10  

students)  were  more  than  twice  the  number  of  students  who  could  answer  the  

question  correctly  by  using  vector  components  (14%,  or  4  students)  (see  Table  on  

next  page).      I  was  flabbergasted;  I  didn’t  expect  such  a  difference,  especially  

considering  most  students  were  heavily  leaning  towards  mathematical  models  by  

the  end  of  the  course.    

 

35°  

m  =  2.5  kg   m  =  3.4  kg  

46°    

Page 46: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    46  

   

 

 

 

 

 

 

It  is  important  to  note  that  all  the  students  who  answered  question  2  

correctly  also  answered  question  1  correctly.  This  fact  confirmed  something  I  had  

suspected  all  along:  students  who  can  answer  the  question  algebraically  are  very  

likely  to  also  answer  it  graphically;  but  students  who  can  answer  the  question  

graphically  are  not  always  able  to  answer  it  algebraically.  Graphical  addition  

method  enhances  students’  ability  to  understand  and  solve  a  physics  problem  

without  making  it  more  difficult  for  them  to  solve  it  mathematically.    

One  student  missed  the  algebraic  solution  because  his  calculator  was  set  to  

“radians”  rather  than  “degrees,”  a  common  mistake  that  we  have  all  seen,  but  this  is  

a  nonissue  when  solving  the  problem  graphically.  Some  of  the  students  who  missed  

the  question  by  using  the  graphical  method  had  the  correct  drawing  of  the  forces,  

but  they  misused  the  scale  to  get  a  final  answer.  A  quick,  on-­‐the-­‐spot,  survey  (hands  

up  in  the  air)  of  students’  feelings  right  after  this  activity  confirmed  what  I  had  

suspected  all  along:  the  majority  of  students  felt  and  believed  they  were  more  likely  

0  

5  

10  

15  

20  

25  

Graphical     Algebraic  #  of  Correct  Responses  

Solution  Method  

Inclined  Plane  Question  

Correct  

Incorrect  

Figure  10  -­‐  Graph  Comparing  both  Methods  of  Solution  

Page 47: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    47  

to  have  gotten  the  question  right  by  using  graphical  addition  than  by  using  math  

alone.    

FCI  Pre-­‐Test  and  VCQ/FCI  Post  Test     At  the  end  of  the  course,  I  also  gave  the  students  the  Vector  Concept  Quiz  

post-­‐test.  Comparing  both  the  histograms  below  for  the  pre  and  post  test,  it  is  easy  

to  see  students’  better  performance  in  the  post-­‐test  (MEAN  =  4.40,  SD  =  2.12)  as  

compared  to  the  performance  in  the  pre-­‐test  (MEAN  =  3.16,  SD  =  1.84).    

I  was  interested  in  the  effect  of  treatment  on  students’  vector  knowledge  as  

measured  by  the  VCQ.  Based  on  non-­‐directional  paired  samples,  t-­‐test  at  alpha  =  

0.05,  I  reject  the  null  hypothesis  that  the  population  mean  of  the  pretest  takers  is  

equal  to  the  population  mean  of  the  posttest  takers,  t(24)  =  3.72,  p<  0.001.  The  

differences  in  the  mean  cannot  be  attributed  solely  to  statistical  chance,  therefore  I  

conclude  there  was  a  difference  in  students’  vector  concept  understanding  as  

measured  by  the  VCQ,  between  pre  and  post  treatment  scores.    

The  number  of  students  who  correctly  answered  all  questions  in  the  quiz  

jumped  from  two  in  the  pre-­‐test  to  seven  in  the  post-­‐test.  

Figure  11  -­‐  Comparison  of  VCQ  Pre  and  Post  Tests

Page 48: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    48  

It  is  also  interesting  to  look  at  some  of  the  individual  questions  in  the  quiz,  

especially  questions  5,  6  and  7.  Below  is  the  breakdown  of  correct  response  for  each  

question  in  the  post-­‐test.    

There  was  almost  no  difference  at  all  between  pre  and  post-­‐tests  for  the  first  

3  questions  but  a  significant  one  for  questions  involving  addition  of  vectors  

(questions  4-­‐7).  Looking  specifically  at  question  5  and  6  (the  two  question  involving  

addition  of  vectors  at  an  angle)  the  percentage  of  correct  responses  more  than  

doubles  for  them.    

FCI  Results  I  gave  the  students  the  FCI  pre-­‐test  in  the  first  week  of  school,  and  a  post-­‐test  

during  the  last  week  of  school.  The  histogram  below  comparing  the  pre-­‐test  to  the  

post-­‐test  shows  students  improvement  in  scores.  There  was  on  average  a  10-­‐point  

gain  between  the  pre  and  post-­‐tests.  Twelve  students  got  60%  or  more  on  the  FCI  

post-­‐test  demonstrating  satisfactory  Newtonian  thinking.    

0  10  20  30  40  50  60  70  80  90  100  

1   2   3   4   5   6   7  

%  of  Correct  Response  

Question  Number  

VCQ  Question  Breakdown  

Pre-­‐Test  

Post-­‐Test  

Figure  12  -­‐  VCQ  Pre  and  Post  Test  Question  Breakdown

Page 49: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    49  

 

The  scatter  plot  below  displays  students’  posttest  scores  vs.  pretests  scores.  

All  students  managed  to  improve  their  scores,  with  some  improving  dramatically.  

When  looking  at  the  normalized  gains,  also  as  known  as  Hake  gain,  the  class  had  an  

average  gain  of  0.46  (MEAN  =  0.46,  SD  =  0.27).  Gains  in  the  range  0.7  <  (<g>)  >  0.3  

are  characterized  as  medium  gains  and  my  students  average  falls  within  this  

category.    

 

Figure  13  -­‐  Pre  and  Post  FCI  Test  Scores

Figure  14  -­‐  FCI  Post  Vs.  Pre  Scatter  Plot

Page 50: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    50  

Student  Surveys       At  the  end  of  the  course,  I  administered  a  five-­‐question  survey  of  my  students  

asking  them  to  reflect  on  all  the  work  we  did  with  vectors  and  forces  throughout  the  

year.  One  of  the  questions  asked  the  students  to  rate  how  helpful  they  thought  the  

treatment  was  on  broadening  their  understanding  of  forces  concepts;  61%  of  my  

students  rated  the  treatment  as  being  helpful  or  very  helpful,  while  17%  weren’t  

sure,  and  22%  thought  it  didn’t  help  or  made  no  difference.  Students’  comments  

reflect  some  of  the  study’s  findings.  Following  are  some  quotes  from  students  who  

found  the  treatment  very  helpful:  

 

 “Because  if  we  forgot  how  to  do  it  through  the  math  we  had  a  "plan  b."  

 

“Because  math  is  more  abstract,  but  drawings  clear  out  all  the  doubts.  to  (sic)  

understand  physics,  we  have  to  be  able  to  visualize  the  problem,  and  drawings  

help.”  

 

“It  helped  me  visualize  what  I  would  later  do  mathematically.  For  me,  math  

way  is  easier,  but  I  know  that  for  many  students,  solving  graphically  was  more  

appealing.”  

 

“If  we  weren't  sure  about  the  mathematical  solution  then  we  could  just  add  

them  and  see.”  

 

Page 51: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    51  

“I  like  it  because  i  (sic)  can  then  visualize  the  problem  and  understand  how  the  

forces  are  working,  instead  of  doing  algebraically  and  not  understand  how  the  

angles  and  sides  related.”  

 Like  the  students  above,  a  lot  of  students  referenced  the  visualization  aspect  

of  the  graphical  method  as  being  helpful.  Another  question  in  the  survey  asked  

students  to  choose  their  preferred  method  of  solution.  The  majority  of  them  (87%)  

said  they  preferred  the  mathematical  method  to  the  geometrical  one.  Here  are  some  

explanations  from  students:  

 

“I  already  know  trigonometry,  and  also  I  prefer  to  use  math  as  it  is  faster  and  

more  precise.”  

 

“Even  though  [the]  graphical  method  is  easier  to  understand,  I  always  prefer  to  

use  the  fast  way.”  

 

“Because  [the  mathematical  method]  gives  more  exact  answers  and  in  less  

time.”  

 

“Although  geometrical  addition  is  very  helpful,  I  [would]  rather  solve  problems  

by  using  mathematical  manipulation,  as  it  is  faster  and  still  is  theoretically  the  

same  as  the  graphical  addition.”  

   

Page 52: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    52  

  This  was  not  surprising  either;  the  predominant  reason  for  their  preferences  

appears  to  be  the  ability  to  solve  questions  faster  and  have  more  “accurate”  

answers.  Finally  I  asked  students  if  I  should  continue  to  teach  graphical  addition  of  

vectors  next  year  and  why.  Only  three  students  didn’t  think  it  was  worthwhile  to  

spend  time  adding  vectors  graphically,  while  90%  thought  I  should  continue  

implementing  the  treatment  in  years  to  come.  Here  are  some  of  the  students’  

responses  to  this  question:  

 

“Because  some  people  may  find  [the]  graphical  method  easier  than  

mathematically,  so  its  always  beneficial  to  teach  both  mehods  [sic],  and  then  let  

the  student  choose  which  method  to  apply  in  his  studies.”  

 

“Because  [knowing  how  to  add  vectors  graphically]  gives  multiple  ways  of  

answering  the  question”  

  “It  is  better  to  know  how  to  answer  one  problem  five  different  ways  than  five  

problems  one  way.”  

 

“Because  the  method  of  graphically  adding  vectors  is  a  very  simple  and  

comprehensible  method  that  the  students  can  use.  Also,  it  is  another  option  that  

the  students  can  use  to  solve  dynamics  problems,  in  case  they  don't  understand  

the  Mathematical  Manipulation  of  Force  Vectors.”  

 

Page 53: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    53  

  The  last  two  quotes  characterize  the  major  findings  of  this  study  in  a  nutshell.  

Modeling  Physics  curriculum  trumpets  the  idea  of  multiple  representation  of  the  

physical  world,  and  geometrical  addition  of  vectors  empowers  students,  specially  

those  lacking  math  skills,  to  look  beyond  mathematical  algorithms  and  models  when  

trying  to  make  sense  of  the  world  around  them.  Most,  nearly  all,  of  my  students  

were  very  receptive  of  treatment  methods  and  could  see  value  in  them.  Some  

students  thought  we  spent  too  much  time  on  graphical  techniques,  and  I  can  

understand  their  perspective,  but  at  the  end  they  understood  they  were  better  off  

knowing  this  unusual  method.  

Conclusion    

After  looking  closely  at  student  artifacts,  field  notes,  screencasts  and  

interviews,  I  cannot  emphatically  say  that  graphical  methods  of  vector  addition  

improves  students’  understanding  of  forces  and  vectors.  Perhaps  students’  

conceptual  gains  were  due  to  the  Modeling  method  of  instruction;  perhaps  it  was  

due  to  some  other  unknown  factor—there  is  no  way  of  telling  based  on  the  data  

collected.  However,  the  data  show  reasonable  evidence  of  students’  improved  

problem  solving  skills  prompted  by  the  geometrical  approach  to  vector  addition.  

Additionally,  introducing  another  way  to  solve  a  physics  problem  made  occasionally  

demanding  physics  problems  more  “student-­‐friendly”  by  “ripping”  out  the  obscure  

math  calculations.  Teachers  always  appreciate  when  they  can  focus  on  physics  

concepts  without  the  math  distraction,  and  graphing  aids  in  that.  As  some  students  

pointed  out,  the  decreased  emphasis  on  the  math  helped  them  visualize  and  solve  

Page 54: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    54  

the  problem  more  effectively.  Although  the  treatment  may  not  have  significantly  

contributed  to  improved  scores,  if  nothing  else,  it  added  another  instrument  to  

students’  problem  solving  “toolbox.”    

On  the  issue  of  qualitative  data  collection,  I  had  high  hopes  that  screencasts  

would  be  an  effective  tool  for  gathering  information  on  students’  thought  process.  

While  I  was  still  able  to  utilize  screencast  to  review  data,  I  was  disappointed  when  

many  students,  especially  low  performing  ones,  did  not  create  a  screencast.  Given  

the  opportunity  to  conduct  the  study  again,  I  would  definitely  stick  with  screencasts,  

as  I  believe  they  are  a  great  pedagogical  tool,  however,  I  would  have  used  them  in  

different  ways.    

The  study  made  me  reflect  on  ideas  to  improve  students’  screencasts  

participation  and  quality.  To  improve  participation,  students  need  to  see  value  in  

making  and/or  producing  a  screencast.  “Value”  is  a  tricky  word  to  define  when  it  

involves  students’  motivation.  I  could  simply  assign  grades  (the  universal  student  

motivator)  to  screencasts,  but  I  want  students  to  see  and  understand  the  cognitive  

benefit  that  comes  with  verbalizing  their  thinking.  Maybe  one  way  to  do  that  is  to  

allow  students  to  work  together  in  recording  a  screencast  or  maybe  even  allowing  

them  to  be  formally  assessed  through  screencasts.  In  order  to  improve  quality,  I  

think  I  need  to  give  students  more  specific  instructions  before  recording  (i.e.  

“discuss  your  observations  of  the  net  force,”  or  “explore  the  multiple  ways  in  which  

forces  can  be  added  in  this  problem”).  I  believe  this  would  prevent  students  from  

being  vague  when  discussing  their  work  in  screencasts.  Students  cannot  avoid  

difficult  questions  or  concepts  when  you  ask  them  directly.  Lastly,  I  firmly  believe  in  

Page 55: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    55  

formative  assessment  as  a  way  to  support  instructional  design,  and  screencasts  can  

be  an  effective  way  of  evaluating  students’  learning.  

                                                                           

Page 56: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    56  

Works  Cited    Knight,  R.D.    (2004).  Five  easy  lessons  :  strategies  for  successful  physics  teaching.    San    

Francisco,  CA:  Addison  Wesley.    Flores, S., & Kanim, S. (2004). Student use of vectors in introductory mechanics.

American Journal of Physics, 72(4), 460-468.

Nguyen, N., & Meltzer, D. (2003). Initial understanding of vector concepts among students in introductory physics. American Journal of Physics, 71(6), 630-638.

Poynter, A., & Tall, D. (2005a). Relating Theories to Practice in the Teaching of Mathematics. (in preparation).

Watson, A., Spyrou, P., & Tall, D. (2002). The relationship between physical embodiment and mathematical symbolism: the concept of vector. Mediterranean Journal of Mathematics, 1(2), 73-97.

Knight, R.D. (1995). The vector knowledge of beginning physics students. Physics Teacher, 33, 74-78.

Arons, A.B. (1997). Teaching Introductory Physics. New York, NY: John Wiley & Sons, 107-111.

Hestenes, D. (1992). Mathematical viruses. Clifford Algebras and their Applications in Mathematical Physics, 3-16.

Perkins, K., Adams, W., Dubson, M., Finkelstein, N., Reid, Sam., & Wieman, C. (2006) PhET: Interactive simulation for teaching and learning physics. The Physics Teacher, 44, 18-23.

Megowan, C. (2005). “Vectors – at the Confluence of Physics and Mathematics.” Arizona State University.

Wells,  M.,  Hestenes,  D.,  &  Swackhamer,  G.  (1995).  A  modeling  method  for  high  school  physics  instruction.  American  Journal  of  Physics,  63,  606-­‐619.  

C.  E.  Wieman,  W.  K.  Adams,  P.  Loeblein  &  K.  K.  Perkins  (2010).  Teaching  physics  using  PhET  simulations.  The  Physics  Teacher,  48,  225-­‐227.  

 

         

Page 57: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    57  

Appendix    

 VCQ  

   

       

Page 58: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    58  

 

Page 59: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    59  

Unit  4  Ring/Ropes  and  Force  Table  Activity    

Materials:    

• Large  Ring  • Rope  • Force  Table  • Hanging  Masses  • Spring  scales  

 Instruction:       This  activity  will  be  developed  in  3  stages.  For  each  stage,  students  participate  in  Socratic  dialogue  in  small  groups  followed  by  whiteboarding  session.  After  large  group  discussion,  student  are  encourage  to  perform  the  kinesthetic  activity  and  then  they  will  be  given  force  tables  to  quantify  the  idea  of  forces  acting  in  equilibrium.  Each  stage  ends  with  a  worksheet  for  practice.    Stage  1  –  Collinear  Forces.  In  stage  1  and  2  students  will  be  asked  to  pull  on  the  rope  attached  to  the  ring  in  such  way  so  the  ring  doesn’t  touch  the  ring  stand  in  the  center.    This  system  is  described  to  be  in  static  equilibrium.  Question  for  small  group  discourse:    

1. How  do  the  students  need  to  be  aligned  so  the  ring  doesn’t  touch  the  stand?  

2. Compare  the  magnitude  of  the  forces  being  applied  by  the  students  on  the  rope  

3. How  should  student  2  respond  to  student  1  change  in  force  (increase/  decrease)  so  the  system  remains  in  static  equilibrium?  

 Stage  2  -­‐  4  Orthogonal  Forces.  In  stage  2,  4  students  will  be  asked  to  pull  on  the  ropes  attached  to  the  ring  at  right  angles  to  each  other.  The  ring  is  not  supposed  to  touch  the  stand  in  the  center.  Question  for  small  group  discourse:  

1. What  happens  if  student  1  pulls  differently  (softer/harder)  on  the  rope?  Does  everyone  need  to  change  how  hard  they  pull  on  the  rope?  Why?  

2. If  I  place  spring  scales  between  the  ropes  and  the  ring,  compare  the  readings  on  the  scale  for  the  4  students  pulling  on  the  ring:  (qualitative  comparison)  

 Stage  3  –  3  Forces  at  an  Angle  (other  than  90).  Now  we  remove  1  student  from  the  set  up  above  (stage  2).  Before  students  observe  what  will  happen  or  how  the  arrangement  should  look  like  so  it  stays  in  equilibrium,  ask  them  to  predict  what  will  happen.    After  prediction,  ask  the  3  students  to  hold  the  ring  in  equilibrium.    Question  for  student  discourse:  

Page 60: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    60  

1. How  is  this  arrangement  different  than  when  we  had  4  students  pulling  on  the  ropes?  

2. Who  is  pulling  the  hardest?  How  do  you  know?  How  could  you  tell  for  sure?  

3. Is/are  there  any  arrangement  that  would  allow  them  to  pull  on  the  rope  with  the  same  force?  

4. Describe  the  effects  of  student  3  pulling  harder  on  the  rope.  Does  it  change  how  student  1  and  2  needs  to  pull  on  the  rope  so  it  stays  in  equilibrium?  

   Every  stage  classroom  activity  is  followed  by  force  table  activity  in  groups  to  quantify  the  qualitative  analysis.  Students  should  whiteboard  conclusions  following  every  stage  and  complete  the  worksheets.                                                                    

Page 61: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    61  

5 kg  

5 kg

   

Stage  1  Worksheet    

For  each  problem,  draw  a  force  diagram  and  add  the  force  vectors  graphically.    

1. A  box  rests  on  the  floor  as  show  in  the  diagram  below.  Calculate  the  force  of  the  floor  on  the  box:                              

2. A  ball  is  suspended  by  cables  as  shown  in  the  picture  below.  Calculate  the  Tension  on  each  cable:  

                       

               

   

8  kg  

Page 62: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    62  

   

Stage  2  Worksheet    

For  each  problem,  draw  a  force  diagram  and  add  the  force  vectors  graphically.    

1.  In  an  experiment  a  student  found  that  a  wooden  block  of  mass  5  kg  needed  a    force  of    4  N  to  make  it  slide  over  a  desk  at  constant  speed.  Find  the  normal  force  and  the  frictional  force  on  the  block.                                        2.  An  aircraft  flies  horizontally  at  a  constant  speed  and  has  the  forces  acting  on  it  as  it  flies.    Please  draw  a  free  body  diagram  and  label  possible  agents  (causes)  of  the  forces.  Compare  the  magnitude  of  the  forces  qualitatively.                                    

5  kg  4  N  

Page 63: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    63  

   

Stage  3  Worksheet    

For  each  problem,  draw  a  force  diagram  and  add  the  force  vectors  graphically.    

1. The  object  hung  from  the  cables  has  a  weight  of  20  N.  What  is  the  tension  on  each  cable?                                          

2. The  cable  at  left  (T1)  exerts  a  30  N  force.  Find  the  weight  of  the  ball  and  the  tension  force  of  the  other  cable?                                    

30ο   T2  

T1  

530   37º  

Page 64: The!Effect!of!Geometric!Representation!of!Vector

The  Effect  of  Graphical  Addition  of  Vectors    64  

   

3. A  man  pulls  a  50  kg  box  at  constant  speed  across  the  floor.    He  applies  a  200  N  force  at  an  angle  of  30°.  What  is  the  value  of  the  frictional  force  and  the  normal  force?  

                   

     

4. The  diagram  shows  a  box  of  mass  1.5  kg  resting  on  a  floor  with  a  force  10  N  acting  on  it.  Calculate  the  normal  force  and  the  force  of  friction.                    

             

1.5  kg  

10  N  

37o