theeffectofextrinsic contaminationonion … · ami physieal trace analysis methods, and...

8
Revista Mexicana de Física 41, No. 6 (1995) 897-904 The effect of extrinsic contamination on ion implantation gettering* P. PEYKOV, F.J. DE LA HIDALGA, M. ACEVES AND M. LINAIlES Instituto Nacional de Ast1'Ofísiea, ÓptiClL y Elect,'óniea Apartado postal 216, 72000 Puebla, Pue., México Recibido el 10 de noviembre de 1994; aceptado el 2 de junio de 1995 AnSTHACT. A fast t.wo-points ~IOS C-t method for measuremellt of carrier diffusion length, and hence recombination ¡¡fetime, is proposed. Combining generation and recombination ¡¡fetime measurements, the kinetics of impurities durillg the process of gettering is illvestigated. This approach enabled lIS to distinguish. in the present ca.<;;e, an f'xtrinsic contamination on the wafer surface. The existence of an extrinsic contamillation, in addition to the intrinsic one, introduces ne\\' variables in the gettering process that. can affect gettering efficicncy. RESU~tE~. Se propone un método rápido, ~IOS C-t de dos puntos, para medir la longitud ele difusión y por lo tanto el tiempo de vida de recombinación de los portadores. Usando la medición combinada del tiempo de vida de generación y de r('combinación, se investigó la cinética de las impllreza.~ dnrante el proceso de "gctterillg". Este enfoque nos permitió distinguir, en el presente caso, la existencia de lIna contaminación extrínseca sobre la superficie de la oblea. Esta contaminación, junto con la contaminación intrínseca, introducen lluevas variables en el proceso de "geUeriIlg", las cuales pueden afectar Sil efid('ncia. PACS: 73.40.Qv; 85.40.Hp; 72.20 ..Jv l. INTIlODUCTION During the IC', (integrated cireuits) fabricatiou process, defects (difrerent lo the iutriusie defeeIs iu the wafer) can be indneed. ~Iost of the proeess-indneed defeets are due to rontamination (maillly Illctallic impllrit.irs) origillated hy chplllicals PL cquipment [2L ambieul [3]' wafer mauipulation 14], cte. !3esides tlH' efforts to pr,,\'Cut 1he wafers ('ontamiuat iou, t,,('huiqu('s (sueh as geltering) have 1)('('11 cipvcloppd to [('duce 01' eliminate defeds in t,J¡e region where semiconductor deyiees are fabricat"d. Th" gett"riug techuiques eau b(' di\'id"d into two groups: intriusie and ext.rinsi(' gcttpI'ing. Usually int.rill~ic g<'ttefillg is lH'rforllH'd by a t.hn'c step anBral of CZ grown Si. The first high-temperatur" step lead, lo out-difrusiau of oxygeu and crea tes a denuded zone at the surfaees. A high deusity of uudei fOl'oxygen preeipitates are indueed in lhe bulk of the waf"r during the s,,('ond low-lemperature annealing sIep. The third st"p af the high-telllperature annealiug is respousibl" for the growth of oxygen precipitates alld it is fespollsihlp foI' tile g('UeI'ing . •\Vork partially supported by CONACyT. !>.léxico.

Upload: vankiet

Post on 01-Sep-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Revista Mexicana de Física 41, No. 6 (1995) 897-904

The effect of extrinsic contamination on ionimplantation gettering*

P. PEYKOV, F.J. DE LA HIDALGA, M. ACEVES AND M. LINAIlES

Instituto Nacional de Ast1'Ofísiea, ÓptiClL y Elect,'ónieaApartado postal 216, 72000 Puebla, Pue., México

Recibido el 10 de noviembre de 1994; aceptado el 2 de junio de 1995

AnSTHACT. A fast t.wo-points ~IOS C-t method for measuremellt of carrier diffusion length,and hence recombination ¡¡fetime, is proposed. Combining generation and recombination ¡¡fetimemeasurements, the kinetics of impurities durillg the process of gettering is illvestigated. Thisapproach enabled lIS to distinguish. in the present ca.<;;e,an f'xtrinsic contamination on the wafersurface. The existence of an extrinsic contamillation, in addition to the intrinsic one, introducesne\\' variables in the gettering process that. can affect gettering efficicncy.

RESU~tE~. Se propone un método rápido, ~IOS C-t de dos puntos, para medir la longitud eledifusión y por lo tanto el tiempo de vida de recombinación de los portadores. Usando la medicióncombinada del tiempo de vida de generación y de r('combinación, se investigó la cinética delas impllreza.~ dnrante el proceso de "gctterillg". Este enfoque nos permitió distinguir, en elpresente caso, la existencia de lIna contaminación extrínseca sobre la superficie de la oblea. Estacontaminación, junto con la contaminación intrínseca, introducen lluevas variables en el procesode "geUeriIlg", las cuales pueden afectar Sil efid('ncia.

PACS: 73.40.Qv; 85.40.Hp; 72.20 ..Jv

l. INTIlODUCTION

During the IC', (integrated cireuits) fabricatiou process, defects (difrerent lo the iutriusiedefeeIs iu the wafer) can be indneed. ~Iost of the proeess-indneed defeets are due torontamination (maillly Illctallic impllrit.irs) origillated hy chplllicals PL cquipment [2Lambieul [3]' wafer mauipulation 14], cte.!3esides tlH' efforts to pr,,\'Cut 1he wafers ('ontamiuat iou, t,,('huiqu('s (sueh as geltering)

have 1)('('11 cipvcloppd to [('duce 01' eliminate defeds in t,J¡e region where semiconductordeyiees are fabricat"d. Th" gett"riug techuiques eau b(' di\'id"d into two groups: intriusieand ext.rinsi(' gcttpI'ing. Usually int.rill~ic g<'ttefillg is lH'rforllH'd by a t.hn'c step anBralof CZ grown Si. The first high-temperatur" step lead, lo out-difrusiau of oxygeu andcrea tes a denuded zone at the surfaees. A high deusity of uudei fOl' oxygen preeipitatesare indueed in lhe bulk of the waf"r during the s,,('ond low-lemperature annealing sIep.The third st"p af the high-telllperature annealiug is respousibl" for the growth of oxygenprecipitates alld it is fespollsihlp foI' tile g('UeI'ing .

• \Vork partially supported by CONACyT. !>.léxico.

808 P. PEYKOV ET AL.

In the extrinsie gettering, eontrolling ddeets are usually introdlleed at the baeksideof the wafer by one of the following teehniques: ion implantation [5]' diffusion 16], Si3N.deposition 17], metal deposition 18]' meehanieal damage [9], laser damage [10], cte. Theseteehniques produee that the defeets diffuse far away from the surfaee of the wafer.

Although a great number of works on this matter have been published, the exact getter-ing meehanisms are still not well established [11]. Moreover, there are many unansweredquestions eoneerning gettering. Some of these questions are: How e¡¡¡eient is the getteringin regard to impurity eontamination introdueed during the gettering proeess" 1I0w manyimpurities can be gettered? Is every gettering technique so efficient for all impurities? andif not, whieh gettering teehnique is effieient for a given type of impurity?, cte.

Normally, for a gÍ\'en gettering teehnique there are optimum eonditions to get maximumeffieieney. It is known, that for ion implantation gettering the parameters that d"terminethe optimum gettering eonditions are the ion dose and energy, and the temperature andtime of the post-implantation annealing. The first two parameters determine the formationof highly defeeted gettering region, whieh serves as a sink for the impurities. The seeondtwo parameters are responsible for the thermal energy and the time necessary so that thedefects (especially metallic impurities) can be released from its associated site, ditfuse tothe gettering region, and be eapturecl at the gettering sites.

In the case of P ion implantation gcttering we llave found that the optilllllIll get-tering eonditions are: ion implantation E > 70 KeV. with adose of 1016 cm-2 andpost-implantation annealing at T "" 900°C and t "" 90 minutes. These vallles ha,'e beenexperimentally confirmed in many oceasions by us amI diverse authors, and they can beexplainecl on the basis of the existing models [11]. However, other factors besides themain gettcring proccss parametp[s caB afff'ct gett.ering efficiellc.y. In t.he prescnt \\!ork weha,'e investigated and iclentified other faetors, in addition to the main gettering proeesspammeters, whieh affect ion implantation getterillg eflieieney.

1\IOS (metal-oxide-semiconductor) struetures were used as test deviees. Carrier lifetimewas chosen as a mcasurablc paramcter rOl' IIlonitoring t.he gettering efficicncy. The mcthodof carrief l¡fetime IllPasurcmCllt provides the múst realistic analysis {,oIlsidering t J¡at it ismore sellsitive to the impurities, or other kinds of crystalline ddects, than th" ehemiealami physieal trace analysis methods, and I>t'eause it is din'etly relat"d to devin' charae-teristics of intercst [12]. GCJlerat.ioll lifctilll(" Tg1 cl1aract.prizes thc material near the \vafersurfaee over the \Vidth of scn (space charg" region) and the reeombination lif"time, Tr,

characterizes the semiconcillcto1"s volllmc ovr1' a diffllsion length of the mino1'ity carrirrfrom the scn. :.leasuring Tg and T, permits to monitor the exist!'ne" and the hehaviorof impurities during the gettering proeess in the near surfaee devin' aeti,'e region of thewafer.

2. :'!EASURDIE:"T OF GE:"EHATIO:" A:"D HECO~IIlI:"ATIO:" LIFETI~IE

Th{'re are diff('rellt. methods to llleaSllre t.lH' generatioll lifctime [1:~-15], f('{'()mi>illationlifetime [16,17] or hoth in th,' same strnrture [18]. To obtain stalistically n'liabl" re-sults is necessary lO measure a large numb,'r of salllples. lIowewL in the case of earrierlifetime meaSUfrlll(,llts, the illlp1'ovement of material qualit)' has r(,slI1ted in larg<' valurs

(1)

THE EFf'ECT 01' EXTHINSIC CONTAMINATION ON ION IMPLANTATION GETTEIUNG 899

of carrier lifetime. For instance, for generation lifetime '" 3.0 ms the 1\IOS capacitancerelaxation time, 11', is about 1¡minutes [IS). This has provoked the implementation ofrapid measurement techniques [19~21).

Let us lirst consider the theoretical basis of the measurement techniques used. When aMOS capacitor, at room temperature, is driven in deep depletion condition, by applyinga depleting voltage pulse, it retums to quasi-equilibrium inversion condition as a resultof bulk and surface therma] carrier generation. In this case the transient behavior of thecapacitor is described by the equation [13]

<oK,No d [Co,] 2 <oK,n¡ (Cr )- ---- - =--- ---1 +nS2Co, di C TgCr C ' ,

where NIJ is the substrate doping concentration (n-type semiconductor), <o is the permi-tivity of the free space, K, is the dielectric constant of si¡¡con, Cox is the oxide capacitance,CF is the final inversioll capacitance. e is thc capacitance, ni is thc illtrinsic carrierconcentration and S is the surface generation velocity.

It has been shown that good approxilllation of the aboye eC¡lIation is [19]

n¡CI' ( C¡)2Tg=S:VC l+c_ Ir,

lDox F(2)

where the minimal initial capaeitance, aCter the application of the vo!tage pulse, al. 1=0is ej_

In the case of high telllperature, it is necessary to take into account the contribution ofthe bulk diffusion current to the capacitance relaxation. In this case Eq. (1) has the form

<,K,No d [Co,] 2 _ <oK,n¡ (Cr) n~ D.p--~-- - --- --1 +nS+--2Co, di C TgCo, C 'LpNo ' (3)

(4)

w}¡crc Lp is thc minority carricr diffllSioll Icngt.h tlnd Dp is the rarricr diffusioIl cocfficicnt.At sumcientl)' high temperatllfe, the third term in the right hand side of Eq. (3) is

dOlninant. In this case, after some transformations, Ec¡. (3) I",comes

1 d (1) ll~Dp

- C di C = <o!I,Co,N/,Lp'

Integrating frolll the beginning, I = O, to the end, I = 11', of the tram,ient process requiresintegrating C, from C¡ 1.0 Cr:

As a result we ohtain

lC. F 1 ( I )-d -,C, C C (5)

21l~DI'C'f, (C'f, )-1Lp = -¡-'-"-2-C- C,2- 1 11'.(o \s ..i 1) ox

(6)

900 P. PEYKOV ET AL.

The intrinsic carrier concentration is given by the express ion [22]

11; = 3.87 X 1016T1.5 exp( -0.605/kT), (7)

where k is the Boltzman's constant and T is the temperature. The hole diffusion constantis calculated from the expression

Dp = 12.8 (300/T)1.2 . (8)

Using Eqs. (6), (7) and (8) and the measured values of No, Ca", CF, C; and tF recombi-nation lifetime,

(9)

can be obtained.

3. SAMPLES PREPAHATlON

MOS capacitors for this experiment were fabricated in n-type, (lOO) oriented, CZ grown,2-5 ohm-cm Si wafers. Several lots of wafers were cleaned by tbe standard nCA process.The oxidation was performed at 1000°C in dry Oz + 2% TCA (CzH3C13) ambiento Theoxide thickness, measured by an ellipsometer, was 800 Á. After the oxidation a thermaltreatment in ambient of Nz at 1000°C during 30 minutes was performed. The wafers weregettered by a backside P ion implantation with the optimum parameters E = 120 KeVand D = 1016 cm-z. Different wafers were annealed at the optimum temperature of 900° ein Nz for different times (O, 30, 60, 90, 120 and 150 minutes). High purity aluminum gateelectro des were evaporated on the top oxide through a metal mask. On the backside ofthe wafers, after oxide stripillg, al11minllIll was also evaporated. AH \vafcrs \vere anncalcdin Nz/Hz ambient at 425°C for 30 minutes.

4. MEASUREMENTS

MOS C-t measurements were performed at room temperature and the generation lifetimewas calculated using Eq. (2). To obtain the minority carrier diffusion length [Eq. (6)]and hence lhe recombination lifetime, C-t measurements at different temperatllres wereperformed. All the C-t measurements were performed with a PAn capacilance meter andthe lemperalure was controlled w¡th Templrouic model TP36 Tennochuck System withaccuracy :f:loC.

In the case of Lp( Tr) meaSllrcmcnts it is very important to know the breakpoint tem-peralure, i.e., the lemperature in which Eq. (4) begin lo be valido An easy way to findlhe breakpoinl temperature is to plot tF 118. l/T. It has been shown [191 lhal the slope ofthis plot, at near room trIllJwratllrr, is approximatcly proportional to 1/;-1 and al. clevatcd

TIIF. EFFECT OF EXTHI"SIC CO"TA~II:<ATIO" 0:< ION I~IPLANTATION GETTF.HI:<G 901

1\1\

1--'\

1'\1"\

~~

h

1\f\\

1\OO 10 20 30 40 50 60 70 80 90 100110120

tan (min)

10

20

30

40

50

FIGUHE l. Gcncration li[etime vs. annealing time.

lemperatures it is proportiona! to n;-2 The temperature at which the slope change is thebreakpoint tempcrature.

5. EXPERI~IE"TAL HESULTS A"1l D1SCUSSIO"

111aH wafer lots, the gelH'ratioll lifetime was measured. alld they have the same behavioras a fUllctioll of post-implantation allJlcaling time, tanl hut tat A was an rx('cption. Thcgeneral behavior as a functioll of tan coincides \vith our previolls results, i.e., the maximuIllgetterillg effieiency was foulld at 90 millutes annealing, with gelleratioll lifetime "" 75 ms./lowever, ill lot A. gelleration lifetime 8howed different peculiar behavior and different\"a111(,sas a fUllctioll of tan' In tltis case. t11c mélxilllUJll Tg was [ollud at 10 minutes asshowlI ill the Tg V8. tan plot of Fig. 1. Thi8 shows that for anIH'a!ing time greater tball 10m;llu«'8. tbe gelleratioll lifetiml' (or gl'tterillg effil';enl'y) deteriorates rapidly. To explain

902 P. PEYKOV ET AL.

tF ( S )1.0E+05

nf-lUmln V~

•~'

•~~

/

•".. /

/til,Jl

~.,../

* tF X 1S.

¥ /', tF x10S

• tF X 100SI1.0E-03

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

1.0E-02

1.0E-01

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+OO

1OOO/T (1 /K)FIGURE 2. Capacitance relaxation time VS. temperature.

this behavior of Tg as well as to better uuderstand how the gettering process proceeds, wemeasured the minority carrier diffusion length and calculated T, by the method proposedaboye. Figure 2 is the tF vs. liT for three typical samples of lot A. The slope changeof these plots demonstrales clearly the breakpoint temperature, TBR, for every sample.For lemperatures higher thau TBR the <¡uasi-neutral bulk generatiou (diffusion current)is dominant, while fOf lowcr tClnperaturcs the space-charge thcnnal gcncration (gencra-tion current) is dominant. netween these two regions, one can see the transition regíon,where both lllechanisllls contribule to the capacitance relaxation. Arcordi.lg to Fig. 2,the breakpoint temperatures for the samples without getlering ('), with gettering andannealed for 10 minutes (+) and 90 minutes (6) are 61.7, 48.2 and 55.loC, respcctively.COlllparing these rcsults with the results in Fíg. 1, it is possible to see that the lowerbreakpoint telll]lerature corresponds to the sam]lles with higher generation lifelime, inagreelllent with the theory.

TIIE EFFECT OF EXTRINSIC CONTAMINATION ON ION IMPLANTATION GETTERING 903

140

120

100

40

80

60

20

-

. T xl E.69

<>~

T xlE-Sr

.~¡Tr xlEt 3c-

------- r-..------- 1-

1------- r----. t----...

-----=

I i20

40

60

80

140

120

100

o OO 10 20 30 40 50 60 70 80 90

tan (min)FIGURE 3. Gcneration li[etimel recombination lifctimc and the ratio generation lifetimejrecombi-nation lifctirne vs. anncaling time.

The minority carrier recombillatioIl lifctimc was ealculated frolJl C-t measuremcntsat higher temperatmes than TIlI(. Usillg the highest temperatures we assure that thecapacitanee relaxalion is governed only by the qnasi-nenlral hlllk generation. In the Fig. 3the plots of T" Tg and Tg/T, !lS. tan. for the,,' 3 samples, is presented (the corresponding"alues of Tg are these (lIles of Fig. 1). In Ihis figure. we can see that the recombinationl¡fetime follows the hehavior of gCIlPration ¡¡fet.imC'. lts maximulll is al 10 minutes anuealand after t}¡al decn'(ls{'s. Howcver, Tg/Tr V8. tan p10t is tlw 1I10St ¡lIten'stjug. This ratiodccreas('s with tan for al! aunealillg- times. As \\'as mcntioll('d above, Tg characterizcs tllesen and T, charac!"riz('s the r"gion i)('low th" sen, Ihen, we can conclnde, that someimpurities penetra!" from the s"lIIicondnclor smfare into the bulk affecting tirs! Tg andafter that Tro \Ve caJl conc1uele, also, t.hall the diffllsioIl of t.lw impurities is faster than thcvelocity (jf gettering.

QBe can think that. ('xist two illlpurities flows. The first olle (,oIlsists of impurities whichare getteH'd al the hack:.-idc of the ",'afer. and tile second OH£'(,ollsists oC ext.rinsic impnritieswhich penetra!e frolll the waf"r surfare. For short annealing tillles (lO lIIinntes) the wafer

904 P. PEYKOV ET AL.

bulk is cleaned of impurities to some degree, due to the gettering effeet. Ho\Vever, soonthis process is dominated by the impurity difTusion from the contaminated surface, if thesurface is contaminated. Base on this supposition, one can suppose that during the \Vaferprocessing and/or \Vafer handling the surface of lot A \Vas contaminated.

REFEREt<CES

1. T. Ohmi, T. Imaoka, 1. SlIgiyma and T. KeslIka, J. Electrochem. Soco 139 (1992) 3317.2. D. DeBusk and J. Van Wagoner, Semiconductor Int., (May, 1992) 124.3. W. Wijaranakllla and J.H. Matloek, J. Elee/rochem. Soco 138 (1991) 2153.4. C.W. Pearceand R.G.1\!dlahon, J. Vac.Sci. Tech. 14 (1997) 40; P. AlIgustlls. Semiconductor

Int. (""ovember. 1985) 88.5. n. ~laster and J. Fairfield. Radial. Ejj. 6 (1970) 57.6. T.~l. nllck, K.A. Pickar, .J.~l. Poate and C.~l. Hsieh, A¡'I'I. Phys. Lctt. 21 (1972) 485.7. G.A. Rozgonyi and R.A. KlIshnev, J. Elce/1'Ochcm. Soc. 123 (1976) 570.8. R.A. Logan and ~l. Schwartz, J. Appl. Phys. 26 (1955) 1287.9. E.J. ~!etz, J. Elee/rochem. Soc. 112 (1965) 420.10. C.W. Pears and V.J. Zaleckas, J. Eleclrochcm. Soc. 126 (1979) 1436.11. J.S. Kang and D.K. Schroder, J. Appl. Phys. 65 (1989) 2974.12. K.1\!. Eisele and E. Klallsmann, Solid.State Tech. (October, 1984) 177.13. ~l. Zerbst, Z. Angew, Phys. 22 (1966) 30.14. R.F. Pierret, IEEE Trans. Elcclron Dev. ED.19 (1972) 869.15. P. PeykO\', T. Diaz and J. Carrillo, Phys. Sial. Sol. (a) 129 (1992) 201.16. J. ~!uller and n. Schick, Solid Slale Elcctron. 13 (1970) 1319.17. D.K. Schroder, IEEE TranH. Electron D"v. ED.I9 (1972) 1018.18. D.K. Schroder, .J.D. Whitefield and C.J. Vacker, IEEE Tmns. Elee/ron Dev. ED.31 (1984)

462.19. D.J":. Sehroder ami J. Glllberg. Salid Sta te Elce/ron. 14 (1971) 1285.20. \\'.W. Keler, IEEE Trans. Elcclmn Dev. ED.34 (1987) ll.ll.21. W.R. Fahrner and Ch.P. Schneider, J. Elce/1'Ochem. Soco 123 (1976) 100.22. C.D. Thurmond, J. Elee/rochem. SOCo122 (1975) 1133.23. P.S.D. Lin, n.n. ~!arcus and T.T. Sheng. J. Elce/rochem. Soco 130 (1983) 1878.