the uk’s research and innovation infrastructure: landscape ......5 chapter 10: physical sciences...

116
The UK’s research and innovation infrastructure: Landscape Analysis

Upload: others

Post on 24-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

The UK’s research and innovation infrastructure:Landscape Analysis

Page 2: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector
Page 3: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

3

Page 4: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

4

Executive summary 6

Chapter 1: Introduction 8 1.1 Scopeanddefinitionofresearchandinnovationinfrastructure 9 1.2 Infrastructurediversity 10 1.3 Scaleandcoverage 11 1.4 Questionnairemethodology,limitationsandpotentialbias 13

Chapter 2: Overview of the landscape 15 2.1 Thecross-disciplinarynatureofinfrastructures 17 2.2 Largescalemulti-sectorfacilities 18

Chapter 3: Lifecycle 21 3.1 Concept 22 3.2 Currentlifecyclelandscape 23 3.3 Evolutionofthelandscape 26 3.4 Lifecycleandplanning 26

Chapter 4: International collaboration and cooperation 28 4.1 Internationalcollaboration 29 4.2. Staffing 29 4.3 Internationaluserbase 30

Chapter 5: Skillsandstaffing 32 5.1 Numbers 33 5.2 Roles 36 5.3 Staffdiversity 36

Chapter 6: Operations 38 6.1 Set-upcapitalcosts 39 6.2 Sourcesoffunding 41 6.3 Primaryfundingsource 42

Chapter 7: Measuringusageandcapacity 43 7.1 Usage 44 7.2 Measuringcapacity 45 7.3 Managingcapacity 47 7.4 Barrierstoperformance 49

Chapter 8: Links to the economy 52 8.1 Workingwithbusinesses 53

Chapter 9: Biologicalsciences,healthandfoodsector 56 9.1 Currentlandscape 57 9.2 Interdependencywithe-infrastructure 63 9.3 Engagementwiththewidereconomy 63

Contents

Page 5: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

5

Chapter 10: Physicalsciencesandengineeringsector 65 10.1 Thecurrentlandscape 67 10.2 Characterisingthesector 69 10.3 Theimportanceofinternationalcollaboration 71 10.4 Impacts 71

Chapter 11: Socialsciences,artsandhumanitiessector 73 11.1 Formandfunctionofinfrastructures 74 11.2 Researchobjects(physicalandvirtualresources) 76 11.3 Impactandoutputs 78 11.4 Socialsciences,artsandhumanitiesinfrastructures’users 80

Chapter 12: Environment sector 82 12.1 Characteristicsofthelandscape 83 12.2 Impactandoutcomesfortheeconomy,industryandpolicymaking 86 12.3 E-infrastructureandDataneedsofthesector 89

Chapter 13: Energysector 90 13.1 Currentlandscape 91 13.2 Recentinvestments 93 13.3 Theroleofdataande-infrastructureinthesector 95 13.4 Energyasakeyeconomicsector 95

Chapter 14: Computational and e-infrastructure sector 98 14.1 Currentlandscape 99 14.2 E-infrastructure,dataandinnovation 103

Annex A: Definitionofresearchandinnovationinfrastructure usedwithinthisprogramme 105

Annex B: Methodology 107

Acronyms and abbreviations 112

Page 6: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

6

Executive summaryResearchanddevelopment(R&D)hasacentralroletoplayindrivingeconomicgrowth.MeetingtheambitionsoftheIndustrialStrategy,includingdeliveringthefourGrandChallengesandthetargettoincreasetotalR&Dinvestmentto2.4%ofGDPby2027,requiresinvestmentininfrastructureasthebasisofourresearchandinnovationlandscape1.TodaytheUKisgloballyrecognisedasaleaderinresearchandinnovation,havingthemostproductivesciencebaseintheG7basedonfield-weightedcitationsimpactandresearchpapersproducedperunitofR&Dexpenditure2,3.Every£1spentonpublicR&Dunlocks£1.40ofprivateR&Dinvestment4,togetherdelivering£7ofnet-economicbenefittotheUK5.Wearehighlysuccessfulintranslatingknowledgeintoreal-worldsocietal,economicandinternationalbenefits.EstimatessuggestthatmorethanhalfoftheUK’sfutureproductivitygrowthwillbedrivenbytheapplicationofnewideas,researchandtechnologytocreatenewprocesses,productsandservices6.

Thesesuccessesareinlargepartfoundedonanetworkofinternationallycompetitive,high-qualityandaccessibleresearchandinnovationinfrastructures.TheUKresearchandinnovationinfrastructurelandscapeisdiverse,fromlarge-scalephysicalresearchfacilitiessuchassynchrotrons,researchshipsandscientificsatellites,tonetworksofimagingtechnologiesandknowledge-basedresourcessuchasscientific,culturalorartisticcollections,archives,clinicalandpopulationcohorts,dataandcomputingsystems.ThisreportprovidesanoverviewofthecurrentlandscapeusingthebroadsectorsusedbytheEuropeanStrategyForumonResearchInfrastructures(ESFRI).ItbuildsontheInitialAnalysis7publishedinNovember2018,fillingingapsincoverageandundertakingadditionalanalysistoexploreissuesinmoredepth.

A snapshot of the UK landscapeOurquestionnaireapproachandanalysishaveidentifiedover750infrastructuresofregional,nationalandinternationalsignificance,527ofwhichareofnationalorinternationalsignificance.InfrastructuresarelocatedineveryregionoftheUKandaroundfiftyareoverseasinatleasttwenty-fivedifferentcountries.Eighty-fourpercentarehousedwithinotherinstitutions,

primarilyhighereducationinstitutions(HEIs).Someinfrastructures,suchasresearchships,planesorsatellites,havenofixedlocation.Othersaredistributedbetweenmultiplesites.

Infrastructuresofallsizesrequirestaffwithhighlyspecialisedskills.Thenationalandinternationalinfrastructuresrespondingtoourquestionnairesemployjustunder25,000full-timeequivalentstaff(FTEs)intheUK.Infrastructuresneedarangeoffunctionstooperate,includingresearch,technicalandotherroles(e.g.managerial,administrative).Fiveofthesixsectorshadmorethanthreequartersofstaffinresearchandtechnicalroles.Onaverage,functionsaresplitasfollows:38%ofstaffintechnicalroles,33%inresearchand29%inotherroles.

Collaboration with business and the wider economyOverthreequartersofinfrastructuresconductsomeworkwithUKbusinesses,with17%conductingmostoralloftheirworkinthisway.Atleastfifteeninfrastructuresidentifiedthattheyworkwithorcontributetoeveryoneofthefortyeconomicsectorgroupings,indicatingthebreadthoftheseinteractions.Acrossthelandscapethemosthighlycitedeconomicsectorinteractionsoutsideofresearchandeducationwerepublicpolicy,healthservices,energyutilities,instrumentationmanufacture,agriculture,communications,computinganddataservices,pharmaceuticals,electronicsmanufactureandaeronauticaltransport.

Modernresearchandinnovationisrarelysingledomain-led.Ninety-twopercentofinfrastructuresworkacrossmorethanoneresearchsectorwiththecomputationalande-infrastructuresectorhavingthebroadestreach.Someinfrastructuresaredesigned fromtheiroutsettobelarge-scalefacilitiesservingmultiplesectorswithapplicationsacrosstheeconomy.

International collaborationTheSmithReviewhighlightstheimportanceofinternationalcollaboration.Ninety-twopercentofinfrastructurescollaboratewithinternationalpartners.Theyplayanimportantroleinthemobilityoftalent,actingasamagnettoattractleadingresearchersandinnovators

Page 7: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

7

fromacrosstheworld.Twenty-sevenpercentofinfrastructures’staffwerefromoverseaswithcomputationalande-infrastructurehavingthegreatestrelianceonnon-UKnationalsat39%.Thirty-ninepercentofusersofinfrastructuresalsocomefromoutsidetheUK.Oftenthisisbecausethereisnosimilarcapabilityelsewhere,theinfrastructurebeingintegraltointernationalcollaborationandthequalityofsupportonofferatUKinfrastructures.

Long-terminvestmentsOurdatademonstratestheUK’slonghistoryindevelopingresearchandinnovationinfrastructureswithsubstantialinvestmentinnewcapabilityapparentoverthelasttwentyyears.Theearliestinfrastructurestendedtobecollectionshousedinmuseums,librariesorgardens.Socialandpoliticaldriversledtothefirstagriculturalandenvironmentalinfrastructuresappearingearlyinthetwentiethcentury.The1950s,1960sand1970ssawtheestablishmentoflargeinfrastructuressuchasatConseilEuropéenpourlaRechercheNucléaire(CERN)andtheBritishLibrary.Bythe1980slargecomputationalanddatainfrastructuresweremorecommonandthe1990sthroughtothe2000ssawthediversityofthelandscapecontinuetoexpandwithagreaterfocusoninnovation,imaging,autonomoussystems, the‘omics’andquantumtechnologies.

Infrastructuresarelong-terminvestmentsand60%haveoperationallifespansofovertwenty-fiveyears.Infrastructuresinareasreliantontechnologywithrapidevolutionrates,suchase-infrastructure,tendtohaveshorterlifespans.Inotherareas,suchasdataandcollections,infrastructuresincreaseinvalueovertime.However,largelyduetotheuncertaintyaroundfundingcycles,only41%ofinfrastructuresfelttheycouldplanoverthreeyearsaheadandyetoverthreequartersofinfrastructuresarefacingmajordecisionsinthenexttwotofiveyears.

Operational issuesObtainingrobustandcomparabledataonset-upandoperationalcostsforindividualinfrastructuresischallengingastheseaccountforandattributecostsindifferentways.Giventhediversityofinfrastructures,annualoperationalandcapitalcostsrangefrom£250,000toover£4millionperinfrastructure.Themajorityofoperationalcostssupportstaff.TheaverageUK-basedinfrastructuremeets69%ofoperationalcostsfrompublicfunds,9%fromtheEuropeanUnion(EU)and22%fromothersources(e.g.businessesorcharities).

Infrastructuresmeasureandmanagetheircapacityinavarietyofways,forexampletimeavailableoninstruments,staffcapacitytooperateorprovideaccess,orstorageavailability.Forsomeinfrastructuresthatoperateasopenaccessvirtualresources,capacitycaneffectivelybeunlimited.The‘aimedcapacity’ofaninfrastructurewillfactor-intheneedformaintenanceandotherbackgroundprocessesneededtokeeptheresourceavailableforusersoverthelongerterm.

Weaskedinfrastructuresaboutthebarrierstotheireffectiveoperation.Themostfrequentlymentionedbarrierswerecertaintyoffunding andashortageofpersonnelandkeyskills(60%).Theseissueswereofteninterlinked–shorttermfundingcyclescanmakeofferinglonger-term,competitivestaffcontractsdifficult–andmanymadeparticularreferencetopersonnelshortagesindigital,datascienceandtechnicalskillsareas.

Wearegratefultoalltheinfrastructureswhichtookthetimetocompletethequestionnairesthatunderpintheanalysisinthisreport.TheimprovedunderstandingofthecharacteristicsofthelandscapewillinformUKResearchandInnovation’sfutureinfrastructureplanning. Wehavealsomadeadditionalinformation onUKinfrastructurecapabilityavailableat www.infraportal.org.uk

Top three economic sectors cited

Biologicalsciences,health&food Healthservices,agriculture,pharmaceuticals

Physicalsciences&engineering Instrumentationandelectronicsmanufacturing,energyutilities

Socialsciences,arts&humanities Creativeindustries,publicpolicyandsocialservices,communications

Environment Publicpolicy,energyutilities,agriculture

Energy Energyutilities,instrumentationandgeneralmanufacturing

E-infrastructure Computing,healthservices,communications

Page 8: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

8

Chapter 1: Introduction

Page 9: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

9

R&Dhasacentralroletoplayindrivingeconomicgrowth.MeetingtheambitionsoftheIndustrialStrategy,includingdeliveringthefourGrandChallengesandthetargettoincreasetotalR&Dinvestmentto2.4%ofGDPby2027,requiresinvestmentininfrastructureasthebasisofourresearchandinnovationlandscape1. TheabilitytodevelopnewideasanddeploythemisoneoftheUK’sgreateststrengths.TodaytheUKisgloballyrecognisedasaleaderinresearchandinnovation,havingthemostproductivesciencebaseintheG7basedonfield-weightedcitationsimpactandresearchpapersproducedperunitofR&Dexpenditure2,3. Every£1spentonpublicR&Dunlocks£1.40ofprivateR&Dinvestment4,togetherdelivering£7ofnet-economicbenefittotheUK5.Wearehighlysuccessfulintranslatingknowledgeintoreal-worldsocietal,economicandinternationalbenefit–estimatessuggestthatmorethanhalfoftheUK’sfutureproductivitygrowthwillbedrivenbytheapplicationofnewideas,researchandtechnologytocreatenewprocesses,productsandservices6.

Thesesuccessesareinlargepartfoundedon anetworkofinternationallycompetitive,high-qualityandaccessibleresearchandinnovationinfrastructure.TheUKresearchandinnovationinfrastructurelandscapeisdiverse,fromlarge-scalephysicalresearchfacilitiessuchassynchrotrons,researchshipsandscientificsatellites,tonetworksofimagingtechnologiesandknowledge-basedresourcessuchasscientific,culturalorartisticcollections,clinicalandpopulationcohorts,archives,dataandcomputingsystems.

Accesstoworld-leadinginfrastructuressupportsresearchandinnovationactivityatallscales,fromindividualinvestigatorstolargemultinationalcollaborations.Theyactasamagnettointernationaltalentandusers,contributetolocalandnationaleconomiesandgenerateknowledgeandcapabilitycriticaltoUKpolicy,securityandwell-being.ManyinfrastructureslinktothedevelopmentofkeyeconomicsectorsandSectorDealsundertheIndustrialStrategy.OthersperformvitalfunctionsforGovernmentpolicy-makersincludingstatutoryfunctions,informingpublicpolicy,improvingpublicservicesandsupporting

resilienceandresponsetoemergencies.MediainterestininfrastructuressuchastheLargeHadronCollider(LHC)atCERNinspiresandexcitesthepublicandthenextgeneration8. Suchinfrastructuresgenerateandtransferknowledgeinscienceandtechnology,trainhighlyskilledpeopleandcollaboratewithindustryasaconsumerandaprovideroftechnology9.Theyareacornerstoneoftheknowledgeeconomyandsitinthecentreoftheresearch,educationandinnovationtriangle.

AssetoutintheIndustrialStrategyGreenPaperandtheUKgovernment’sInternationalResearchandInnovationStrategy10,UKResearchandInnovationisundertakingaprogrammetounderstandtheUK’sresearchandinnovationinfrastructurecapabilitiestoguidedecision-makingandsupporttheidentificationofprioritiesto2030.Determiningthefutureneedsfirstrequiresasolidunderstandingofthecurrentinfrastructurelandscape.ThisreportprovidesapictureoftheUK’sinfrastructurelandscapein2018/19usingdatafromalmostathousandinfrastructuresandinstitutions.ItbuildsontheInitialAnalysis7oftheUK’slandscapeofinfrastructurespublishedinNovember2018andcapturesadditionalworktofillgapsinthedataandexplorekeyissuesinmoredepth.

1.1Scopeanddefinitionofresearch and innovation infrastructure

Theterm‘researchandinnovationinfrastructure’canbeinterpretedinmanyways.ForthepurposesofthisprogrammewehaveadaptedthedefinitionusedbyESFRIandtheEUFrameworkProgramme11:

Facilities,resourcesandservicesthatareused bytheresearchandinnovationcommunitiestoconductresearchandfosterinnovationintheir fields.Theyinclude:majorscientificequipment (orsetsofinstruments),knowledge-basedresourcessuchascollections,archivesandscientificdata,e-infrastructures,suchasdataandcomputingsystemsandcommunicationnetworksandany othertoolsthatareessentialtoachieveexcellence inresearchandinnovation.

Thereiscurrentlynocommonlyaccepteddefinitionof‘innovationinfrastructure’soforthisprogrammewehavefocusedon‘facilitiesandassetsthatenablethedevelopment,demonstrationanddeliveryofinnovative(new

Page 10: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

10

tomarket)products,servicesorprocessesinbusiness,publicservices,ornon-profitsectors’.Thisincludesinfrastructureaimedprimarilyatindustryandsetupexplicitlytofosterandcommercialiseinnovation,suchastheCatapultCentres,InnovationandKnowledgeCentres,CentresforAgriculturalInnovationandInnovationCentresinScotland.Italsorecognisesthewiderroleofinfrastructurewhereacademicresearchersandbusinessescollaborateandofinnovation-focusedactivitiesbasedwithinuniversities,PublicSectorResearchEstablishments(PSREs)orresearchandinnovationcampuses.

Aswithsimilarexercisesundertakeninothercountrieswearefocusingoninternational-andnational-levelinfrastructuresthatareopentoawiderangeofuserstoundertakeexcellentresearchandinnovation.Wearenotseekingtocaptureorexploreregionalorlocalneedsforinfrastructurebutrecognisetheimportanceofunderpinninginvestmentinsmallerandmid-rangefacilitieswithinuniversitiesandPSREs.Oftenfundedthroughcorecapitalbudgets,orinstitutionalorproject-specificgrants,suchequipmentandfacilitiesprovidetheessentialtoolsandfundamentalsofa‘well-found’researchestablishment.FurtherdetailsofthescopeanddefinitionaresetoutinAnnexA.

Wehavealsofocusedoninfrastructurefundedlargelythroughpublicsectorresearchandinnovationfunders.Thismeanswehavenotsoughttocapturecapabilityfundedsolelythroughprivateorcharitablemeans.However,werecognisethatpartnershipwiththethirdsectorandsharedfacilitieswithindustryandpublicservicessuchastheNHSarealsovitaltotheUKandthatmanyexistingcollaborationsandpartnershipsalreadydrawonthiscapability.Futureanalysiscoulddevelopthisthemefurther.

Wehaveconsideredinfrastructurewitharangeofprimaryfunctions,structuredunderthebroadsectorsusedbyESFRItosupportalignment ofactivities.

Biologicalsciences,healthandfood(BH&F) Physicalsciencesandengineering(PS&E) Socialsciences,artsandhumanities(SSAH) Energy(Energy)

Environment(ENV) Computationalande-infrastructure(E-INF)

However,fewinfrastructuressupportjustasinglesectorevenwhenusingdefinitionsasbroadasthesesixandwerecognisethatmostinfrastructuresservemorethanone.

1.2 Infrastructure diversityInfrastructurescomeinmanydifferentguises.Onewayofthinkingaboutthemistoconsidertheirform.Istheinfrastructurecomposedofaspecificresource–suchasacollectionofartefacts–ordoesitprovidesupportstructurestogainmeaningfromtheseresources–suchasatelescopeorhighperformancecomputer?Theresourcescanbephysical(e.g.electronmicroscope,particleaccelerator)orvirtual(e.g.datasets,digitalimages)andsomeinfrastructuresmayfallintoallthreecategories(Figure1.1).Allrequirespecialistskillsandexpertise,plusoperationalresources,suchaselectricityorcooling,tofunction.

Infrastructuresalsovarybytheiraccessmechanismandstructure.Theymaybeaccessedinperson,usedremotely,oraccessedviavirtual(digital)mechanisms.Somemayoffermultipleoptions.Forexample,anaturalhistorycollectioninamuseummayallowresearcherstohavedirectaccesstospecimens,mayofferaremoteaccessservicewherespecimensaresentoffsitetousersandmayprovidedigitisedcollectionsofthespecimensonline.

Expertise

Resources

Physical Resourcese.g. archives, samples,

collections

Facilities & Instrumentation,

Tools & Techniques

e.g. NMR, ships, data management

Virtual Resources

e.g. data sets. corpora, digitised

collections

Figure 1.1. Typesofresearchandinnovationinfrastructures.

Page 11: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

11

Manyinfrastructuresaredistributedacrossmultiplesitesandmayhaveformedfromnetworkingexistingfacilitiesorresources.Thesedistributedinfrastructuresorganiseindifferentways,e.g.usingahubandspokemodelwithaheadquartersorcoordinatinghubandmultiplespokesornodes.Someglobalinfrastructureshavemultipletierswithcontinentalandnationalnodes.Otherdistributedinfrastructureshaveequalpartnershipsratherthanahierarchicalmodel.Afewinfrastructuresclusterwithacoordinatinginfrastructureprovidingadditional,organisationalfunctions,suchastheCentreforLongitudinalStudieswiththeNationalChildDevelopmentStudy,1970,MillenniumandNextStepscohortstudies,allofwhichareinfrastructuresintheirownright.AdescriptionoftheclassificationwehaveusedinthisreportisshowninFigure1.2.

1.3ScaleandcoverageTheInitialAnalysis7oftheUK’slandscapeofinfrastructuresprovidedanearlysnapshotof ourunderstandingbasedondataprovidedthroughapproximately750in-scopequestionnairereturns.Itspublicationalsoallowedustoidentifyandfillgapsinourdata,yieldingover100additionalquestionnairereturnsandimprovingcoverageofsomesubsectors.Infrastructuresrangedinscalefromtheregionaltotheglobalandfromthoseemployingahandfulofstafftothoseemployinghundredsormore.

Toimproveourabilitytodrawconclusionsacrossthesedifferentscales,weclassifiedallquestionnairereturnsaccordingtomodeloutlinedinFigure1.2andTable1.1.Thisreportpresentsanalysesfromreturnsthatwereclassifiedaseithercoordinatinginfrastructures,infrastructuresornationalnodesofinternationalinfrastructures.Fortheoverarchingchapters(Chapters1-8)wehavefocusedoninfrastructureswithnationalorinternationalsignificance,althoughregionalinfrastructuresareincludedinsectorchapters(Chapters9-14)todevelopadeeperunderstandingoftheinfrastructurestrengthsintheseareas.

UKRI

Figure 1.2.AboveandrightDescriptionoftheorganisationalclassifications usedinthisprogramme.

Clusters (out of scope)Aclusterofinstitutionswithassociatedinfrastructures,suchasacampus, scienceparkoruniversityconsortium (e.g.theN8groupofuniversities).

Institution (out of scope)Aninstitutionwhosecorepurposeismorethantooperateasingleinfrastructure.Eithertheinstitutionhousesmultipleinfrastructuresand/oritperformssignificantotherfunctions,suchaspublicengagement.Examplesincludeuniversitiesandnationallabs.

Page 12: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

12

Coordinatinginfrastructure(inscope)Aninfrastructureinitsownrightthatcoordinatesotherinfrastructureswithinit.AnexamplecouldbetheCentreforLongitudinalStudiesthatalsohostsfourdistinctcohortinfrastructures.Itdiffersfromaninstitutioninthatitdoesnotperformsignificantotherfunctions.ManydistributedESFRIprojectsarecoordinatinginfrastructures.

Infrastructure nodes Acomponentpartofadistributedinfrastructureisanode.Nodesmaybeequalinstatureoroperateonatieredbasis.Inaninternationalinfrastructuresthereistypicallyasingleheadquartersandanumberofnationalnodesinitsmembercountriesandeachnationalnodemayhavesub-nodes (Tier2or3).Nationalinfrastructurescanhaveasimilarset-up.

(in scope) National nodes(includingtheirregionalcomponentparts)ofinternationalinfrastructureswereinscopeforthisproject,includingheadquarters.

(out of scope) Sub-nodes (Tier2or3,regionalandlocalnodes). CE

RN Im

age

© N

ASA

Cent

re fo

r Lon

gitu

dina

l Stu

dies

Infrastructure (in scope)Facilities,resourcesandservicesthatareusedbyresearchandinnovationcommunitiestoconductresearchandfosterinnovationintheirfieldsandprovideadistinctcapability.

Infrastructurescanbephysicalorvirtualresources,orthefacilities,instruments,toolsandtechniquesthatsupportthem.Theycanbelocatedatasinglesite,mobileordistributedacrossmanyplaces.

Asingleinfrastructurecanalsobeaninstitution,e.g.Diamond(DiamondLightSourceLtd). Itwouldbecategorisedasinfrastructureifit didnotperformsignificantotherfunctions (e.g.teaching,outreach).

UKR

I

Page 13: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

13

Table 1.1.Definitionofcapabilityscalesusedinthisprogramme.Infrastructures,coordinatinginfrastructuresandnationalnodesthatwereinternationalornationalincapabilityareincludedthroughouttheanalysespresented.InfrastructuresthatareRegionalincapabilityareincludedonlyinsectorchapters(Chapters9-14).InfrastructuresthatareLocalincapabilityareoutofscopeforthisprogramme.

International

OnlycapabilityofitskindintheUK.Othersimilarcapabilitiesmayexistinothercountriesoritmaybeoneofakindglobally.Differsfromanationalinfrastructureinthatithasaninternationalreputation,withstronginternationaldraw

NationalOneofonlyahandfulofcapabilitiesintheUKortheonlyoneintheUK.Differsfromaninternationalcapabilitybybeingmorenationallyfocused,althoughitmayhavesomeinternationalusersorcollaborateinternationally

Regional InfrastructurecapabilityreplicatedintheUKataregionallevel.Itislikelytobetheonlyoneintheregion,oroneofasmallnumberintheUK

Local Infrastructureisoneofseveralsimilarcapabilitiesinaregion(regionssuchasWalesorinthesouth-eastofEngland).Outofscopeforallanalyses

1.4Questionnairemethodology,limitations and potential bias

Thisanalysisdrawsheavilyoninformationgatheredfromself-reportedquestionnaires,supplementedbyknowledgegleanedfrominterviewsandworkshops(seeAnnexBfordetailedmethodology).Questionnairesweredesignedtointeractwithexistingandplannedinfrastructuresatallstagesoftheirlifecycle.Inspring/summer2018abroad-scopeinitialquestionnaireandoptionalfocusedsecondquestionnairewereopenforcompletion.Acombinationofmethodswereusedtoidentifyandtargetinfrastructuresforthequestionnaires.Infrastructuresidentifiedviaadeskstudyandconsultationwereinviteddirectly.Also,anopenlinkwasadvertisedontheUKResearchandInnovationwebsiteanddisseminatedthroughvariousmechanisms,includingdirectengagementwithHigherEducationInstitutions(HEIs).Afteranalysisoftheseinitialtwoquestionnairesasmallnumberofkeyareaswereidentifiedtotargetinafinalwaveofengagement.Forthisfinalengagementbothquestionnaireswerecombined.

Thequestionnaireapproachallowedustogathertheinformationtosupportthelandscapeanalysisandreachabroadaudiencecompared

toalternativemethodsofinteractionsuchasinterviews.Allquestionnairesaresubjecttolimitationsandbiasanditisimportanttounderstandthesewhenreadingthisreport(seeAnnexB).GiventhatengagementwiththeUK’sinfrastructuresatthisscalehasneverbeenattemptedbefore,thedatawehaveobtainedisahealthyachievementandprovidesappropriateinformationforthisreport.However,noquestionnairewilleverengageeveryinfrastructureandthisreport,whilstbroad,cannotrepresenttheentireUKlandscape.Manyfactorsmayhaveinfluencedthequalityandquantityofinformationwewereabletogather:

Differencesinthemotivationandencouragementofdifferentgroupsofinfrastructurestoengageandcomplete ourquestionnaires

Differencesinhowentitiesinterpreted thedefinitionofaninfrastructureandindividualquestions

Completionratesforoptionalsurveyquestionsvaried

Thedataonlyrepresentasnapshotintime

Validationofself-reportedinformation islimited

Page 14: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

14

Wehavetakenstepstominimiseormitigatetheriskthatvariationinthequalityorquantityofdatawouldcauseabiasinanalysisofthelandscape.Insummarythishasincluded:

Validationofengagementcoveragebycross-referencingexistingcatalogues(e.g.ESFRI)andotherstakeholdergroups

Gap-identificationandtargetedapproachesfollowingspring/summerquestionnairecampaignstoimprovecoverage

Developmentandapplicationofacategorisationmodelfortypeandscale ofinfrastructure(Figure1.2,Table1.1)

Exclusionofquestionswheresamplesizeswerelow(e.g.optionalquestions,smallsectors)orwheretherewereconcernsoverthequalityofdataorinterpretationofthequestion.Noteveryanalysiswasdrawnfromthesamesamplesizeandnoanalysishasbeenconductedwherethesamplesizewasinsufficienttodrawconclusions

Conclusionsdrawnonlywhendemonstratedbyastrongandclearpatternindata.Noconclusionsweremadewheredifferencesweresmallorwhennotbackedupbyadditionalinsight(e.g.consultation orinterviews)

Overall,aproportionateapproachhasbeentakenwithrespecttodrawingconclusionsfromquestionnairedataandtheanalysishasbeenusedtosupportothersourcesofunderstandingratherthanreplacethem.

Furtherdetailsarepresentedin AnnexB:Methodology.

Page 15: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

15

Chapter 2: Overview of the landscape

Page 16: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

16

TheUKhasarichanddiverselandscapeofresearchandinnovationinfrastructureswithover750thatreportatleastaregionalsignificance.Therewere945individualresponsestothequestionnairesintotal(excludingduplicateresponses).Forthepurposesoffurtheranalysis,afterverifyingthequalityandcompletenessofthequestionnaires,thedatasetwasrestrictedtothosethatwecategorisedaseither:

Infrastructures Coordinatinginfrastructures,or Nationalnodesofinternationalinfrastructures

andwereatleastregionallyornationally/internationallysignificant.Ofthese,224wereregionallysignificantand527werenationallyorinternationallysignificant.Theseformthedatasetsusedforsubsequentquantitativeanalysisinthisreport.ForChapters2-8discussionsarelimitedtothe527infrastructuresofnationalorinternationalsignificance.Thesectorchapters(Chapters9-14)drawonthebroadersampleof751infrastructuresofregionalsignificanceorgreatertoenableamoredetailedunderstandingoftheseareas.

Thereareanumberofreasonswhy194questionnaireresponseswereexcludedfromquantitativeanalyses.Justoveraquarterrepresentedcollectionsofinfrastructuresatagreaterscalethanourcriteria,suchasacampusoraninstitution,wheredataforfunctionsotherthaninfrastructureswereincludedandinseparable.Forexample,aresponseforanentiremuseummayincludecostandstaffingdataforoutreachpurposesandauniversitydepartmentmaydosoforteaching.Wherepossiblethesecontributorswerere-approachedforclarificationandifnecessarytoprovidedatafortheirinfrastructuresseparately.

Ifnewdatawerenotreceived,appropriateinsightfromthesequestionnairesabouttheinfrastructuresthemselveswasincludedfordescriptivepurposesbuttheirdatadonotappearintheanalysespresented.Justoverathirdofexcludedquestionnaireresponseswerefrominfrastructuresatasmallerscalethancoveredbytheroadmapprogramme,suchasthosecoveringsmallpiecesofequipmentoralocalnodeofanationalinfrastructure.Therestfailedothercriteriachecks,suchasprovidingaccesstoindividualsfromoutsidethehostinstitution,orwereincompleteresponses.

Thereasonsbehindtheexclusionsareshown inFigure2.1.

InfrastructuresarelocatedinallregionsoftheUK.Thequestionnaireidentifiedafurtherforty-seveninfrastructureslocatedoutsideoftheUKinatleasttwenty-fivedifferentcountriesthatprovidedprivilegedUKaccess,e.g.throughUKfundingormembershippartnerships.As84%ofinfrastructuresarehousedwithinotherinstitutions,primarilyHEIs,thepatternofinfrastructuredistributionwithintheUKfollowsthegeneralpatternofnationalresearchandinnovationfunding.

1%

25%

34%7%

33%Clusters

Institutions

Local infrastructures

Partial response

Failed other criteria

1%

25%

34%7%

33%Clusters

Institutions

Local infrastructures

Partial response

Failed other criteria

Figure 2.1.Reasonsbehindtheexclusionofquestionnaireresponsesforquantitativeanalysis.

Page 17: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

17

2.1 The cross-disciplinary nature of infrastructures

Researchandinnovationinfrastructuresoccurbothwithinandacrosssectorborders.Eachsectorisdifferentbothinsizeandinmanyofitscharacteristics.Infrastructureswereaskedtoselecttheprimarysectortheyidentifiedwith(Figure2.2).Thephysicalsciencesandengineeringandbiologicalsciences,healthandfoodsectorshadthelargestproportionofinfrastructuresthatidentifiedthemastheirprimarysector(29%and26%ofthetotalrespondents),aswouldbepredictedbythebroadcoverageofthesesectordomains.

Thesmallestnumberofresponsescamefromthesectorswithanarrowerormoredefinedscope,energyandcomputationalande-infrastructure.Thesetwosectorshadpreviouslyconductedstudiestoidentifyalloftheinfrastructureswithinthem.Thisquestionnairereachedmostofthesewithin thecomputationalande-infrastructuresectorandoverhalfwithintheenergysector.

Researchandinnovationisrarelycontainedwithinasingledomain.Ninety-twopercentofinfrastructuresworkedacrossmorethanonesector(mean=3.7sectors,median=4sectors,i.e.threesectorsinadditiontotheirprimarydomain).Thenumberofsectorsengagedwithvarieddependingonprimarysector(Figure2.3).Infrastructuresinthecomputationalande-infrastructuresectorhadthebroadestreach,with78%identifyingwiththreeormoreadditionalsectorsand45%identifyingwitheverysector,whichreflectsthepervasiveroleofmanysuche-infrastructures.Theenvironmentsectorhadthenextbroadestreachwithoverthreequartersidentifyingthisastheirprimarysectoralsoidentifyingwiththreeormoreadditionalsectors.Fifteenpercentofinfrastructurescoveredallsixsectors.

26%

29%13%

6%

16%

10%

BH&F

PS&E

SSAH

Energy

ENV

E-INF

26%

29%13%

6%

16%

10%

BH&F

PS&E

SSAH

Energy

ENV

E-INF

Figure 2.2.Distributionofresearchandinnovationinfrastructuresaccordingtotheprimarysectortheyidentifiedwith.

0% 20% 40% 60% 80% 100%

BH&F

PS&E

SSAH

ENV

Energy

E-INF

All

1

2

3

4

5

6

Figure 2.3.Numberofsectorsthatinfrastructuresfromthedifferentsectorsengagedwith.

Page 18: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

18

Case study: UK’s national ore collection greens the search for scarce resources

TheNaturalHistoryMuseum’sorecollectionholdsmorethan15,000specimensfromacrosstheglobeandisoneoftheworld’sforemostmineraldepositscollections.Usingthisreferencelibraryofthedifferentphysicalandchemicalpropertiesofores,museumscientistsandcuratorshelpnaturalresourcecompaniesreducethecostandecologicalfootprintofexplorationfornewmetaldeposits,developmoreenvironmentallysustainableprocessingtechnologiesandtraingeosciencestudentsandprofessionals.

Themuseumissimilarlyhelpingoptimisetherecoveryofe-techmetalslikerare-earthelementsandindiumandidentifynewsourcesandextractiontechniquesforlithiumandcobalt,increasinglyusedinlightweight,rechargeablebatteriesthatpowerportabletechnologiesandelectricvehicles.InadditionanewmultidisciplinaryinitiativebetweenlifeandEarthscientistsiscurrentlyexamininghowtheinteractionbetweenorganismsandmineralsinsoilsatcontaminatedsitesmightbeharnessedtodevelopbetterstrategiesfortherehabilitationofformerminesites.

Theorecollection,whichhasbeendevelopedthroughmuseumscientists’fieldworkoverthepast200yearsanddonations,formspartoftheeighty-million-strongnaturalsciencespecimensheldbythemuseum,thenationalcollection.ItisanimportantresourceforscientistsintheUKandglobally.Themuseum’scollectionincludesspecimensfromexpeditionstotheChileanAndes’Maipovalley,toshedlighton theformationofcopperdeposits.

Nat

ural

His

tory

Mus

eum

(NH

M)

2.2Large-scale,multi-sectorfacilitiesTheUKsupportsaccesstoanumberoflarge-scalefacilitiesthatareestablishedwiththeintentiontoserveawidemultitudeofsectors,bothintheUKandoverseas.TheUKhasastrongtrackrecordinestablishingandoperatingsuchfacilities.Theyoftenoperateformanydecades,takemanyyearsofplanningandaretechnicallycomplexnecessitatingdeliverythroughnational-andinternational-scalecollaborations(Figure2.4).Theyaredesignedtosupportusersfromacrossacademiaandbusinesssectorswithskilledtechnicalstaff

workingcloselywithvisitingresearchers.Cross-fertilisationofideasisstimulatedatsuchfacilitieswhereusersbringavarietyofresearchquestionsandinnovationchallenges.Thesefacilitiesarededicatedtocharacterisingandimagingthemolecularandatomicstructuresofinorganicandbiologicalmaterialsusingarangeoftechniquessuchassynchrotrons,conventionalandfree-electronlasers(FELs),X-rays,neutronreactorsorspallationsources.Theyhaveapplicationsinareasasdiverseascleanenergyandtheenvironment,drugdesign,advancedengineeringandelectronics.

NH

M

Page 19: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

19

TheUKisapartnerinmanyinternationallarge-scale,multi-sectorfacilitiesincludingtheInstitutMaxvonLaue–PaulLangevin(ILL),EuropeanSpallationSource(ESS),EuropeanX-rayFree-ElectronLaserFacility(EU-XFEL)andEuropeanSynchrotronRadiationFacility(ESRF).UK-basedlarge-scalefacilitiesarebasedattheRutherfordAppletonLaboratory(RAL)ontheHarwellCampus.TheseincludetheDiamondLightSource,theCentralLaserFacility(CLF)andtheISISNeutronandMuonSource.Thisco-locationatHarwellallowscross-fertilisationofideasthatcanleadtonewproducts,servicesandbusinessopportunities.Thesefacilitiessupportresearchandinnovationacrosssectors.TheconnectiontothewiderresearchandinnovationbaseareenhancedbycomplementarysupportfacilitiesincludingtheResearchComplexatHarwell(RCaH).RCaHhousesCLFlasers,imagingequipmentandsamplepreparationsuitesforsampleshavingshortlifetimesorthatcannottravelgreatdistances.

TheUKisinvolvedinthedevelopmentofalarge-scale,multi-sectorfacilitythatisbeingconstructedinSweden,theEuropeanSpallationSource(ESS).Itsroleinitsconstructionincludesanumberof‘inkind’contributionsoftechnologydevelopedwithUKpartnersandindustry,therebybuildingtheUK’sskillsbaseandcontributingtotheUK’slocaleconomy.Thetechnologywillformpartoftheaccelerator,theneutron-scatteringsystemsandthetargetsystems.ESSwillbetheworld’smostpowerfulneutronsourceandwillprovidenewopportunitiesforresearchersinabroadrangeofscientificareasincludinglifesciences,energy,environmentaltechnology,culturalheritageandfundamentalphysicsandcomplementthecapabilityofournationalneutronfacility,ISIS.

1970 >2030

ILL est. 1972

CLF est. 1977

ISIS est. 1984

ESRF est. 1994 upgrade 2020

Diamond est. 2007

EU-XFEL est. 2017

ESS est. 2023

SRS 1980 - 2008

Boulby upgrade 2012

Figure 2.4.Timelinesoflargescalemulti-sectorinfrastructures.

Case study: The European Synchrotron Radiation Facility (ESRF)

ESRFinGrenobleistheworld’smostintenseX-raysource.Nearly9,000scientistsfromaroundtheworldvisitthefacilityeveryyeartoconductexperimentsinfieldsincludinglifesciences,chemistry,materialphysics,culturalheritageandenvironmentalsciences.Industrialapplicationsincludepharmaceuticals,engineering,nanotechnologiesandsemiconductors.

ThirtyyearsagotheESRFwastheworld’sfirstthird-generationsynchrotronandsincethenithascontributedtoover30,000publicationsandthreeNobelPrizes.ThefacilitycontinuestorevolutionisesynchrotronsciencewiththedesignandconstructionoftheExtremelyBrilliantSourceupgradethatwillbetheworld’sfirstfourth-generationsynchrotronwhenthefacilityreopenstousersin2020.

ESRF

Page 20: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

Health services.Incancer,somereceptorsare‘hijacked’todrivetumourformation. Inpersonalisedcancertherapy,drugsblocktheseroguereceptors,deprivingthecancercellsofvitalsignallinginstructionsanddirectingthemtowarddestruction.Targeting SlitproteinsandRoboreceptorshaslongbeenconsideredapromisingtherapeuticapproachfortypesofpancreatic,skinandbreastcancer.However,andalmostcertainlyduetoaninsufficientstructuralandmechanisticunderstandingofRoboactivationandsignalling,therearecurrentlynoRobo-directeddrugs.UsingtheESRFithasbeenpossibletogaininformationnecessarytodesigneffectivedrugstargetingRoboreceptors.Inparticular,ithasrevealedmolecularsitesthat,whentargetedbydesigneddrugs,will allowustomanipulateactivationandinhibitioninpatients,providingnewpossibilities forcancertreatments12.

Manufacturingpharmaceuticals.Agroupofhumanproteinsknownas‘G-proteincoupledreceptors’playsanimportantroleinvariousdiseasesincludingdiabetes,osteoporosis,obesity,cancer,neurodegeneration,cardiovasculardisease,headachesandpsychiatricdisorders.Thismakesthemexcellentdrugtargets.However,theyarenotalwayseasytostudy.Scientistsfromclinical-stagecompany,HeptaresTherapeutics,areusingDiamond tolearnmoreaboutthesereceptorsandhowwecanusethemtodesignbetter,moreeffectivemedicines13.

Agriculture.Thewaxsurfaceontheleavesofplants,suchasbarleyandwheatcrops,actsasaprotectivebarrieragainstenvironmentalattacksincludingpestsandwater/nutrientlossandisparamountforthewellbeingandsurvivalofallplants.ScientistsattheUniversityofManchesterhavegeneratedamodelofthewaxsurfaceofleavessimilartothoseofwheatandbarleycrops,tobetterunderstandhowpesticidesmodifythesebarriers.TheteamconductedneutronreflectometrystudiesattheILLandISISfacilitiestoexaminetheprocessesofwateruptakeinthewaxfilmspresentonthesurfaceofplants.Thisisthefirsttimeanyonehasusedextractedwaxestorecreatethewaxshieldthatplantsuseforprotection.Asaresult,thenewtoolenablesscientiststostudyhowpesticidesenterplantsbycrossingthewaxbarrieronleaves.Itisanothersteptowardsfine-tuningthechemicalsusedinagriculturetomaximisecropyieldswithoutdamagingtheplants14.

Energy.WorkingwiththeOpenUniversity,EDFEnergysaved£3billionbyextendingthelifeofnuclearpowerstationsbyfiveyears.ISISwasusedtopredictthelifetimeofweldsandtheknowledgegainedenabledlifeextensionstofifteennuclearreactors.Benefitsincludedprovidinglow-carbonenergytotwomillionhomes,£650millionayearincontractsformostlyUK-basedbusinessestocarryouttherepairworkandthesafeguardingof2000jobsinthenuclearpowerindustry.

Transport (aeronautic).Alotofresearchgoesintocreatingaircraftthatdeliverpassengersandcargosafelyandefficiently.UsingDiamond,scientistsfromRolls-Roycehavestudiedtheimpactofastrengtheningsurfacetreatmentappliedtoaeroplanefanblades.Exploringthemicrostructuralimpactofstressonthefanbladegivesusvitalinformationtoinformfutureaircraftdesign13.

Security. SpatiallyoffsetRamanSpectroscopy,atechniquedevelopedandpatentedattheCLFprovidesamethodforidentifyingthechemicalcompositionunderneaththesurfaceofmaterials,includingbeneaththeskinandliquidsinbottleswithoutcuttingthemopen.ThetechnologywascommercialisedthroughthespinoutcompanyCobaltLightSystems,whichhassincebeenacquiredbyAgilent.Thelaser-basedsystemsareusedcommerciallytodetectexplosivesinairportsacrosstheworld,keepingpeoplesaferandonthemove.

Someexamplesofthesocio-economicoutputsfromlarge-scalemulti-sectorfacilities:

20

Page 21: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

21

Chapter 3: Lifecycle

Natural History Museum

Page 22: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

22

PlanningIdentifying the need and developing the case for a new infrastructure.

PreparationRefinement of technical

design including preliminary scoping of prototype studies to help reduce risk and cost

of financial construction. During this time, development

of governance, definition of legal status and financial

sustainability may take place.

OperationInfrastructure is fully

operational. During this time, regular review and

upgrades may take place to keep the infrastructure at

the cutting edge.

ConstructionPhysical construction of the new infrastructure, establishing the network for virtual and/or distributed infrastructure.

Decommissioning or repurposingAt the end of its lifecycle an infrastructure will either be shut down or may evolve to take on new functions in response to changing demand and technology.

This can be a complex process, involving careful data management, or additional funding and skills to manage any transition, environment or safety issues.

3.1 ConceptArecognisedconceptofthelifecycleofaninfrastructure15,16,hasbeenadoptedforthepurposesofthisprogramme.Thelifecyclestagesofaninfrastructurefollowthepathofplanning,preparation,construction,operationanddecommissioningorrepurposing(Figure3.1).Therelevanceordefinitionofthesestagescanvarywiththenatureoftheinfrastructureandsectoritserves.Forexample,foralarge

physicalinfrastructuretheconstructionphasewouldencompassbuildingandcommissioningequipment.However,foradistributedinfrastructurethestagemightrefertotheestablishmentofaheadquartersordevelopmentofanetworkofdistributedresources.Movementbetweenthestagesisnotalwaysclearlydefinedandcanbeafluidprocesswithsomestagesrunninginparalleloroverlapping.

Figure 3.1.Stagesofaninfrastructure’slifecycle.

22

Page 23: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

23

3.2 Current lifecycle landscapeThereisacurrentlandscapeofestablishedandoperationalinfrastructuresintheUK,with82%reportingthattheywereattheoperationalstage.Overall,18%ofinfrastructureswereinearlylifecyclestages(development,designorimplementation).Onlyoneinfrastructureidentifiedasbeinginthedecommissioning/repurposingstageandreportedthatthecapabilitywasbeingreplacedbyfundinga freshentity.

TherehasbeenasteadygrowthinthenumberofUKinfrastructures,withmorenewinfrastructuresoperatingsince2010thaninanyotherdecade(Figure3.2).Thiscouldbedrivenbyanumberoffactors.Itcouldreflectagrowthinthenumberofinfrastructuresfollowingtheinjectionofcapitalfundinginthepastdecadeinresponsetotheincreasingimportanceofinfrastructuresforsolvingchallengesandunderpinningresearchandinnovation.Theremightbeahigherlevelofresponsivenessfromnewinfrastructuresthat,bytheverynatureof

obtainingfunding,haverecentengagementwithfunders.Somesectorsseedafieldinresponsetoanewchallengeareabyfundingavarietyofprojectsintheexpectationthat,duetothenatureofthefield,onlysomewillconsolidateandbetakenforwardinthelongerterm.Wewillalsohavemissedcapturingthoseinfrastructuresthatbeganandendedoperationspriortothisprogramme.

Sixtypercentofinfrastructureshadexpectedoperationallifespansofovertwenty-fiveyears(Figure3.3).Therearedifferencesbetweensectors.Withinthecomputationalande-infrastructuresectorwherethetechnologyusedhasafastturnoverrate,42%ofinfrastructureshaveanexpectedoperationallifespanofovertwenty-fiveyears,whereasthreequartersormoreofinfrastructuresinthesocialsciences,artsandhumanitiesandenvironmentsectorsexpecttooperateforovertwenty-fiveyears.Theseincludecollectionsanddatasetsthatincreaseinvalueovertime.

0

50

100

150

200

250

serutcurtsarfni fo rebmu

N

0%

20%

40%

60%

80%

100%

BH&F PS&E SSAH Energy ENV E-INF All

Over 25 years

15-25 years

5-15 years

Up to 5 years

0%

20%

40%

60%

80%

100%

BH&F PS&E SSAH Energy ENV E-INF All

Over 25 years

15-25 years

5-15 years

Up to 5 years

Figure 3.2. Distributionofinfrastructuresaccordingtotheyearinwhichtheybeganoperations.

Figure 3.3. Sectordifferencesintheexpectedoperatinglifespansofinfrastructures.

0%

20%

40%

60%

80%

100%

BH&F PS&E SSAH Energy ENV E-INF All

Over 25 years

15-25 years

5-15 years

Up to 5 years

Page 24: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

24

Case study: Research infrastructure for heritage science

IPERIONCHestablishedacross-disciplinarynetworkofovertwentypartnersfromtheUK,EuropeandtheUSA.Itconnectedresearchersinthehumanitiesandnaturalsciencesandprovidedaccesstoexpertise,instruments,methodologiesanddataforadvancingknowledgeandinnovationintheconservationandrestorationofculturalheritage.Theconsortiumbroughttogethermajorcentresofresearchinheritagescience,includingoutstandingresearchinstitutes,aswellasprestigiousresearchlaboratoriesandconservationcentresinbothmuseumsanduniversities.

NetworkingactivitiespromotedinnovationthroughtechnologytransferanddynamicinvolvementofSMEs,improvedaccessproceduresbysettingupacoordinatedandintegratedapproachforharmonisingandenhancinginteroperabilityamongthefacilitiesandidentifiedfuturescientificchallenges,bestpracticesandprotocolsformeasurementsandoptimisedtheuseofdigitaltoolsinheritagescience.IPERIONCHdeliveredsocialandculturalinnovationbytraininganewgenerationofresearchersandprofessionals,byinnovationofresearchinstrumentsandmethodsandbyworldwidedisseminationandcommunicationtodiverseaudiences.

IPERIONCHledtotheestablishmentofadistributedEuropeanResearchInfrastructureforHeritageScience(E-RIHS),whichhasbeenpartoftheESFRIroadmapsince2016.TheUKnodeofE-RIHS,UKResearchInfrastructureforHeritageScience,isadistributedinfrastructureonitsown,withovertwentyinstitutionalpartnersaswellasarangeofresearchcapabilities,includinguniversities,museums,heritageorganisations,digitalinfrastructuresandlaboratoryfacilities(suchasDiamond).Themissionoftheinternationalinfrastructureistostretchtheboundariesandtheimpactofheritagesciencebydevelopingthemostcomprehensiveandadvancedscientificandtechnologicalcapabilities.Itwillenableresearchers,organisationsandindustrytodevelopskills,knowledgeandinnovationtoenabletheappreciationandpreservationofheritageandtodrivecross-disciplinaryapplicationsofheritagescience.

© L

uca

Sgam

ello

tti

Page 25: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

25

Figure 3.4.Evolutionoftypesofinfrastructures.

Page 26: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

26

3.3 Evolution of the landscapeTherehasbeenasteadyevolutionofthetypesofinfrastructuresestablished(Figure3.4).Theearliestinfrastructurestendedtobecollectionshousedinmuseums,librariesorgardens.Afterthatinfrastructuresrespondedtothesocialandpoliticaldriversofthetime,forexampletheincreasedneedforfood,withthefirstagriculturalandenvironmentalinfrastructuresappearingearlyinthetwentiethcentury.The1950s,1960sand1970ssawtheestablishmentofsomeofthelargeorganisationalinfrastructuressuchasatCERN,theESO,SanfordandtheBritishLibraryandalsotheinitiationoflong-termcohortsanddatasets.Thediversityofinfrastructuredisciplineareasalsobegantogrow.Bythe1980slargecomputeanddatainfrastructureswereestablished.Throughthe1990sand2000sdiversitycontinuedtoexplode.Infrastructureswereestablishedintopicalareasofresearchandinnovation;termssuchasneuroimaging,autonomoussystemsandgeneticswerefirstseen,atrendthatcontinuedintothe2010swithmanymentionsof‘omics’,quantumande-infrastructure.

3.4LifecycleandplanningTheexpectedoperationallifecycleofinfrastructuresvariesaccordingtotheorganisationalandlegalmodeloftheinfrastructure(Figure3.5).Infrastructuresestablishedaslegalentities(nationalandinternational)havelongerexpectedlifespansthanthosehousedinotherinstitutions.Infrastructuresreliantonshort-termfundingarelesslikelytohaveanoperationallifespanofovertwenty-fiveyearsthaninfrastructuresinotherorganisationalandlegalstructures.

Despitetheirlonglifespans,overthreequartersofinfrastructuresstatedthattheyarefacingmajordecisionpointsinthenextfiveyearsandfor74%oftheseitfallswithinthenexttwoyears.Justunderhalfofallinfrastructuresreportedthattheywillfacetwoofthesemajordecisionsinthenextfiveyearsandforhalfofthesebothdecisionsaredueinthenexttwoyears.Only41%ofrespondentsfeelthattheyareabletoplanbeyondthreeyearsahead,highlightingamismatchbetweenfundingcyclesforresearchandinnovationinfrastructureandplanningrequirements.

0%

10%

20%

30%

40%

50%

60%

70%

80%

up to 5 years 5-15 years 15-25 years over 25 years

Short-term funded project

Long-term infrastructure in aninstitution

National legal entity

International legal entity

Figure 3.5. Percentageofinfrastructureswithexpectedoperationallifespansfromuptofiveyearstomorethantwenty-fiveyears,groupedaccordingtotheirlegalorganisationalstructure.

Page 27: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

Thetypesofdecisionthatinfrastructuresfacefellintosixbroadcategories:

1. Financial: afundingrevieworperformanceassessmentaspartofamid-grantassessmentorplannedreviewcycle

2. Financial:fundinghasended–usually duetotheendofgrantfundingandtheinfrastructureseekingrenewaltocontinue

3. Financial:significantfinancialchangesarebeingconsideredsuchasachangeinfinancialmodel,seekingnewincomesourcesorone-offstrategicdecisionsthatrequirefinancialsupportsuchasanupgradeorshifttooperationalfundingpostset-up

4. Financial:theresponsemakesspecificreferencetoanEUrelatedfundingdecision

5. Strategic:amajorstrategicdecisionthatwillhaveafundamentalimpactontheoverallmissionandpurposeoftheinfrastructure

6. Strategic:astrategicchoiceaboutoperationsorashiftinlifecyclestage

Thereareoverlapsbetweenstrategicchoicesandmajorfinancialdecisionsonallocations,basedonthedescriptionofsituationsgivenintheresponses.Justoverathirdwerestrategicinnature,relatedeithertochangesintheoverallmissionoftheinfrastructure(forexample,resultingfromapolicyrevieworrespondingtouserdemand)ortothefacingofmajorchoicesabouttheiroperations(oftenrelatedtobuildinglocation)andtransitiontodifferentlifecyclestages.Twothirdsofdecisionswerefinancialinnature,mostlyrelatedtotheenddateofexistingfundingandtheneedtoapplyfornewfundingtocontinueoperationsortheneedtoseekadditionalfundingandincome(e.g.forupgradesorchangesinoperationalmodelsuchasthetransitiontobecomingself-financing postset-up).

ThereisaneedforcontinuedeffortinunderstandingthelifecycleoftheUKinfrastructurelandscapeoverallandatsectorlevel.Byunderstandingitsdynamicsandevolution,itsmainfeaturesandchallenges,theUKwillbeevenbetterequippedtoplanitsfuturelandscapeinawaythatisrealistic,sustainableandagile(andthereforecapableofrespondingtonewdevelopments)andisholisticinitsapproachtosustainability.

27

Page 28: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

28

Chapter 4: International collaboration and cooperation

Page 29: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

29

TheSmithReviewdemonstratestheimportanceofinternationalcollaboration.Sharedinfrastructuresareinherentlycollaborativeandpromoteinternationalcooperation,interdisciplinaryresearch,innovationandskillstraining.Byassemblingacriticalmassofpeople,knowledgeandinvestment,sharedinfrastructurescancontributetosignificantregionalandnationaleconomicdevelopment,attractingtalent,industrialengagementandinwardinvestment.TheresearchandinnovationinfrastructurecommunitiescontributeheavilytotheUK’sglobalstatusinR&D.

4.1 International collaborationNinety-fivepercentofallinfrastructurescollaborateintheirwork.Mostinfrastructuresthatcollaboratedosowithinternationalpartners(91%),withonly9%havingnational-onlycollaborations.Wheninfrastructureswereaskedtoself-identifytheirscopeorreach,83%ofallinfrastructuresfelttheyhadaninternationalscope,whichisindicativeoftheinternationalnatureoftheresearchtheyconductaswellasoftheiraspirationsandpositioningintheglobalcontext.Almostallinfrastructure(97%)inthesocialsciences,artsandhumanitiessector self-identifiedwithhavinganinternational scopeorreach.

Infrastructuresareoftensharedand/orusedbyresearchersandinnovatorsfromdifferentcountries,offeringcostefficienciesaswellasaccesstoabroadrangeoffacilitiesthatotherwisewouldnotbeaffordable.Insome

fields,infrastructuresaresoexpensivetobuildandoperatethattheircostscanbebeyondtheresourcesofasinglecountry.Anotherdriverforcollaborationcomesfromthechallengesandthreatsfacingsocietytoday,whichoftendonotrecognisenationalboundariesandrequireacollaborativeapproachtotackle.

Fromthe527questionnaireresponses,204wereclassifiedasinternational.Theyweredistributedacrossthesixsectorsinasimilarpatterntotheoverallnumbersofinfrastructures,withproportionallyslightlymoreintheenvironmentandPS&Esectors(Figure4.1).Physicalsciencesandengineeringinternationalinfrastructuresarecharacterisedbyhavingmoreoftheverylarge,expensivephysicalinfrastructuresthatarebeyondofthescopeofasinglecountrytodeliver,e.g.particleacceleratorsandtelescopes.

4.2.StaffingResearchandinnovationinfrastructuresarekeyplayershelpingmobilisetalentacrosstheworld,enrichingthepooloftechnicalskills,trainingthenextgenerationofresearchersandstimulatingthemobilityofleadersandindoingthistheycontributetoaccelerateadvancesinresearchandtechnology.InfrastructuresbasedintheUKattractsignificanttalentfromaroundtheworld,where27%ofstaffcomefromoutsidetheUK,morethantheHEIsectorasawhole(20%)(Figure4.2).Infrastructuresinthecomputationalande-infrastructuresectoraremostreliantonnon-UKstaff(39%).

25%

37%

10%

15%

4%9%

BH&F

PS&E

SSAH

ENV

Energy

E-INF

Figure 4.1.Distributionofinternationalinfrastructuresacrossthesixsectors.

UKOther EUNon-EU

HEIs

Infras

UKOther EUNon-EU

HEIs

Infras

25%

37%

10%

15%

4%9%

BH&F

PS&E

SSAH

ENV

Energy

E-INF

Figure 4.2. NationalityofstaffemployedatUKinfrastructures(outercircle)andHEIs(innercircle);sourceHigherEducationStatisticalAgency(HESA)staffdata201717(academicandnon-academic).

Page 30: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

30

0%

20%

40%

60%

80%

100%

BH&F Energy ENV PS&E SSAH E-INF

% share of international users across sectors

% infrastructures that attract international users

0%

20%

40%

60%

80%

100%

BH&F PS&E SSAH Energy ENV E-INF

% infrastructures attracting international users % of infrastructure users that are international

0% 10% 20% 30% 40% 50% 60% 70%

Other

Similar capability has no capacity/long wait times

Part of a bi- or multilateral agreement

Availability of funding

Contractual

Location is not a consideration (e.g. for a digital service)

Higher quality than other options

Part of international collaboration

The 'package' (e.g. complementary facilities)

No similar capability elsewhere

Figure 4.3.AttractionofUK-basedinfrastructurestointernationalusersbasedontheir primarysector.

Figure 4.4.Reasonscitedbyinfrastructuresforattractinginternationalusers.Notethatoptionswerenotmutuallyexclusiveandparticipantscouldselectallthatwererelevant.

4.3 International user baseIntheinfrastructurelandscapethereisaconstantflowofusersseekingaccesstothebestfacilities,wherevertheyare.IntheUK39%ofindividualusersofinfrastructurescomefromoutsidetheUKand91%ofinfrastructureshaveaninternationaluserbase(Figure4.3).Almostallinfrastructures(95%)considerthattherewillbeachangeindemandbytheuser-baseinthenearfuture.Forty-sixpercentofthemthinkthebalancewillremainsimilartotoday,40%think itwillbeincreasinglyinternationallybiased andonly14%thinktherewillbeagreater nationalfocus.

ThereasonswhyUK-basedinfrastructuresattractusersfromoverseasarevaried(Figure4.4).Oftenitwasreportedtobebecausenosimilarcapabilityexistselsewhere,itbeinganintegralpartofaninternationalcollaboration, orbecauseitofferedanoverall‘package’ (e.g.asupportpackageoraccesstocomplementaryfacilities)significantly betterthanthatofferedbyothers.

Page 31: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

31

Infrastructuresareinherentlyinternational.Wecollaboratebecausemanyoftheresearchandinnovationchallengesthatinfrastructuresarehelpingtosolveareglobalintheirnature,suchaschangingoceantemperaturesormovingvastquantitiesofdataaroundtheplanet.SomeinfrastructurescanonlybesitedincertainlocationsoutsideoftheUK,suchastheremote,radio-quietregionsorcloud-freeskiesrequiredforastronomyfacilities.Infrastructurescanalsobeverycostly,beyondthebudgetsofasinglenation. TheSKAwillbetheworld’slargestandmostsensitiveradiotelescopearray.Whilstthetenmembercountries,includingtheUK,arethecornerstoneoftheproject,therearearound100organisationsfromaround20countriesparticipatingintheoveralldesignanddevelopment.

SKA Organisation

Page 32: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

32

Chapter 5: Skills and Staffing

Page 33: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

33

Researchandinnovationinfrastructuresofallsizesrequirestaffwithhighlyspecialisedskillstomaximisethepotentialutilityoftheinfrastructure,fromthemanagersoftheseinfrastructurestothetechniciansthatoperatethemdaily.Havingtheseskillsinplacenotonlyrealisesthedaytodayfunctionofaninfrastructurebutalsocontributestotheinnovationofnewtechnologiesandtechniquesanddisseminationofgoodpractices.Tocaptureasnapshotofskillsandstaffinthecurrentinfrastructurelandscape,respondentswereaskedtoanswerquestionsonstaffnumbers,sex,ethnicityblack,Asianandminorityethnicbackgrounds(BAME)andstaffroles.WhereappropriatethestaffingofinfrastructureshasbeencomparedtostaffingacrossUKHEIsaccordingtoHESA2017data17combinedforacademicandnon-academicstaff.

5.1 Numbers StaffnumbersweremeasuredasthenumberofFTEstocontrolforvariationinworkingpatterns.The480nationalandinternationalinfrastructureslocatedwithintheUKemployjustunder25,000FTEs.ThenumberofFTEsemployedbyeachsectorintheUKfollowsasimilarpatternasthenumberofinfrastructuresineachsectorbutwithSSAHandBH&FemployingthemoststaffandPS&Ehavingfewerthantheirsharewouldpredict(Figure5.1).However,manylargePS&EinfrastructuresareinternationalfacilitiesoutsideoftheUKandthusexcludedfromthisfinding.ThemediannumberofstaffworkingateachUK-based

infrastructureistenFTEs,rangingfromthreeFTEsintheenvironmentsectortotwelveFTEsinBH&F.

Acrossallinfrastructuresregardlessoflocation,infrastructuresthataresetupastheirownlegalentitytendedtoemploysignificantlyhighernumbersofstaffthaninfrastructuresthatwerehousedinotherlegalentities(Figure5.2).Thispatternispartlydrivenbyarelativelysmallnumberofverylargeandofteninternationalinfrastructurestypicalofthisfield,suchastheLHCatCERN,ESOandtheHighValueManufacturingCatapult.Itisalsolikelythatinternationally-hostedinfrastructuresmayhaveunderestimatedstaffnumbersduetothedifficultyofattributingstaffworkingacrossinfrastructuresandotheractivities.

Infrastructuresthatwerethenationalnodeofaninternationalinfrastructurehadalowerheadcountthanthosecategorisedasanentireinfrastructure(Figure5.3).Thisrelatestoanationalnodebeingasubsetoftheinfrastructure’scapability.Coordinatinginfrastructures,thosethatwereconsideredaninfrastructureintheirownrightbutincludedotherinfrastructures(suchassomeESFRIs),hadthegreatestnumberofstaff.Similarly,staffnumbersincreasedfromthoseinfrastructuresprovidingaregionalcapability,toanationalcapability,toaninternationalcapabilitywhenconsideringthefulldatasetof751infrastructures(Figure5.4).

6819

42506869

1666

1198

3568BH&FPS&ESSAHEnergyENVE-INF

Figure 5.1.Staffnumbers(FTEs)employedatinfrastructuresineachofthesixsectors(restrictedtoinfrastructureslocatedintheUK).

6819

42506869

1666

1198

3568BH&FPS&ESSAHEnergyENVE-INF

Page 34: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

34

0

50

100

150

200

250

300

350

400

450

Short-term fundedproject

Long-termfacility/resource within

another entity

National legal entity International legalentity

sETF fo reb

mun naeM

Figure 5.2.Meanstaffnumbers(FTEs)atinfrastructuressetupunderdifferentlegalmodels.Thosesetupasnationalorinternationallegalentitieshavesignificantlymorestaffthaninfrastructureshostedwithinotherinstitutions.

0

50

100

150

200

250

300

National node Infrastructure Coordinating infrastructure

sETF fo reb

mun naeM

0

20

40

60

80

100

120

140

Regional National International

sETF fo reb

mun naeM

Figure 5.3.Meanstaff numbers(FTEs)at nationalnodesof internationalinfrastructures,infrastructuresandcoordinatinginfrastructures.

Figure 5.4.Meanstaffnumbers(FTEs)atinfrastructurescategorisedasprovidingaregional,nationalorinternationalcapability.Thisresultusedthedatasetof751questionnaireresponsestoincludethoseofregionalcapability.

Page 35: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

3535

Infrastructuresneedarangeofskillstooperate.Onaverage,38%ofstaffareemployedintechnicalroles,33%areinresearchrolesand29%performotherfunctionssuchasmanagement,administrationandoutreach.

Page 36: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

36

5.2 RolesInfrastructuresdependonthefunctioningofarangeofdifferentrolesthatcanbebroadlycategorisedasresearch,technicalorother(e.g.management,administration).Fiveofthesixsectorshadmorethanthree-quartersoftheirstaffperformingresearchandtechnicalroles(Figure5.5).Thesocialsciences,artsandhumanitiessectorhas69%ofstafflistedasbeingin‘otherroles’,whichincludeslargeESFRIinfrastructuresaswellasmuseums,archivesandcollections.TechnicalrolesareespeciallyprevalentintheenvironmentandPS&Esectors,makinguparoundhalfofallroles.

5.3 Staff diversityInfrastructuresemployproportionallyfewerfemalesandasimilarproportionofstaffwithBAMEethnicitycomparedtoHEIsintheUK(Figure5.6).

0%

20%

40%

60%

80%

100%

BH&F PS&E SSAH Energy ENV E-INF All

Research Technical Other

Figure 5.5. Staffrolesininfrastructures.Onaverage,33%ofstaffemployedbyinfrastructuresfillresearchroles,38%technicalrolesand29%otherroles.

BAME

White

HEIs

Infras

Female

Male

HEIs

Infras

Female

Male

HEIs

Infras

BAME

White

HEIs

InfrasFigure 5.6. ProportionofstaffemployedatUKinfrastructures(outercircle)andHEIs(innercircle)accordingto(a)ethnicityand(b)sex.ProportionallymorestaffemployedatinfrastructuresaremalecomparedtostaffatHEIs(61%versus46%).ThepercentagesofstaffofBAMEethnicityaresimilarforinfrastructuresandHEIs(14%versus13%)(HESAstaffdata201717).

Page 37: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

37

Case study: The role of infrastructures in the provision of skills and training

TheUniversityofSheffieldAdvancedManufacturingResearchCentre(AMRC)isanetworkofworld-leadingresearchandinnovationcentresworkingwithadvancedmanufacturingcompaniesaroundtheglobe,specialisingincarryingoutresearchintoadvancedmachining,manufacturingandmaterials,whichisofpracticalusetoindustry.

Itemploysover500highlyqualifiedresearchandtechnicalprofessionalsfromaroundtheglobe.Theresearchinfrastructurealsooffersrolesinmanagementandadministration.TheAMRCTrainingCentreoperatesanApprenticeTrainingProgrammethathas250-300positionsperyear.Theprogrammestructureincludesatwo-yearbasicapprenticeship,atwo-yearhigherapprenticeshipandafoundationdegree.AspartoftheUniversityofSheffieldtheapprenticescanthenprogresstoHonours,Masters,EngDandPhDlevels.FortheyoungpeopleintheSheffieldCityRegion,itprovidesthefoundationforarewardingcareerinsomeoftheworld’smostinnovativeindustries.

TheAMRCalsooffersgraduateandMScprogrammesforengineers.Aspartoftheprogrammegraduatesstudyforapostgraduatediplomainengineeringmanagement,whichisaimedatengineerswhowanttomoveintomanagementwhilemaintainingtheircompetenciesintechnicalsubjects.Furthertothis,theIndustrialDoctorateCentre(IDC)offersgraduatestheopportunitytolearnandearninfour-yearengineeringdoctorateprogrammes,whichcombinetaughtmoduleswithoriginalresearchforworld-leadingengineeringcompanies.RecentengineeringdoctorateprogrammesincludeadvancedprojectsforRolls-RoyceandTechnicut.

AMRC

Page 38: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

38

Chapter 6: Operations

Page 39: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

39

Obtainingrobustandcomparabledataontheset-upandongoingcostsforinfrastructuresischallenginggiventhediversityofactivityandbusinessmodelswithintheUKlandscape.Theinfrastructurequestionnairesaskedrespondentstoprovidetheapproximatecostsofestablishingtheirinfrastructureandthecostsofrunningiteveryyear,thoughresponserateswereonly33%-48%acrossthesequestions.

Aswellasvaryingbysubjectareaandtype ofresearch,costsdependonarangeofoperationalandfinancialmanagementissues.Theseinclude:

Theapproachtocalculatingandaccountingforoverheadswhenaninfrastructureispartofalargerorganisation

Howcommoncostsaresharedbetweeninfrastructuresornodesofadistributedinfrastructure

Howcostsaresharedbetweenco-funders(includinginternationalpartners)

Thetreatmentofdepreciationof capitalequipment

Thelegalstatusofaninfrastructureandapproachtomanagingfluctuationinspendovertime

Respondentsalsovariedintheirapproachtoaccountingforstaffcosts,usuallyreflectingtheirfundingmodel.Forexample,thecostoftheoperationalstaffrequiredtorunaninfrastructurewasusuallyincludedbuttheresearchstaffmaynothavebeenifaseparatefundersupportsprojectsusingthatinfrastructure.Infrastructuremanagersthemselvesmayalsonotbefullyawareofhowtheirhostorganisationattributesandmanagesoverheadcostsandthiswilllikelyvaryfromorganisationtoorganisation.Ingeneralthismeansthefigurespresentedherearelikelytobeanunderestimateofthefulloperationalexpenditureassociatedwithindividualinfrastructures.

Despitethesechallengessomebroadobservationscanbemadebasedonthedataavailable.Figure6.1showsthediversityin

annualoperatingandcapitalcostsacrossthequestionnaireresponses.Foraboutoneinfiveinfrastructurestheannualcostofoperations(excludingcapitalequipment)islessthan£250,000,whilstasimilarproportion(18%)haveanannualoperationalcostof£4millionormore.Theannualcostofcapital,includingprovision,maintenance,replacementorupgrades,alsovariessignificantlyacrossinfrastructures.Thespikeof49%ofinfrastructureshavingcapitalcostsbelow£250,000isreflectiveofnon-capital-intensiveinfrastructures,e.g.someinfrastructuresintheSSAHsector.

Giventhatthebulkofoperationalcostisoftenforstaffsalaries,thereisastrongcorrelationbetweenoperationalcostsandfull-timeequivalentstaffnumbers(correlationcoefficient=0.81).Figure6.2showsthescatterplotforthoseinfrastructureswithlessthan100staffandwithannualoperationalcostsof£4.5millionorless.Thelineofbestfitdisplaysthepositiveassociationbetweenthetwovariables.

Infrastructuresthatareshort-termfundedprojects(e.g.theUKMultipleSclerosisRegister,alargecohortstudy)typicallyhavelowerannualcoststhaninfrastructuresthatareeithernationalorinternationallegalentities(e.g.theNationalCompositesCentre).Someshort-termfundedprojectsarelong-termactivitiessurvivingbetweensustainablefundingoptions.Thosehousedinotherentitiesmayhavetheircostsunder-reportedbecauseofoverheadsharingorattribution.Long-terminfrastructureslocatedininstitutionshaveafairlyuniformspreadacrossthecostcategories,whereasthoseoperatingasalegalentityweremorelikelytohavecostsinthehighercategories(Figure6.3).

6.1 Set-up capital costsManyinfrastructuresrequireasignificantup-frontinvestmentincapitalequipment.Ofthoseinfrastructuresestablishedsince2010thatprovideddataonthecapitalcostassociatedwithsettingup,abouthalfhadacapitalcostrequirementof£6millionormore(Figure6.4).Almostoneintenrequired£62millionormore,withinternationalinfrastructuressuchastheESSrequiringmorethan£1billion.

Page 40: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

40

Infrastructure set-up capital cost (£ million)

0%

10%

20%

30%

40%

50%

<250k 250k - <500k 500k - <1m 1m - <2m 2m - <4m ≥4m

Average operational cost per year (£)

Average capital cost per year, e.g. for upgrades (£)

Figure 6.1.Distributionofaverage,annualoperationalandcapitalcostestimatesforinfrastructures (k=thousand, m=million).

0

1

2

3

4

5

0 10 20 30 40 50 60 70

)noillim £( raey rep tsoc lanoitarepo egarev

A

Number of staff (FTEs)

0%

10%

20%

30%

40%

50%

60%

70%

<250k 250k - <500k 500k - <1m 1m - <2m 2m - <4m ≥4m

Short-term funded project Long-term infrastructure in an institution

National/international legal entity

Figure 6.2. Scatterplotofinfrastructuresshowingstaffnumbersplottedagainstaverage,annualoperationalcosts(onlyinfrastructureswithfewerthan100staffandannualoperationalcostsof£4.5millionorlessshown,thoughthepositiveassociationremainstrueforallinfrastructures).

Figure 6.3. Distributionofinfrastructures’totalannualcostsbasedontheirlegalmodel (k=£thousand, m=£million).

Page 41: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

41

6.2SourcesoffundingThisprogrammefocusesonresearchandinnovationinfrastructureswitharelianceonpublicsourcesoffundingforestablishmentand/oroperations.Thismeanswehaveexcludedfromouranalysisanyinfrastructuresthatstatedtheydidnotrelyonpublicfunds,althoughwerecognisethatthereareimportantcomponentsoftheUK’soverallcapabilitythatarefundedthroughcharitableandprivatemeans.

ThefinaldatasetconfirmsthepatternsdescribedintheInitialAnalysis7.Thereisagreatrelianceonpublicfundingtosetupaninfrastructure,whichcontinuesforoperationalcostswithroughlyhalfofrespondentsreliantonpublicfundingtocovermorethan70%ofthecostoftheiroperations(Figure6.5).Thisislikely

tobeanunderestimationbecausethreequartersofrespondentsarebasedininstitutionssuchasHEIsorPSREsandarereliantontheirhostorganisationforaproportionoftheircosts(seeabove).Thismakesattributionoffundingsourcemorechallengingtoquantifyprecisely.

OperatingcostsarefundedmostlythroughUKsourcesofpublicfunding–theaveragenationalinfrastructurecovers73%ofitsoperatingcostswithUKpublicfunds(Figure6.6).EUfundingmeets7%oftheoperatingcostsofnationalinfrastructuresand15%ofinternationalinfrastructures.Itistargetedtowardtheearlystagesofinfrastructures’lifecycles–bringingnetworkstogether,planningandpreparation.TheEUdoesnotfundsignificantoperationalcostsbutitdoesfundaccessandopening

0%

5%

10%

15%

20%

25%

30%

<2m 2m - <6m 6m - <14m 14m - <30m 30m - <62m ≥62m

Infrastructure set-up capital cost (£ million)

0%

10%

20%

30%

40%

50%

≤10% 11–30% 31–70% 71–90% >90%

% reliance on funding from UK public sources

Establishment Operations

Figure 6.4. Distribution ofinfrastructure set-upcapital cost(infrastructuresestablished since2010).

Figure 6.5. Degreeofrelianceonpublicfundingfortheestablishmentandoperationsofinfrastructures.

Page 42: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

42

73%

7%

20%

59%

15%

26%

UK public sources

EU funding sources

Other

16%

6%

3%

56%

11%

9%

Government department

Innovate UK

Arms-length body

Research Council

Devolved Administration funder

Other

InternationalinfrastructuresNationalinfrastructures

Figure 6.6.Sourcesoffundingfortheoperationalcostsofinfrastructures. Figure 6.7. Primarysourceofpublicfundingforinfrastructures.

59%

15%

26%

UK public sources

EU funding sources

Other

16%

6%

3%

56%

11%

9%

Government department

Innovate UK

Arms-length body

Research Council

Devolved Administration funder

Other

16%

6%

3%

56%

11%

9%

Government department

Innovate UK

Arms-length body

Research Council

Devolved Administration funder

Other

upinfrastructurestointernationalusersandreleasingtheinnovationpotentialofoperatinginfrastructures.Wherefurtherinformationwasgivenaboutthe‘other’sourcesofoperationalfunding,thiswassplitbetweencommercialactivitytogenerateincome,industryandcharitablefundingforprojects,donationsandphilanthropicsources,internationalresearchorganisationfunding(oftenviausersfromthosecountriestravellingtoaccessUKinfrastructures)andsomelocalauthorityfunding.Industryfundingwasthemostprevalentaccountingfor47%ofthe‘other’sources.

6.3PrimaryfundingsourceTheprimarypublicfundingsourcewasoverwhelminglytheResearchCouncils(Figure6.7),covering56%ofinfrastructures.TherelianceontheResearchCouncilsincreasedto62%whenconsideringonlythoseinfrastructuresmostdependentonpublicfundingfortheiroverallcosts(i.e.reliantfor>70%ofestablishmentcosts).ThisreflectstheResearchCouncils’roleinsupportingthetypesofunderpinninginfrastructureconsideredinthisreportandtheeaseofattributionoffundingthroughgrantsawardeddirectlytoaninfrastructure.Theremaining44%recordtheirprimarypublicfunderaseitherInnovateUK,agovernmentdepartment,anarms-lengthpublicbodyorDevolvedAdministrationfunder.Thegovernmentsourcesmostfrequentlymentioned

aseitheraprimaryfunderoracontributorweretheDepartmentforBusiness,EnergyandIndustrialStrategy(BEIS),theDepartmentforDigital,Culture,MediaandSport(DCMS),theDepartmentofHealth&SocialCare(DHSC),theDepartmentforEnvironment,FoodandRuralAffairs(Defra)andlocalsources(alocalenterprisepartnershiporalocalauthority).Withinthe‘other’categorymanyreceivefundingfrommultiplesources,includingEUfundingstreamsandcharitablesourcesalongsidefundingfromResearchCouncilsorauniversity.

Theroleofresearchcapitalfundingprovideddirectlytouniversitiesthroughdevolvedfunders(theScottishFundingCouncil,HigherEducationFundingCouncilforWales,DepartmentforEmploymentandLearningNorthernIrelandandHigherEducationFundingCouncilforEngland,nowResearchEngland)iscomplex18,19,andlikelytobeunder-reported.Somerespondentsreportedoracknowledgedthisfundingstream.However,othersthatwerehostedwithinuniversitiesdidnotincluderesearchcapitalfundingintheirfundingsources.Itislikelythatmanyofthesedobenefitfromthisdevolvedfunding,althoughthepreciselevelofsupportwillbesubjecttohowfundsaremanagedwithinindividualuniversities.Universitiesreceiveincomefrommultiplesourcesanditwasnotpossibletoexplorethepreciseallocationof suchfundsthroughthisquestionnaire.

Page 43: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

43

Chapter 7: Measuring usage and capacity

Page 44: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

44

7.1UsageMeasuringusageandcapacityiscomplexgiventhediversityofinfrastructuresandrangeofaccessmodels.Infrastructuresthathavephysicalresourcesorprovidefacilitiesandequipmentoftenrecordtheaccessofindividualsorgroups,ormaycountthenumberofexperimentsperformed.Thereareusuallyupperlimitsonthenumberofusersthattheycansupport,e.g.timelimitedequipmentusage,oraccesstoacollectionlimitedbytheavailabilityofanexpertabletointerpretthatcollection.Suchinfrastructurescanbethoughtofashavingtheircapacitycappedinsomeway.Ontheotherhand,somevirtualinfrastructurescanoperateopenaccessmodelsandmayonlybelimitedbythebandwidthoftheirnetworkorcomputerarchitectures.Ratherthancountindividuals,groupsorexperiments,theseinfrastructuresmayreportusagebythenumberofdownloadsperformedandmayhavemillionsof‘users’.Theseinfrastructurescanbethoughtofashavinganuncappedcapacity.Nearlythreequartersofinfrastructureshavetheircapacitycappedinsomewayand12%areuncapped(Figure7.1).

Theapproachtomeasuringusagevarieswidelybysector.Infrastructuresintheenvironment,computationalande-infrastructureandBH&Fsectorsreportedthattheymadegreateruseofvirtualaccessmechanisms.Theseareasoftendeveloporprovideaccesstolargedatasets.TheaveragenumberofdownloadsperyearwithintheSSAHandBH&Fsectorswasinthe85,000to110,000range,butfortheenvironmentandcomputationalande-infrastructuresectorsitwasaround200,000,000downloadsperannumandrepresentedover99%of‘users’.ThePS&Eandenergysectorsconverselydidnothaveinfrastructureswhereusersweremeasuredbydownloadsorothervirtualmeans.

Allsectorshadinfrastructuresprovidingphysicalaccesstousersrecordedaseitherindividualresearchers,researchgroupsornumbersofexperiments(Figure7.2).Infrastructuresaveraged200-5400individualusersperinfrastructureperannuminallsectorsexceptforSSAH,whichrecordedsignificantlygreaternumbers.Thisisdrivenbyfootfallanddigitalaccesstoarchives,museums,librariesandothercollections.

72%

12%

16%

Capped

Uncapped

Did not answer

Figure 7.1.Percentageofinfrastructuresthathavetheircapacitycappedinsomeway(e.g.timeonequipment)comparedtothosethathaveuncappedcapacity(e.g.openaccessdatadownloads).

0%

20%

40%

60%

80%

100%

BH&F PS&E SSAH ENV Energy E-INF All

Individuals Groups Experiments Downloads/hits Other

Figure 7.2.Percentageofinfrastructuresineachsectorthatmeasureusage accordingtoeitherindividuals/groups,experimentsperformed,downloads/hitoranothermeasure.

72%

12%

16%

Capped

Uncapped

Did not answer

Page 45: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

45

7.2MeasuringcapacityAninfrastructure’sapproachtocapacitymeasurementisdependentonwhattheyaresetuptodo.Itcanbefocusedonmeasuresofoutputor,incaseswherethisisdifficult,theabilitytodeliverproductsorservices.Unlimitedusagecanoftenbemadeofvirtualresources,suchasdatasets.

Thevaryingapproachestocapacitymeasurementdescribedinresponsestoourquestionnaireshavebeengroupedintosevenbroadcategories:

Output capacity: howmuchtheinfrastructureproduces,e.g.samplesprocessed,surveysconducted,dataproduced

Operating/instrument/experimenttime(hours,days,weeks):the‘up-time’of theinfrastructure

Numberofusers/experiments:thenumberofusers/experimentsthatcanbeservedorfacilitated

Space/equipment/resourceavailability: theamountofthecapabilitiesneededbyresearchers/innovatorsthattheinfrastructurecanprovide

Staff availability:thenumberofstaff, orstafftime

Computingpower:specificfore-infrastructure

Onlineresources/collections/data:capacitycannotbemeasuredandnearunlimitedusecanbemadeoftheinfrastructure

Thesecategoriesarenotmutuallyexclusiveandmanyinfrastructurestalkedabouttheircapacityinmultipleways;forexample,operatingtimeandstaffavailabilitycouldbepairedduetomachinesbeingunusablewithoutkeystaff.Figure7.3showsthepercentageofinfrastructuresineachsectorthatdescribedtheircapacityaccordingtotheabovecategories.Thepercentageofinfrastructuresthatdidnotanswerthequestionisalsoshown.Whilstthequestionwasoptionalandsomenon-responsewasexpected,non-responsewasalsodrivenbycapacitymeasurementbeinglessmeaningfulforcertaininfrastructures,includingthosewithnoconstraintsonuse(e.g.someopenaccessonlineresources).

Differencesinsectorresponsesaboutmeasuresofcapacityareindicativeofthetypesofinfrastructureineachsector.Infrastructuresintheenergy,PS&Eorenvironmentsectorscommonlyspokeaboutcapacityintermsofoperating/instrument/experimenttime.About30%ofBH&Finfrastructuresmentionedstaffavailabilitywhendescribingcapacity.Arelativelyhighpercentageofcomputationalande-infrastructuresmentionedspace/equipment/resourceavailability,whichispartiallyrelatedtovirtualstoragespace,alongsidemeasuresofcomputingpower.About30%ofoperationalSSAHinfrastructuresdidnotanswerthequestionaroundcapacitymeasurement,whichcouldreflectthechallengeofseparatingvisitornumbersforengagementpurposeswiththoseforresearchpurposes(e.g.inamuseumorlibrary),orthatfootfallisnotmeasured.

Page 46: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

46

Figure 7.3.Howinfrastructuresmeasurecapacity.Someinfrastructuresdescribedcapacityinmultipleways,sopercentagesdonotsumto100%.

0%

10%

20%

30%

40%Output capacity

Operating/instrument/

experiment time

Number ofusers/

experiments

Onlineresources/

collections/data(unlimitedcapacity)

Question notanswered

Computingpower

Staff availability

Space/equipment/resource

availability

BH&F

0%

10%

20%

30%

40%Output capacity

Operating/instrument/

experiment time

Number ofusers/

experiments

Onlineresources/

collections/data(unlimitedcapacity)

Question notanswered

Computingpower

Staff availability

Space/equipment/resource

availability

E-INF

0%

10%

20%

30%

40%Output capacity

Operating/instrument/

experiment time

Number ofusers/

experiments

Onlineresources/

collections/data(unlimitedcapacity)

Question notanswered

Computingpower

Staff availability

Space/equipment/resource

availability

PS&E

0%

10%

20%

30%

40%Output capacity

Operating/instrument/

experiment time

Number ofusers/

experiments

Onlineresources/

collections/data(unlimitedcapacity)

Question notanswered

Computingpower

Staff availability

Space/equipment/resource

availability

SSAH

0%

10%

20%

30%

40%Output capacity

Operating/instrument/

experiment time

Number ofusers/

experiments

Onlineresources/

collections/data(unlimitedcapacity)

Question notanswered

Computingpower

Staff availability

Space/equipment/resource

availability

Energy

0%

10%

20%

30%

40%Output capacity

Operating/instrument/

experiment time

Number ofusers/

experiments

Onlineresources/

collections/data(unlimitedcapacity)

Question notanswered

Computingpower

Staff availability

Space/equipment/resource

availability

ENV

Page 47: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

47

7.3ManagingcapacityAlmostnoinfrastructurecanrunat100%capacityfor100%ofthetime.Weaskedinfrastructurestodescribetheiraimedcapacitylevels,i.e.theleveltheyaimtorunat.Aimedcapacitycanbethoughtofasapercentageofthemaximumtheoreticalcapacityoftheinfrastructure.Thetheoreticalmaximumcapacityisnotalwaysfeasibleordesiredparticularlywhenconsideringinfrastructuremanagementoveralongtimeperiod.Manyinfrastructuresrequireblocksofdowntimeformaintenanceorupgrades(e.g.anengineeringfacility)ormustalwaysrunnon-outputprocessesinthebackground(e.g.monitoringandaccountingprocessesrunningonahighperformancecomputing(HPC)machine).

Sparecapacitycanbethoughtofasthedifferencebetweenaimedcapacityandthelevelthataninfrastructureisrunningat.Forexample,afacilitymayaimtorunfor200daysperyear.Ifitaveragesrunningfor137daysayear,itssparecapacitywouldbe63/200daysor31.5%.Ouranalysisofsparecapacityhassomecaveatsassparecapacitycanbedifficulttomeasure.Statisticsalsomayhavebeeninflatedbymisinterpretationofthedifferentcapacitymeasuresaskedforintheinfrastructurequestionnaire.

Weexaminedthe157infrastructuresthatbeganoperatingbefore2016whichprovidedfiguresforcapacity.Overhalfofthesewereoperatingattheiraimedcapacityandjustunderhalfhadsomesparecapacity.Thelikelihoodofhavingsparecapacityvariedaccordingtohowcapacitywasmeasuredandbysector(Figure7.4).Forexample,59%ofinfrastructuresthatmeasuredcapacityby‘up-time’hadsparecapacity,whilst29%ofinfrastructuresthatusedstaffingasameasuredid.

0% 10% 20% 30% 40% 50% 60% 70%

Operating instrument/experiment time

Space/equipment/resource availability

Number of users/experiments

Output capacity

Staff availability

Computing power

Figure 7.4. Percentageofinfrastructureswithsparecapacitybasedoncapacitymeasure.

Page 48: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

48

Case study: The Large Hadron Collider

TheLHCatCERNistheworld’slargestandmostpowerfulparticleaccelerator.Tokeeptheacceleratoroperatingsafely,effectivelyandreliably,itisshutdownoverthewintermonthsformaintenanceandupgrades.Furthermore,everyfourtofiveyearstheacceleratorexperiencesalongshutdownthatcanlastovertwoyears.TheseshutdownsareessentialforensuringtheLHCoperatesatitsoptimumandisdevelopedtocontinuouslysupportground-breakingscience.

ThecaseoftheLHCdemonstratesthetrade-offbetweenmakingfulluseofaninfrastructureintheshortrunandsustainingandmaximisingitspotentialinthelongrun.Forgoodreasonsmanyinfrastructuresdonotaimtooperateallofthetime.

CERN

Therearemanypossiblereasonsforsparecapacity.Infrastructuresthatareoperationalbutstilldeveloping(e.g.addingnewcapabilities)maybeinaramping-upphase.Itcantaketimeforinfrastructurestoincreaseoperationallevelstoaimedcapacityorfullyexploitnewresources.Evidenceforsparecapacityduetorampingupincludesalmosttwiceasmanyinfrastructuresoperatingsince2012havingsparecapacitycomparedtoolderinfrastructures.Additionally,75%ofinfrastructureswithsparecapacityobservedincreaseddemandforphysicalaccesswithinthelasttenyears.

Sparecapacitycanalsobeduetogenuinelackofdemand,forexampleifthereisover-supply.Asinfrastructuresage,technologicaladvancesandtheemergenceofsubstituteinfrastructurescouldcausedemandtodecrease.Inthesecaseswewouldexpecttoseeadeclineindemandalongsidereportsofsparecapacity.Overall,onlyfiveofthe157infrastructures(3%)withsparecapacityreportedthatdemandfortheirinfrastructurehaddeclinedwithinthelast tenyears.

Page 49: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

49

Case study: The Material and Chemical Characterisation facility (MC2)

MC2attheUniversityofBathincorporatesservicesfornuclearmagneticresonance(NMR),massspectrometry,X-raydiffraction,thermal/elemental/surfaceanalysis,dynamicreactionmonitoring,electronmicroscopy,bio-imagingandcellanalysis,onscalesrangingfromthemoleculartotheorganismlevel.Theinfrastructuremeasurescapacityintermsofaccessiblehoursofoperationandaimstooperateat75%capacity(variablebyinstrument).Theremaining25%ofinstrumenttimeissetasideforinstrumentset-up,methoddevelopment,maintenance,staff/usertrainingandoutreachactivities.

WhilstMC2aimstooperateatanaverageof75%capacityacrossalloftheinstrumentation,itwilloperatebelowthisforsome.Thelevelofusevariesmarkedlybetweeninstruments,dependingonitspurpose,withsomeinstrumentsoperatingoptimallyat30%capacityallowingfornear-real-timeaccessandanalysis,e.g.openaccessNMRsystems,whilstotherinstrumentsareusedat~90%capacityforexperimentswhichcanbescheduledseveralmonthsinadvance.Thisemphasisesimportantreasonsforsparecapacity–theavailabilitytoaccommodateurgentwork,aswellasamoreresponsiveserviceforthecommunityofuserswhereneeded,e.g.inreactionmonitoring.

7.4 Barriers to performanceThemajorityofthebarrierstoperformanceidentifiedwerecommonacrossallsectors.Figure7.5clustersresponsesunderthemainthemes.Themostfrequentlymentionedconcernswerearoundfundingfollowedbyshortagesofpersonnelandshortageofkeyskills,whichwereofteninterlinked.Retentionofkeypeople,particularlydigital/data/technicalskill-setswasarecurringbarrier.Manyrespondentslinkedthistotheshort-termnatureoffunding,meaningitwasonlypossibletooffershort-termcontracts,whicharelessattractivewhenmorecompetitivesalariesareavailableintheprivatesector.

Fundingissues.Inadditiontocommentsontheleveloffunding,manyresponsesflaggedtheshort-termnatureoffunding,andtheuncertaintythisbrings,asacriticalbarrierwithimplicationsforoperationandstaffrecruitment/retention.Otherscitedtheneedfor‘batteriestobeincluded’andwereconcernedaboutthecomplexityofthelandscape.Someweregrapplingwiththerecentchangestothefundinglandscapeandhowtoreacttodifferentfundingstructures.Manyraisedconcernsabouttheimplications

ofexitingtheEUexitforfunding– particularlythoseininternationally significantinfrastructures

Personnelandskillsshortages.Oftentiedtoneedsforoperationalfunding,therewerenotablementionsofashortageofdatascienceandanalyticalskillsandsoftwareengineersacrossresponses,regardlessofsector.Thechallengeofshort-termcontractswasalsomentioned

Datarelatedchallenges.Themostfrequentlyraisedissuewasthatofaccesstoandsharingofdata

Managingcomplexpartnerships.Thistendedtobecitedmostlybythoseinvolvedinmulti-countryormulti-funderinfrastructures

Other barriersreferencedincludedarangeofoperationalortechnicalissuesspecifictothetypeofinfrastructure,challengesassociatedwithinter-andmultidisciplinaryworking,governmentcontrolsandregulatorybarriers,competitionwithotherinfrastructures(includingprivatesector)andarangeofculturalissueswithinorganisations,withinacademiaorlinkingtobusiness

Uni

vers

ity o

f Bat

h

Page 50: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

50

Respondentswerealsoaskedabouthowthesebarriersmightchangeoverthemid-term.Responseswerelargelythesamewithstabilityoffunding(includingworriesovertheshort-term,unpredictablenatureoffunding)andstaffing-relatedissuescitedmostfrequently.However,theemphasisshiftedslightlywithgreatermentionsofbuildingcapabilitywithintheinfrastructure,includingbarrierstostaffsuccessionplanning(attraction/retentionconcerns),worriesaboutmaintainingexcellenceinthefaceofcompetition(internationally,fromotherinfrastructuresandtheprivatesector),abilitytobuildtheusercommunityandhowtoincreasecapacitytoengagebusinessusers.

Therewerealsoincreasedmentionsofuncertaintyoverhowtheeconomywillevolve,impactofnewtechnologiesandhowtheresearchenvironmentitselfwillchangewitha‘lackofstrategy’asaconcern.Issuesrelatingtothemanagementanduseofdatacontinuedtoberaisedbutwithagreateremphasisonpotentialfuturerestrictionstoaccess,standardsandpublictrust.

Infrastructuresalsoindicatedhowtheyweremitigatingtheserisks.Thisincluded:

Seekingtodiversifyfundingstreams

Arangeofstrategiestomanagesuccessionproblems,toincreasetheattractivenessofrolesandbringyoungtalentintotheinfrastructures.Theseoftenfocusedoncontinuousprogrammesofrecruitment,useofapprenticeships,seekingbetterrecognitionoftechnicalstaffanddevelopmentofothernon-payoffers

Puttingresourceintointernalandexternallyavailabletrainingprogrammes

Activelyseekingtoworkwitharangeofpartnerstoformcollaborationsandsharerisks,costsandtechnical/capacitychallenges(i.e.academicandprivatecollaborations)

Proactiveworktoraiseawarenessoftheinfrastructurecapabilityandsupportgrowthofusercommunities

Engagementwithgovernmentandotherpartiesinrelationtobroaderconcernsbeyondtheremitoftheinfrastructure,suchasdataaccessregulation

27%

17%

16%

8%

8%

7%

4%4%

2%1%

1%Funding issues

Personnel shortage

Skills/knowledge shortage

Data-related challenges

Technical or operational barriers

Uncertaintity around EU exit (funding,staff, collaborations)Government policy uncertainty orregulatory issuesCapacity to meet demand

Age of equipment

Managing complex partnerships/ engagingnew partnersOther

Figure 7.5. Barriersandconcernscitedbyinfrastructures.

27%

17%

16%

8%

8%

7%

4%4%

2%1%

1%Funding issues

Personnel shortage

Skills/knowledge shortage

Data-related challenges

Technical or operational barriers

Uncertaintity around EU exit (funding,staff, collaborations)Government policy uncertainty orregulatory issuesCapacity to meet demand

Age of equipment

Managing complex partnerships/ engagingnew partnersOther

Page 51: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

Case study: Foundries, a fertile training ground

Oneofthehallmarksofthesyntheticbiologycommunityhasbeenitsdrivetowardsgreaterdemocracyamongbothparticipantsandbeneficiaries.Thisextendstoskillsandtrainingbutwhilstweareaddressingthegapatgraduatelevelandbeyond,thereremainsapressingshortageofappropriatelytrainedtechnicians.

NationalfacilitiessuchasEdinburgh’sGenomeFoundry,oneofthelargestautomatedgenomeassemblyplatformsintheUK,areaninvaluabletraininggroundforearly-careerresearchersinstate-of-the-arttechniques.Alongsidethedevelopmentanddeliveryofawidevarietyofgenomeassemblyprojects–fromnaturalproductbiosynthesistogenetherapy–thefoundryhashostedmanyguests,frombothacademicandindustriallabs,allkeentobetterunderstandtheroleofautomationinsyntheticbiology.

TheUKCentreforMammalianSyntheticBiology,basedattheUniversityofEdinburgh,hasstartedtoaddressthegapinentry-levelskillsandtechniciansbyhiringschool-leaversasmodernapprenticesinitsspecialistresearchfacilities.TheapprenticesworkinthelabwhilegainingformalqualificationsasalabtechnicianthroughdayreleasetoFifeCollege.Aftercompletinghistraining,thecentre’sfirstapprentice,ScottNeilson,beganworkintheEdinburghGenomeFoundry.Therehehasbecomeindispensable,acquiring‘greenfingers’inoperatingandmaintainingthehighlysophisticatedplatformforDNAassembly.ScottiscurrentlyworkingtowardsaHigherNationalDiplomaandpotentially,inthefuture,apart-timedegree.Hehasalsoprovedtobeanadeptinstructorandshareshisnewly-gainedexpertisewithfoundrycustomers.

Uni

vers

ity o

f Edi

nbur

gh

51

Page 52: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

52

Chapter 8: Links to the economy

Page 53: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

53

8.1WorkingwithbusinessesOverthreequartersofinfrastructuresreportedthattheyconductedsomeworkwithUKbusinessesand18%statedthatallormostworkwasdirectlywithUKbusinesses(Figure8.1).Theenergy,PS&Eandcomputationalande-infrastructuresectorsreportedthehighestfiguresforengagement.However,theinterpretationofthequestionmayhavevariedbysector.IntheSSAHsectorworkingwithbusinessesintheclassicalsenseislesscommonbutworkingwithgovernmenttoinformpublicpolicyiscommon(applyingto75%ofinfrastructures).

Athirdofinfrastructureshaveabalancedportfolioofactivitiesacrossdiscoveryandcommercialisationresearch(Figure8.2). Acrosssectors,energyhadthegreatestproportionofitsworkcommerciallyfocused(25%),considerablyabovetheothersectors,whichrangedfrom3-10%.

Theknowledgeandinnovationrolesofinfrastructuresmakeimportantcontributionsacrosstheeconomy.WeaskedinfrastructurestoselecttheeconomicsectorsthattheycontributetofromalistoffortyeconomicsectorcategoriesbasedongroupedStandardIndustrialClassificationdivisions20(seeAnnexBfordetails).ResearchandeducationwerethetopsectorsidentifiedwhichistobeexpectedgiventheirroleingeneratingnewknowledgeandtheirassociationwithHEIs.ThetoptenothereconomicsectorsselectedareshowninTable8.1.Twenty-eighteconomicsectorswereselectedbyeightyormoreinfrastructures,andallofthefortyeconomicsectorcategorieswereeachidentifiedbyatleastfifteeninfrastructures,demonstratingthebroadeconomicandsocietalimpactgeneratedbyinfrastructures.

0%

10%

20%

30%

40%

50%

BH&F PS&E SSAH Energy ENV E-INF AllMostly discovery More discovery Balanced More commercialisation

Figure 8.2. Workatinfrastructuresonadiscovery-to-commercialisationspectrum.

0%

10%

20%

30%

40%

50%

60%

70%

80%

All work Most work Some work Not at all

BH&F PS&E SSAH Energy ENV E-INF

Figure 8.1. ExtenttowhichinfrastructuresworkwithUKbusinesses.

Page 54: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

54

Figure 8.3. Top10economicsectorsthatresearchandinnovationinfrastructureseethemselvescontributingtoorworkingwith(excludingresearchandeducation).

Researchandinnovationinfrastructureslocatedincloseproximitycanhavehada‘clustering’effect,fosteringinnovationandincreasinglinkswithindustry.ExamplesofaninfrastructureclustercouldincludeacampussuchastheBabrahamResearchcampus,auniversityconsortiumsuchastheN8researchpartnership,orascienceparksuchasCulhamScienceParkwhichhostsCulhamCentreforFusionEnergy.

Clustersaroundresearchandinnovationinfrastructurescanhavemanybenefits,includingtothelocaleconomy,increasedskillsandjobstoaregionandattractingtalentforacademiaandindustry.Aclustercancreatean‘innovationecosystem’withinaregion,thusacceleratingthedevelopmentoftechnology andthecommercialisationofprojects.

Case study: Proximity to drive innovation: the Cambridge Biomedical Campus

TheCambridgeBiomedicalCampusbringstogetherworld-leadingdiscoverysciencealongsideinfrastructures,clinicalresearch,teachinghospitalsandpharmaceuticalandbiotechnologycompaniestocreateavibrantclinicalresearchcommunityattheforefrontofdiscoveryscienceandmedicine.Thiscampusprovidesanunparalleledpatient-centredapproachtoresearchbyworkingalongsideNHSandclinicalscientistsandpartnerstoeffectivelyplanandmanageclinicaltrials.

Theinitialcampusdatesto1962whenthenewAddenbrooke’sHospitalandtheMedicalResearchCouncil(MRC)LaboratoryforMolecularBiology(LMB)relocated.Anewvisiontobuildapatient-centricresearchcommunitycomprisingacademics,cliniciansandbusinesswasannouncedin1999.Thefirstphaseexpandedthecampustohouse,amongothers,theglobalheadquartersforAstraZeneca,theUniversityofCambridgeSchoolofClinicalMedicineandthenewLMBbuildingwhichopenedin2013.TheLMBhasmaderevolutionarycontributionstosciencesuchaspioneeringthesequencingofDNAandthedevelopmentofmonoclonalantibodies.TwelveNobelPrizeshavebeenawardedforworkcarriedoutbyLMBscientists.

Clusteringinfrastructureswithclinicalfacilities,businessesandresearchandinnovationinstitutionsbringspeopletogethertoaccelerateinnovationaswellasprovidingaccesstotechnologyplatformsandequipment.Thisinnovativeenvironmentsupportsteaching,discoveryresearch,patientcareandcommercialR&Dincloseproximity,allowingideastobediscussedandprogressedandsuccessfulresultstobetranslatedintotangiblebenefitsforpatientsmoreefficiently.

Health Services182 (38%)

Energy Utilities161 (34%)

Instrumentation Manufacturing

156 (33%)

Computing & Data Services

140 (29%)

Public Policy198 (42%)

PharmaceuticalsManufacturing

134 (28%)

Electronic Manufacturing

112 (24%)

Agriculture151 (32%)

Communications & information143 (30%)

Aeronautical Transportation

106 (22%)

Page 55: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

Case study: V&A collections inspire the development of sustainable fibres

TheBusinessofFashion,TextilesandTechnologyCreativeR&DPartnershipisoneofnineclusters(plusonepolicyandevidencecentre)tobefundedunderthemulti-millionpoundCreativeIndustriesClustersProgramme.LedbyLondonCollegeofFashion,UniversityoftheArtsLondon,thefive-yearprojectwillfocusondeliveringinnovationwithintheentirefashionandtextilesupplychain,withspecialattentiongiventopositioningindustryasagentsofnewtechnologyandmaterialsdevelopment.

DrawingontheV&A’srichcollectionofhistoricaltextilesanddress,V&AcuratorsandtextilesconservatorswillbeworkingwithcolleaguesfromLondonCollegeofFashion,UniversityoftheArtsLondon,andtheSchoolofDesign,LeedsUniversityononeparticularproject.Thisprojectwillusenineteenthcenturydyebooks,recipes,recordsoftheanimalandwasteproductcollections,historicalfibresandtextilesasastartingpointfordevelopingnew,sustainablysourcedandproducedfibresandcompositematerials.

ArecentexhibitionattheV&AentitledFashionedfromNaturefocusedonproductionmethodsandrawmaterials,aswellastheireffectoncommunitiesandthenaturalenvironment.Itshowcasedexamplesofpioneering‘alternativefibres’manufacturedinEuropeinthenineteenthandearlytwentiethcentury,usingmaterialssuchasspunglass,pineappleleaffibreandotherorganicandwastematerials,whichmightprovidepointerstocreatingamoresustainablefashionindustrytoday.

Theaimofthisprogramme21istofosteranew,creativebusinesscultureinwhichfashion,textileandtechnologyenterprises,fromSMEstomultinationalcompanies,canuseR&Dasaroutetogrowth.Specialattentionwillbeplacedonpositioningindustryasagentsofresearchanddevelopmentintonewmaterials,technologyandsustainablebusinesspractices.

Vict

oria

and

Alb

ert M

useu

m

55

Page 56: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

56

Chapter 9: Biological sciences, health and food sector

Gerd Altmann from Pixabay

Page 57: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

57

Researchandinnovationinthebiologicalsciences,healthandfoodsectorusesanarrayofworld-classinfrastructuresandcapabilitiestounderstandthecomplexitiesofform,functionandinteractionswithinandbetweenorganismsandtotranslatethesediscoveriesforsocietalandeconomicbenefit.Thelifesciencescommunityexploresfundamentalscientificquestionsbyutilisingcomplexexperimentalapproachesthatgeneratevastamountsofdata,oftenfromhigh-throughputapproachesandbyapplyingthesedatafortheimprovementofhealth,agriculture,theenvironmentandsocietyatlarge.Asthecomplexityofapproacheshasincreasedandadvancesintechnologyhaveaccelerated,sohastheneedtoworkwithinandacrosstraditionaldisciplinaryboundaries.Scientistsacrossdifferentfields,fromclinicianstoengineersandfrombiologiststosocialscientists,areconvergingtosolvethepresentandfutureproblemstowhichoursocietyis,orwillbe,exposed.

WithintheUK,therearemanystakeholderssupportingthedeliveryoflifescienceresearch.WithinUKResearchandInnovationmuchofthisiscoveredbytheremitsoftheBiotechnologyandBiologicalSciencesResearchCouncil(BBSRC)andtheMRC.Inaddition,thisareaissupportedbyotherpublicsectororganisations,industryandthethirdsector,including:

TheNHSandotherhealth-relatedgovernmentalbodies (e.g.PublicHealthEngland)

DevolvedAdministrations(e.g.NorthernIrelandinvestsheavilyinfoodsafety, Scotlandinanimalphenotyping,Walesinagricultureandimaging)

ClinicalinfrastructuressupportedbyUKhealthdepartments,forexampletheNationalInstituteforHealthResearch(NIHR)22 fundedthroughtheDHSC

Biomedicalresearchcharities23

Industrial/commercialpartnerswhosupportinnovationandresearch(e.g.Syngenta)

Farmsandagriculturalnetworks(e.g.TheRoslinInstitutecollaborateswithfarmerstoperformresearch/collectdataontheirland)

TheUKiswellconnectedwithEuropeaninfrastructuresandisapartnerinsixofthesixteenHealthandFoodResearchInfrastructuressupportedbyESFRI24 .

9.1 Current landscapeInfrastructuresintheBH&Fsectorincludedatabanks,biologicaltissuebanksandothercollectionsofbiologicalsamples,integratedclustersofsmallresearchfacilities,high-capacity/throughputtechnology,high-costcutting-edgeanalyticalinfrastructure,high-fidelityimagingtechnology,facilitiesforanimalandplanthousing,breedingandphenotyping,networksofcomputinginfrastructures,databasesandresearchcohortsofvolunteers.Ofthe751infrastructureswitharegional,nationalorinternationalscope,244reportedtheirprimarydomainastheBH&Fsector.Inaddition,53%ofotherrespondentshighlightedthattheirinfrastructureshadrelevantlinkstotheBH&Fsector(Figure9.1).Thishighleveloflinkageemphasisestheengagementandinvolvementofscientistsfromthephysical,engineering,computational,mathematicalandsocialsciencesintacklingresearchchallengesacrossthelifesciencescommunityandtheimportanceofchallengesinthelifesciencesformingpartoftheaimsofawiderangeofinfrastructures.

Accordingly,thesuiteofinfrastructuresintheBH&Fsectorarediverseinnatureandarecomprisedofdifferenttypesoffacilitiesandcapabilities.Theyinclude:

Knowledge-basedresources,suchasUKBiobank26,whichisanationalandinternationalhealthresourcethatprovidesresearcherswithaccesstoclinicalandbiomedicalinformationon500,000volunteerstoimprovetheprevention,diagnosisandtreatmentofserioushumandiseases

Distributed, major multi-user capabilities suchasELIXIR,thepan-Europeanresearchinfrastructureforbiologicalinformation,comprisingahubandnationalNodeswithtwenty-twomembersfromtwenty-onecountries.TheUKhoststheELIXIRhubattheWellcomeGenomeCampusandhasaUKnationalnodecomprisingfifteenUK-basedorganisations

Page 58: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

58

Networksofcutting-edgeprecisionequipment,suchasthoseestablishedthroughtheClinicalResearchCapabilitiesandTechnologyInitiative27,incloseproximitytoclinicalinvestigationandcarefacilitiesinordertoadvanceclinicalresearch

National centresaddressingresearchareasofnationalsignificance,forexamplesupportingfarmingandagriculture,orsupportingwellbeingthroughthedevelopmentoftheannualinfluenzavaccine.ExamplesincludetheWorldInfluenzaCentreattheFrancisCrickInstitute28andthenationalandinternationalreferencelaboratoriesforviraldiseasesatThePirbrightInstitute29

Food Nutrition And Health - 155

Biotechnology - 175

Environmental Science - 211

Neuroscience And Mental Health - 115

Drug Discovery - 135

Healthy Ageing - 128 Cohorts/population Studies - 120

Clinical Studies - 116

Cancer - 132

Computational Biology And Bioinformatics - 150

Forestry - 61

Ecology - 112

'omics - 175

Chemical Biology - 116

Molecular Biology - 189

Microbiology - 160

Biochemistry - 172

Biophysics - 107

Structural Biology - 112

Target Validation - 89

Crop Science And Agriculture - 141

Bio/biomedical Imaging - 136

Biological Techniques And Methods - 241

Bioenergy And Industrial Biotechnology - 99

Synthetic Biology/gene Editing/bioengineering - 98

Animal Health/veterinary Science - 83

Plant Science - 145

Evolutionary Biology - 103

Cell Biology - 132

Systems Biology/mathematical Biology - 126

Physiology - 93

Immunology - 103

Developmental Biology - 85

Stem Cells - 73

Regenerative Medicine - 73

Aquaculture - 57

Psychology - 64

Genetics - 161

SSAH72 E-INF

166

Energy57

ENV120

PS&E116

244BH&F

Figure 9.1. Overlap(co-occurrence)ofresearchandinnovationinfrastructuresbetweenthebiologicalsciences,healthandfoodinfrastructuressectorandothersectors.Thesizesrelatetotheproportionofinfrastructuresthatoverlap(co-occurrence)basedonthenumberofresponsesthatselectedeachsector.Therearestronginterdependencieswiththecomputationalande-infrastructure,physicalsciencesandengineeringandenvironmentsectors.Acknowledgement:Sci2Team25.

Figure 9.2. Breadthandoverlapofsub-disciplinesinbiologicalsciences,healthandfoodsector.Thesizeofthenodesrelatestothenumberofinfrastructuresthatselectedeachsub-discipline.Acknowledgement:Sci2Team25

Figure9.2illustratesthebreadthandoverlapofBH&Fsub-disciplinesthataresupportedbyinfrastructuresacrosstheUK,fromcropscienceandagriculturethroughtotargetvalidationfordrugdiscovery.Thesub-disciplines(representedbycolouredcircles)arebasedonthecategoriesusedbytheResearchCouncils’grantssubmissionsystem.

Page 59: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

59

Case study: Cohort data infrastructures

SomeoftheUK’soldestinfrastructuresarelongstandingdatacollections,e.g.the1936LothianBirthCohort.TheUKhousesmanyunique,historicalpopulationdatasetswhichwillgrowinhistoricalsignificanceovertime.Toensurethesedatacanbereusedinfutureyears,theyneedtobecuratedtoremainaccessibleastechnologychanges.

Thelargevolumeofpopulationdatabeinggeneratedinmodernstudiesandtheincreasingneedtolinkandintegratecomplexdatatosupporttheirinterpretationresultedinanewinformaticsresearchinstitute,TheFarrInstitute,beingestablishedin2012andanewsuccessorinstitute,HealthDataResearchUK,beingincorporatedin2017.Theseinvestmentswillsupporttheinterrogationoftraditionalclinical,biological,populationandenvironmentaldataandalsodatafromemergingdataformsforpublicbenefit,e.g.wearabletechnology.

Case Study: Rothamsted Research

Rothamstedisthelongestrunningagriculturalresearchinstitutionintheworld.ItishometotheLong-TermExperiments–theoldestcontinuousagronomic(field)experimentsintheworld–whichstartedbetween1843and1856andarestillrunningtothisday.Thesehistoricfieldexperimentscontinuetoserveasaninvaluableinfrastructureandscientificdataresource,whichremainsrelevantduetocarefulmanagementandapplicationofnewmethods.TheyincludestheBroadbalkWinterWheatExperiment,whichhasbeeninvestigatingwaysofimprovingtheyieldofwinterwheatthroughinorganicfertilisersanddifferentorganicmanuressince1843,providingauniquedataset(containing,forexample,172yearsofwheatgrainandstrawyielddataandsixty-nineyearsofweedsurveydata)andresultinginthepublicationofnearly600papers.

Roth

amst

ed R

esea

rch

Case Study: The National Virology Centre

ThecentreislocatedatThePirbrightInstitute(formerlytheInstituteofAnimalHealth),whichhasbeeninexistenceforover100years.ItwasinitiallyestablishedasacattletestingstationfortuberculosisandnowhousestheinfrastructureforoneoftheUK’sleadingvirusdiagnosticsandsurveillancecentres.Attheforefrontofinternationalvirusresearch,thesitehasbeenrecentlyredevelopedtoincorporateastate-of-the-arthigh-containment(SpecifiedAnimalPathogenOrderGroup4)laboratory,hometotheBBSRCNationalVirologyCentrewhichusesaninnovativegasketsystem,negativepressureandextensivehighefficiencyparticulatearrestance(HEPA)airfilterstopreventairescapingthebuilding.Thefacilityenablesscientiststoresearchdangerouspathogensandcombatzoonoticdiseasesthatcanspreadfromanimalstohumans(e.g.flu),highlycontagiouslivestockviruses(e.g.bluetongueinsheep,Marek’sdiseaseinchickens)andfutureviralthreats(e.g.Africanswinefevervirus).

UKR

I

Page 60: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

60

TheinfrastructuresthatrespondedtothequestionnaireswerelargelyUKResearchandInnovationfunded/part-fundedprojectsbutalsoincludedanumberofclinicalresearchinfrastructures,fundedthroughothermeans,e.g.theDHSC.TheUKhasarichclinicalinfrastructure,e.g.anetworkofbiomedicalresearchcentres,bio-resourcesandclinicalresearchfacilities,whichismoreextensivethanthepresenteddataindicate.

ManyUKinfrastructuresarefundedthroughcompetitiveprocesses.Theyareawardedfundsbasedonresearchstrengthssotendtobelocatedclosetotheacademicuserbase.Thelinktouniversitieswashighlightedinthequestionnairewith88%ofinfrastructuresbeinghousedwithinanotherlegalentity(e.g.universityorbespokeresearchinstitute).Ofthese,71%wereconsideredalong-termfacilityorresourceandtheremaining17%werereportedasbeingdependentuponshort-termexternalfunding(Figure9.3).

InfrastructuresintheBH&Fsectorarelong-terminvestments(Figure9.4).Almost20%ofBH&F

infrastructureshavebeenoperationalforovertwenty-fiveyearswith10%havingexceededfortyyears.AlthoughFigure9.4suggestsalargeincreaseinnewinfrastructuresinrecentyears,thedatadonotillustratethecomplexpictureregardingthelifecycleofinfrastructures,suchasthelevelofturnoverofexistinginfrastructures,therepurposing/re-developmentoflongstandingfacilities,ortheriseofnewinfrastructurestosupportandmaximisepreviousinvestments.

Overthreequartersofinfrastructuresexpectthattheiroperationallifespanwillexceedfifteenyearsandthemajorityoftheseexpectthistobeovertwenty-fiveyears.Thedifficultyinsecuringlong-termoperationalfundingisborneoutbythedisparityinthedatabetweentheenvisagedlife-spanofaninfrastructureandthetimehorizonforwhichaninfrastructureisconfidenttoplanahead.Nearlytwothirdsofrespondentswereunabletoplanoverthreeyearsinadvanceandfewerthan10%couldconfidentlyplanbeyondasix-yearhorizon.Thiswillhaveimplicationsforbothstrategicplanningandtheoverallefficienciesthatcouldbeachievedwithgreatercertaintyoffunding.

17%

71%

9%

3%

Short-term funded project

Long-term facility/resourcewithin another entity

National legal entity

International legal entity

0%

10%

20%

30%

40%

50%

60%

Up to 5 years 5-15 years 15-25 years Over 25 years

Years since operations began Expected operational lifespan

Figure 9.4. Numberofinfrastructuresgroupedaccordingtothenumberofyearssinceoperationsbeganandtheirexpectedoperationallifespan.

17%

71%

9%

3%

Short-term funded project

Long-term facility/resourcewithin another entity

National legal entity

International legal entity

Figure 9.3.Legalnatureofinfrastructuresinthebiologicalsciences,healthandfoodsector.

Page 61: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

61

AlmostaquarterofinfrastructuressupportingtheBH&Fsectoraredistributed(comprisedofmulti-sitefacilities)orvirtual(e.g.accesseddigitally)(Figure9.5).Withthese,thehighestcostoftenisnotintheinitialconstructionbutinthelong-termrecurringcostsrequiredforrunning,maintainingandreplacing/updatingfacilities.

Thefuturespreadandnatureofinfrastructuresmayalterasscientificresearchshifts.Untilrelativelyrecently,researchhaslargelybeendeliveredthroughindividualresearchgroupseachwithaccesstotheirownlocalequipmentandfacilities.However,thereisanincreasingshifttowardsholisticapproachesmorereliantonlargedistributedteamswithcommonaccesstoinfrastructure,viaamulti-userregionalor

nationalplatform.ThischangeinapproachishighlightedbytheincreasingnumberofESFRIinfrastructuresthattheUKisamemberof.

Collaborationis‘businessasusual’,with92%ofinfrastructuresreportingthattheycollaboratewithotherorganisations.Ofthese,80%collaboratebothnationallyandinternationally.OverseasusersareattractedtoUKinfrastructuresforavarietyofreasons(Figure9.6),includingtheneedtocollaborate,theuniquenessofinfrastructureshousedhereandco-locationwithcomplementaryfacilities,e.g.accesstoclinicaloragri-techfacilities.ThemajorityofBH&Finfrastructures(61%)alsoprovideresourcesorrelatedservicestothewidercommunity,beyondtheinfrastructureitself.

TheEuropeanInfrastructureforMultiscalePlantPhenomicsandSimulation(EMPHASIS)isapan-Europeandistributedresearchinfrastructureonplantandcropphenotyping.Itisacollaborationinvolvingtwenty-fourcountriesandisaprojectoftheESFRIroadmap.EMPHASISwilladdressresearchquestionsaimedatimprovingcropresiliencethroughin-depthunderstandingofcropperformanceandphysiologyinreal-worldenvironments,byenablingaccesstoasuiteofpan-Europeanfacilitiesinrelevantgeographical/climaticzones.UKinfrastructurerelevantinaddressingsuchchallengesincludes:

TheInstituteforSustainableFood(UniversityofSheffield)whichoffersnext-generationclimatecontrol,analyticalandplantdiseasephenotypingfacilitiesacrossdisciplinestoenablediscoveriesanddeliverreal-worldsolutionstoachievefoodsecurity

TheHounsfieldFacility(UniversityofNottingham)whichisamultidisciplinaryresearchcentreemployingstate-of-the-artimagingtechniques,suchasX-Raycomputedtomographyandlaserablationtomography,tounderstandplantandsoilinteractionsandtheirresponsestoenvironmentalstresses

ThenationalphenotypingnetworkPhenomUKwhichwillenablecoordinationataUKlevel.Thiswillbuildonnewadvancesinfundamentalengineeringandphysicalsciences,bringingthenecessarydisciplinesintoclosercontactandpromotinganintegrated,holisticviewofplantandcropphenotypingacrosstheUK

Case study: EMPHASIS and UK plant and crop phenotyping

Uni

vers

ity o

f She

ffiel

dU

nive

rsity

of N

ottin

gham

Page 62: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

62

68%

20%

4%8%

Single site

Distributed

Virtual

Mixed model Figure 9.5.Distributionofinfrastructuresaccordingtowhethertheyaresingle-sited,distributed,virtual,orhaveamixedmodelof morethanoneoftheseoptions.

0% 10% 20% 30% 40% 50% 60% 70%

Other

Similar capability has no capacity/long wait times

Part of a bi- or multilateral agreement

Availability of funding

Contractual

Location is not a consideration (e.g. for a digital service)

Higher quality than other options

Part of international collaboration

The 'package' (e.g. complementary facilities)

No similar capability elsewhere

Figure 9.6. Reasonsgivenforattractinginternationaluserstobiologicalsciences,healthandfoodinfrastructures.Optionswerenotmutuallyexclusiveandrespondentscouldselectasmanyaswereapplicable.

68%

20%

4%8%

Single site

Distributed

Virtual

Mixed model

Page 63: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

63

9.2 Interdependency with e-infrastructure

‘Bigdata’wasoncethepurviewofastronomersandhigh-energyphysicists.However,theadventofnewhigh-resolutionimagingmodalities,theincreasinguseofautomated,high-throughputapproachesin‘omicsandtheadvancesinphenotypinghaveledtoincreasingcollections ofcomplex,multi-modalbiologicaldatathatrequireanagilee-infrastructureenvironmenttosupportthem.

E-infrastructureunderpinsthemajorityofBH&Finfrastructures,with73%havingasignificante-infrastructureand/ordatarequirementorcomponent.MostBH&Finfrastructures(82%)considerthate-infrastructureanddatawillincreaseinimportancefortheirinfrastructureoverthenextfivetotenyears.Thishighlightstheincreasingchallengefortheresearchcommunityinanalysing,integrating,managingandderivingnewknowledgefromthehugevolumeofdata.

TheBH&Fcommunityisstartingtoharnesstheopportunitiestoutilisedata-ledapproachessuchasartificialintelligence(AI)togaindeeperinsightsintofieldssuchasoncology,understandingtherulesoflife,e.g.throughlinkinggenotypetophenotype,investigating theeffectsofenvironmentonbothgenotype andphenotypeandimprovingthesustainabilityandresilienceofagriculture.Inaddition,the

desiretovirtuallylinkpopulation-leveldata (e.g.healthandroutineadministrativedata) withpatient-leveldatatoallowacomprehensiveviewofpublichealth(e.g.DataLinkageScotland30)willleadtoadditionaldataande-infrastructurerequirements.

Attheinternationalscale,theEuropeanBioinformaticsInstitute(EBI)31basednearCambridgeispartoftheEuropeanMolecularBiologyLaboratory(EMBL)32andisaworldleaderinbioinformaticsdataresourceprovisionandthecentreofglobaleffortstoanalyse,storeanddisseminatebiologicaldata.ThedataresourceshostedatEMBL-EBIarecriticallyimportantforlife-scienceacademicandcommercialresearch,receivingoverthirty-eightmillionwebrequestsperday.TheEBIalsohostsanumberofkeynationalandinternationaldatainfrastructuressuchasthehubofELIXIRandOpenTargets,asuccessfullarge-scaleindustrialcollaborationinpre-competitivedrugdiscovery.

9.3Engagementwiththe wider economy

ThetopeightsectorsoftheeconomybeyondresearchandeducationthatbenefitfromaccesseitherdirectlytoBH&FinfrastructuresorthroughthescientificoutputstheysupportareshowninFigure9.7.Someofthetopsectorssupportedarehealthservices,agriculture,thepharmaceuticalindustryandthefoodindustry.Therearealsostronglinkstopublicpolicy.

Figure 9.7.Topeighteconomicsectorstowhichbiologicalsciences,healthandfoodinfrastructurescontributetoorworkwith,excludingresearchandeducation.

Agriculture105 (46%)

Services: Health133 (58%)

Manufacturing: Pharmaceutical98 (43%)

Public Policy

74 (32%)

Manufacturing: Chemicals43 (19%)

Manufacturing: Food & Beverage59 (26%)

Forestry37 (16%)

Services: Computing & Communciations

37 (16%)

Page 64: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

64

MostresearchwithintheBH&Fsectoristowardsdiscoveryscience(64%).ThemajorityofinfrastructuresintheBH&Fsectorhavesomeengagementwithindustryas76%ofinfrastructuresreporteddoing‘some’,‘most’or‘all’oftheirworkwithUKbusinesses.Only4%ofinfrastructures’outputfocusesprimarilyoncommercialisation,though33%conducta‘balanced’portfolioofresearchandinnovation.

Engagementwiththecommercialsectorismoreevidentinsomeofthelarge,independentresearchpartnershipprojectsorthosesetupwithinnovationortranslationasakeygoal. Forexample,theMRC/AstraZenecaCentre forLeadDiscoveryallowsacademic researchersaccesstoindustryinfrastructure,e.g.highthroughputroboticdrug-screening

capabilitiestosupportdiscoveryanddevelopmentofsmallmoleculetherapeutics.Anothervehicleforsupportingthepull-throughofdiscoverysciencetoindustryisviaenginessuchastheCellandGeneTherapyCatapult,whichhelpstotranslateresearchexcellenceintocommerciallysuccessfulbusinessesfortheUK.AnadditionalapproachistakenbythefiveBBSRCResearchandInnovationCampuseswhereeachcampusiscentredonacriticalmassofworld-leadingbioscienceprovidingauniqueenvironmentwherefledglingbioscience-basedcompaniescanaccessspecialistfacilitiesandexchangeideaswithleadingresearchers,creatingalow-riskenvironmentforhigh-riskinnovation.Thecampusesfocusonareasrangingfromtheagri-techindustrythrough tomedicalbiotechnology.

Case study: Accelerating therapeutic discovery: Cell therapies

Translationisalong-termprocessrelyingonthepull-throughofdiscoveryscienceintonewproducts.AutolusLtd,abiopharmaceuticalcompanyfocusedonthedevelopmentandcommercialisationofnext-generationengineeredT-celltherapiesforhaematologicalandsolidtumours,becamethefirstcompanytoentertheCellandGeneTherapyCatapult’smanufacturingcentreinStevenage.AutolusisaUniversityCollegeLondonspin-outcompany,builtontenyearsofBBSRCandMRCfundingandtranslatedfurtherthroughtheNIHRBiomedicalResearchCentreatUniversityCollegeLondonHospital.

Page 65: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

65

Chapter 10: Physical sciences and engineering sector

Gerd Altmann from Pixabay

Page 66: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

Case study: National Physical Laboratory (NPL) infrastructures

NPListheUK’snationalmeasurementinstitute.ItprovidesmeasurementcapabilitytoUKscientistsandbusinessesthrough380state-of-the-artlaboratories,withregionalcentreslocatedacrosstheUKprovidinglocalaccesstofacilitiesandexpertise.NPLdeliverssolutionstosomeoftheUK’sbiggestchallengesandopportunitiesinadvancedmanufacturing,health,energy,environmentanddigitaltechnologies.

AtomicTimedevelopedbyNPLinthe1950snowservesahugeindustryofdigitalandlocation-basedservicesfromGPSandmobilephonestobankingtransactionsandhigh-frequencytrading.InthefuturemoreaccurateandresilienttimefromNPLwillsupportautomatous-vehiclessafety,quantumtechnologycommercialisationandthedeliveryofnewenergysupplies.

NPL

’s Ca

esiu

m F

ount

ain,

the

prim

ary

refe

renc

e fo

r tim

e. C

redi

t: N

PL

Thephysicalsciencesandengineeringresearchandinnovationspectrumspansallbranchesofphysics,chemistry,mathematics,materials,informationandcomputingtechnology,quantumtechnologies,healthcaretechnologies,engineeringandmanufacturing.

BecauseofthebreadthofresearchbeingcarriedoutacrossPS&E,thesupportinginfrastructuresarealsonaturallybroadintheirnature,includingspecialisedlarge-scaleequipment,facilities,institutionsandobservatories.Theseinfrastructuresincorporatecapabilitiesrangingfromlasersandacceleratorstomassspectrometry,NMRandimaging.Thisbroadrangeofcapabilityisessentialtodevelopingnewandmoresophisticatedtechnologiesthatcanrevolutioniseresearchandinnovationacrossallsectors.

Physicalsciencesandengineeringinfrastructureshaveenabledsomeofthemostimportantdiscoveriesandadvancesofthetwenty-firstcentury.In2012theHiggsbosonwasobservedalmostfiftyyearsafteritsexistencewasfirsttheorisedattheLHCatCERN.Usingtechnologiesdevelopedinthesector,cryo-electronmicroscopy(cryo-EM)hasbeenevolvedandtheUKnowhostsanationaluserfacilityforthestudyofbiologicalstructuresfromthemoleculartothecellularlevel.GraphenewasfirstisolatedbyresearchersattheUniversityofManchesterworkingonaninstrumentdevelopmentproject.Theuniquepropertiesofthematerialmeanitcouldhaveavastarrayofpracticalapplicationsincludingthecreationofnewmaterialsandthemanufactureofinnovativeelectronics.TheNobelPrizeforPhysicsin2010wasawardedtoProfessorsGeimandNovoselovfromManchesterfortheirground-breakingworkwhichisnowbeingtakenforwardattheNationalGrapheneInstitute.

66

Page 67: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

67

10.1 The current landscapeOveraquarter(27%)ofinfrastructuresthatrespondedtotheUKResearchandInnovationquestionnairenamedPS&Eastheirprimarydomain,whilealsosupportingsciencefromacrossallothersectors.Figure10.1highlightsthestrengthofoverlapbetweeninfrastructuresinthePS&Esector(centralcircle)andtheothersectors.TherearestronginterdependenciesacrosstheBH&F,environmentandenergysectors.

OnecommonapproachtoinfrastructureinthePS&Esectorisco-locationincampuses,whichbringtogetheranecosystemofinfrastructurestodelivercomplexcapabilities.TheHarwellandDaresburycampusesco-locatehigh-techcompaniesalongsidethenationalmulti-sectorfacilities,fosteringcollaborationandinnovation.

Theinterconnectivitybetweeninfrastructuresisparticularlyimportant,forexamplebetweenlab-based,distributedfacilitiesandlarge-scalecampus-basedfacilities.Asthescaleofneedstretchesbeyondtheabilityofindividualorganisationstofinance,procureandprovide

thenecessarysupportinfrastructures,therehasbeenamovetowardsadistributednetworkmodelforfacilitiessuchastheEngineeringandPhysicalSciencesResearchCouncil(EPSRC)NationalResearchFacilities.Thesesupportstrategicresourcesofnationalimportancetoprovideleading-edgecapabilitiesandtechniquedevelopmentatanationallevel.

However,themajorityofPS&Einfrastructuresaresinglesite,focusedcapabilities,typicallyhousedwithinanotherlegalentitysuchasauniversity.Asignificantnumberofcapabilitiesarespreadacrosstheglobe(e.g.theJapanProtonAcceleratorResearchComplexandtheLarge-apertureSynopticSurveyTelescope,currentlyunderconstructioninChile)andsomeinfrastructuresareevenbasedinspace(e.g.theInternationalSpaceStation).Aswellasthesesingleinfrastructures,therearealsoco-locatedfacilitieswithmultipleinfrastructuressuchassuitesoftelescopes(e.g.ESO)ordetectors (e.g.theJeffersonLab)andmultiplecapabilities,suchastheNationalPhysicalLaboratoryinfrastructures.

SSAH45

E-INF130

Energy140

ENV114

BH&F104

212PS&EThePS&Esectoriscentrallyplacedandtheperipheralnodesrepresenttheothersectors.ThesizesrelatetotheproportionofinfrastructuresthatoverlapwiththePS&Esector(co-occurrence)basedonthenumberofresponsesthatselectedeachsector.

Figure 10.1.Overlapbetweeninfrastructureswithaprimaryaffinitytothephysicalsciencesandengineeringsectorandtheothersectors.Acknowledgement:Sci2Team25.

Page 68: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

68

Case study: Space-based telescopes

TheJamesWebbSpaceTelescope(JWST)willbethebiggestspacetelescopeeverbuilt.DesignedandbuiltbyNASAinpartnershipwiththeCanadianandEuropeanSpaceAgencies,itisdueforlaunchin2021.TheJWSTwillorbitindeepspace,1.5millionkmfromEarth,onamissionofatleastfiveyears.

AsthesuccessortotheHubbleSpaceTelescope,theJWSTisexpectedtoproduceevenmoreastoundingimagesoftheUniverse.ThetelescopewillbeabletoexplorethedistantUniverseandtheevolutionofplanets,starsandgalaxiesasneverbefore.Itwilllookbackintimeto400millionyearsaftertheBigBang,allowingustoseethefirstobjectsthatformedastheUniversecooled.TheUKledtheEuropeanconsortiumtobuildtheMidInfraRedInstrument(MIRI)fortheJWSTandwasalsoresponsiblefortheoverallconstructionoftheinstrumentandthequalitycontroltoensurethatMIRIwilloperateasintendedandcopewiththeharshconditionsofspace.

AkeyattributeofinfrastructurewithinPS&Eisitslongevity.Thereareahighnumberofinfrastructureswithanexpectedlifespanofovertwenty-fiveyears,reflectingthesize,complexityandphysicalnatureoftheinfrastructurestypicalofthissector.Anumberofthelarger,longer-runninginfrastructuresarealsomultidisciplinaryinnature,asshowcasedinChapter2.2.Althoughthesectorcontainsalargeproportionoftheselong-runninginfrastructures,thereisalsocontinualgrowthandinvestmentinnewresearchcapabilities.Since2015anumberofnewinstituteshostingsignificantinfrastructurehavebeensupported.TheseincludeTheAlanTuring

Instituteindatascience,theFaradayInstitutioninbatteryscienceandtechnology,theHenryRoyceInstituteinadvancedmaterials,theUKCollaboratoriumforResearchonInfrastructureandCities(UKCRIC)andmostrecently,theRosalindFranklinInstitute,focusedontransforminglifesciencethroughinterdisciplinaryresearchandtechnologydevelopment.

GiventhelonglifetimesofmanyPS&Einfrastructures,thereisaneedtofactor-incontinuoustechnicaladvancementsthroughouttheirlifecycles.Theseadvancementsensuretheinfrastructuresareabletoremainfitforpurpose,

Page 69: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

69

Figure 10.2. Classificationandsub-sectorgroupingofthephysicalsciencesandengineeringresearchandinnovationinfrastructures.

suchasbeingabletohandleincreasinglylargedatasets,dealingwithchallenging/extremeenvironmentsandcopingwiththeneedforgreatertechnicalandanalyticalexpertisetomaximisethescientificoutputs.

Physicalsciencesandengineeringinfrastructures,suchastheLHCatCERN,havefacedsomeofthemostextreme‘bigdata’challenges,andwithinfrastructuresgeneratingevergreatervolumesofdata,therelianceone-infrastructurefacilitiesandexpertiseisexpectedtoincreaseovertime.SeventypercentofPS&Einfrastructuresenvisagee-infrastructureanddatabecomingmorerelevanttotheirinfrastructuresinthenextfivetotenyears.

10.2CharacterisingthesectorPhysicalsciencesandengineeringinfrastructurescanbecharacterisedaseithercapability-anddiscovery-driven,application-drivenorchallenge-driveninfrastructurestodescribethescienceandinnovationtheytendtosupport(Figure10.2).Inmanycasesthedifferentinfrastructuresprovidecomplementaryexpertisetoeachother.Toanswercomplex,interdisciplinaryproblems,acombinationofapproachesmakinguseofinfrastructuresacrossthedifferentcategoriesisrequired,hencetheimportanceofthisinterconnectivity.

Capability & Discovery

Application

Challenge

Telescopes Magnetism X-raydiffraction

Tomography Mass Spec Lasers

Spectroscopy Microscopy NMR

Accelerators& Detectors

Automotive Aerospace

Communi-cations

Space

Electronics Manufac-turing

Robotics Quantum

Advancedmaterials

Advancing knowledge

Phys

ical

sci

ence

s an

den

gine

erin

g ca

tego

ries

Phys

ical

sci

ence

s an

den

gine

erin

g su

b-se

ctor

sRe

sear

ch &

Inno

vatio

nIn

fras

truc

ture

s

Page 70: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

70

Application driven infrastructure:Theseinfrastructureshaveanidentifiablerelevancetoindustrialsectorsorend-usergroupswithintheeconomysuchasaerospace,automotiveandspace.Thecomplexityoftheuserproblemswilloftenrequiretheseinfrastructurestobeusedinconcertwith otherinfrastructures.

TheNationalEpitaxyFacilitysupportsworld-classsemiconductorresearchintheUK,providingarangeofsemiconductormaterialsanddevicestoacademicsandindustrialcustomers.

Nat

iona

l Epi

taxy

Fac

ility

Challengedriveninfrastructure:Theseinfrastructurestendtobepartofwiderinitiativestargetedtowardsaddressingmajorscientific,technical,innovation,societalorpolicychallengesforwhichadditionalgovernmentfundinghasbeencommitted. Theyoftenbuildonoutstanding,existingcapabilitywhichhasbeenbuiltupovermanyyearsthroughcapability-driveninvestments.

Forexample,theNationalRobotariumwillexpandonexistingfacilitiestocreateaunique,world-leadingcentreforthepracticalapplicationofroboticsandautonomoussystemsinareasasdiverseashealthcare,manufacturingandhazardousenvironments.

Edin

burg

h Ce

ntre

for R

obot

ics

Capability and Discovery driven infrastructure: Infrastructureofthiskindprovidestheessentialcapabilitythatallowsustodesign,model,synthesise,characteriseandtestmaterialsatdifferentlengthscales(fromatomicscalethroughtocomponents)andtoenablediscovery.Itincludelarge-scale,campus-basedfacilitiesaswellasdistributedandofteninternationally-basedstate-of-the-artinfrastructuresandmajoruniversity-basedclustersofcapability.

TheLHCatCERN,theworld’slargestandmostpowerfulparticleaccelerator,ishelpingscientistsunderstandthefundamentallawsofnatureand,forexample,enabledthediscoveryoftheHiggsbosonparticlethatprovedhowparticlesgainmass.

CERN

Page 71: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

71

Case study: National Wind Tunnel Facility

Aninvestmentof£14.5Min2015developedandupgradedasuiteofseventeennationalwindtunnelfacilities(NWTF).TheinvestmentisaimedatkeepingtheUKattheforefrontofaerodynamicandfluidmechanicsresearch.InfrastructureisavailabletoallUK-basedresearchersandaimstocreatenodesofexcellenceattractingyoungresearchers.TheNWTFalsoaimstoestablishaclosertiewithindustry,creatingapull-throughenvironmentandanintendedspill-overofthecollaborationandbenefitstoothersectors.

Bringingtheseventeenfacilitiestogethertoprovideaservicethatisgreaterthanthesumofitsindividualtunnelshasallowedamodeltodevelopthatprovidesstrategicoversightandmanagementoffacilitiesinasharedmanner.Italsoensuresacollaborative,alignedapproach.

10.3 The importance of international collaboration

Researchinthissectorincreasinglyreliesonsophisticatedexperimentsatarangeofbespokenationalandinternationalfacilities,oftenattheleadingedgeofwhatistechnicallypossible.Duetothescaleandcostsofsuchfacilitiesmanyinfrastructurescanonlyberealisedthroughinternationalcollaborationsandlong-termstrategicplanning.Thisisverytypicalofthecapability-driveninfrastructuresthatprovideinsightsintothefundamentalbuildingblocksofmatterortheoriginanddevelopmentoftheUniverse,suchastheFacilityforAntiProtonandIonResearchinEurope(FAIR)currentlybeingbuiltinGermany.Forthisreason,thePS&EsectorhasthelargestproportionofinfrastructureslocatedoutsidetheUK.

10.4 ImpactsPhysicalsciencesandengineeringinfrastructuressupportadiversityofeconomicsectorsbeyondresearchandeducation(Figure10.3).Withoneexception,eachofthefortyeconomicsectorchoiceswasselectedbyatleastonePS&Einfrastructure.Physicalsciencesandengineeringinfrastructuresareparticularlyimportanttothemanufacturingandtransportationeconomicsectors.CloselinkswithindustryacrossthePS&Esectorarereflectedbythefactthat86%ofPS&Einfrastructuresperformatleastsomeworkthatisdirectlyinformedbybusinesses.

TheimpactsofthescienceandutilisationoftechnologiesdevelopedwithinthePS&Esectorareextreme,influencingoureverydaylives.TheCompactLinacatDaresburyLaboratoryhasbeendevelopedtoinvestigatethepotentialforsmall,low-energylinearacceleratorstobeutilisedinareassuchassecurityandwastewatertreatment.ResearchbyBristolRoboticsLaboratoryinthefieldofground-breakingroboticsystemsenablessurgeons toputjointfracturesbacktogetherusing aminimallyinvasiveapproach.

Nat

iona

l Win

d Tu

nnel

Fac

ility

Page 72: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

72

Manufacturing: Electronics94 (55%)

Manufacturing: Instrumentation97 (57%)

Utilities: Energy80 (47%)

Transportation: Aeronautical

75 (44%)

Manufacturing: Pharmaceutical67 (39%)

Transportation: Automotive75 (44%)

Manufacturing: Chemicals

66 (39%)Manufacturing: Transportation

66 (39%)

InfrastructurescanhaveimpactsonourfundamentalunderstandingoftheUniversearoundus,helpingustoanswerquestionsthatweareonlyjustbeginningtocontemplate.Forexample,UKscientistsandengineersplayedkeyrolesintheconstructionandoperationoftheLaserInterferometerGravitational-WaveObservatory(LIGO),whichrunstwodetectorsintheUSA,andtheVirgogravitational-wavedetectorinItaly.

Afterthefirstdetectionofgravitationalwavesin2016,LIGOandVirgorecentlydetectedgravitationalwavesfromwhatappearstobeacollisionbetweentwoneutronstarsabout500millionlightyearsfromEarth.Neutronstarsarethedenseremnantsofmassiveexplodedstars.Justonedaylater,thenetworkregisteredanothereventabout1.2billionlight-yearsaway;initialanalysissuggestsitmighthavebeenthecollisionofaneutronstarandblackhole.

Figure 10.3.Topeighteconomicsectorstowhichphysicalsciencesandengineeringinfrastructurescontributetoorworkwith.

Page 73: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

73

Chapter 11: Social sciences, arts & humanities sector

Ger

d Al

tman

n fro

m P

ixab

ay

Page 74: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

74

Infrastructuresinthesocialsciences,artsandhumanitiessectorareusedbyresearchersfromabroadrangeofdisciplines.Socialsciences,artsandhumanitiesinfrastructuresarealsousedextensivelybypolicy-makersacrossgovernment,bythethirdsectorandbythewiderpublic.TheyaregloballyvisibleasexamplesoftheUK’sleadingroleinresearchandinnovationandahighproportionengagewithbusiness.

Socialsciences,artsandhumanitiesinfrastructuresincludetoolsandtechniquessuchasclustersofexpertcapabilityandprovisionofhardwareorfacilities.Manyinfrastructurescollectorfacilitateaccesstoresearchobjects,includingphysicalresourcessuchashistoricartefactsandvirtualresourcessuchassocialsciencedata.OtherdistinguishingfeaturesoftheSSAHinfrastructuresincludelargeuserbases,diversifiedandshort-termfundingmodelsanddispersalacrossmultiplelocations.Socialsciences,artsandhumanitiesinfrastructuresarecharacterisedbydisciplineagnosticism.Amongrespondents,95%ofinfrastructuresinvolvemultiplesubdisciplinesofSSAHand69%reportrelevancetosectorsbeyondSSAH.

Of751respondentstothequestionnaire,110infrastructuresidentifiedSSAHastheirprimarysector.Ofthese,107arebasedintheUK.Respondentsincludedamixtureoftargetedandself-identifiedinfrastructures.SomedisciplineswithinSSAHarelessfamiliarwithusingtheterm‘infrastructure’todescribewhattheyofferandmayhavebeenslowertoengagecomparedtoothersectors.

11.1 Form and function of infrastructures

Inthissector,95%ofinfrastructureshaveapresenceataphysicallocation,49%ofinfrastructuresaresingle-sitedand16%aredispersed(Figure11.1).Overall,73%ofinfrastructuresrespondingoffersomelevelofvirtualaccess,butonly5%identifyasentirely‘virtual’ordigitalinnature.Insomecases,infrastructuresarecloselylinked.Forinstance,sensitivedataresourcesbenefitfromotherinfrastructuresforcollection,storage,analysisandfacilitatingresearcheraccess,whilebeinginfrastructuresthemselves.

Broadly,SSAHinfrastructuresoperateacrossaspectrum,rangingfromprimarilyservicedeliverythatisdependentonexperthumanresource,tohardwareandfacilitiesprovision.Someinfrastructureshaveamixedmodel.TheUKDS,forinstance,hassecurefacilitiesfordatastorageanduserfacilitiesandoffersadviceservices.

FormanySSAHinfrastructuresthepresenceofspecialistsembeddedwithintheinfrastructureforactivitiessuchasprocessingresearchdataorcuratinghistoricartefacts,orprovidingtrainingoradvice,isakeyandessentialpartoftheinfrastructure.Maintaininganddevelopingsufficientexpertcapabilityisanongoingchallenge.Theseinfrastructures’purposecanbetobuildcapabilityamongstresearchers,oramongstresearchdataoroutputusersfromgovernmentorthethirdsector.Someinfrastructuresexisttoenhancetheuseofresourcesororganisationsthatareinfrastructuresthemselves.TheCohort&LongitudinalStudiesEnhancementResources(CLOSER)andtheNationalMuseumsCollectionCentreareexamplesofthis.

49% 5% 29% 16%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Single site Virtual Mixed model Distributed

Figure 11.1. Typeofsocialsciences,artsandhumanitiesinfrastructures.

Page 75: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

75

Case study: CLOSER’s informs recommendations on early years intervention

CLOSERisacollaborationofUKsocialandbiomedicallongitudinalstudies,theBritishLibraryandtheUKDS,fundedbytheEconomicandSocialResearchCouncil(ESRC)andtheMRC.TherearecurrentlyeightstudiesintheCLOSERpartnership,comprisingfournationalandthreeregionalbirthcohortstudiesandUnderstandingSociety(theUKHouseholdLongitudinalStudy).

In2018,CLOSERsubmittedevidencetotheHouseofCommonsScienceandTechnologyCommittee:Evidence-basedEarlyYearsintervention,onthecontributionoftheUK’slongitudinalstudiesasleadingsourcesofevidenceonhowearlycircumstancesandexperiencesaffectpeople’slivesfromchildhoodtoadulthood33.Forexample,researchusingtheMillenniumCohortStudy,1958NationalChildDevelopmentStudy,1970BritishCohortStudyandUnderstandingSociety,hasshownhowfactorssuchasmother’shealthduringpregnancy,child’sbirthweight,parents’educationandemploymentandfamilyhousingandsocio-economiccircumstancescanhavealastingeffectonchildren’scognitive,socialandbehaviouraldevelopment.Inparticular,beingbornintopovertyordisadvantagecanhavelastingeffectsonhealth,education,employmentandageing.CLOSERalsohighlightedthepotentialoflinkingadministrativedataheldbythegovernmenttothislongitudinalsurveydatatogeneratenewinsights.

Thisevidencewascitedinthecommittee’sreport34andsupporteditsrecommendationtogovernmentthatacademicresearchersbeenabledtoaccessgovernmentadministrativedata(whileensuringappropriateprivacyandsafeguardingmechanismsareinplace).Thegovernmenthascommittedtoprovidingsecureaccesstode-identifieddataforaccreditedresearchers35andiscurrentlyworkingonthedevelopmentofAdministrativeDataResearchUK(ADRUK).Thisissupportedbya£44millioninvestmentfromESRCandwillbesetupincollaborationwiththeOfficeforNationalStatistics.ADRUKwillprovideaccesstodatafromgovernmentdepartments,localauthoritiesandhealthauthoritiestoanswervitalresearchquestionsonearlyinterventionandchildhoodadversity.

Page 76: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

76

ManyinfrastructuresintheSSAHdomaininvolvethesubstantiveprovisionofhardwareorfacilities.Thiscanincludeprovidingsecureplacessuchas‘safepods’inuniversitylibrariesfortheanalysisofpersonaldata,ortoolsforuser-leddigitisationofhistoricarchives.Heritagescience(theuseofsciencetounderstand,manageandcommunicatethehumanstoryexpressedthroughlandscape,buildingsandartefacts)demandsincreasinglyspecialistexpertise,instrumentationandlaboratoryfacilitiesaswellasinvestmentintheintegrationofcapability.Formuseums,researchcanenabletheenhancementofcollectionsandspaces,forinstancebydevelopingnewcurationorvisualisationtechnologyorimmersivevisitorexperiences.Insomecases,providingresearcheraccessentailstrade-offswithotherdemands,forinstanceinmuseumsettingswhereobjectsandspacesareaccessibleto abroader,non-researcheraudience.

FundingmodelsforSSAHinfrastructuresarediverse.Theyincludeco-fundingagreementswithmajorcharities,internationalpartnershipagreementsandquality-related(QR)blockfundingawardedtohostuniversities.Governmentdepartmentsaresignificantfunders,particularlytheDCMS.Thirty-eightpercentofSSAHinfrastructuresattractnon-governmentalfunding.Artsinfrastructuresoftenhavehighlydiversifiedrevenuestreams,generatingincomethroughcommercialandphilanthropicactivity.Thisimprovesthecapabilityofthesectortoarticulatethepurposeandvalueofinfrastructuretoarangeofaudiences.Muchofthisfundingis,however,short-term,with19%ofrespondinginfrastructuresfundedthrough‘softmoney’withnocommitmenttolong-termsustainability.Otherbusinessmodels,suchaschargingfordataaccess,mayconflictwiththeprincipleoffreeandopenaccess.

TheSSAHsectorischaracterisedbyitsinfrastructures’accumulationofvalueovertime.Forinstance,museumcollectionsfacilitatecomparativeanalysisbybuildingincreasinglybroadandwell-documentedcollections.Longitudinalstudiesandrepeatcross-sectionalstudies(forinstanceofelections)alsoenableincreasinglycomplexinsightsasmoredatais

added.Socialsciences,artsandhumanitiesinfrastructuresarecharacterisedbytheirlongevity(seealsoChapter3.3).Theyaresomeoftheoldestandlongest-runninginfrastructuresintheUKwith34%originatingbefore1978and79%expectingtheirinfrastructure’slifespantoexceedtwenty-fiveyears.Thisholdsforthemanyservice-orientatedinfrastructuresaswellasphysicalresources(e.g.collections)whoseprimaryfunctionsaredeliveredthroughexpertcapabilityratherthanphysicalhardware.Longevityalsobringschallengessuchastheneedtostore,maintainandpreserveexpandingcollectionsofresearchobjectsoverthelongterm.

11.2 Research objects (physical and virtual resources)

IntheSSAHsector,90%ofinfrastructurescreate,collect,curateorprocessresearchobjectsasasignificantfunction.Theseobjectsarediverse,rangingfromuniquephysicalresourcessuchasartefactstovirtualoneslikestructureddatasetsforquantitativeanalysis.Researchobjects’provenancealsocoversabroadspectrum.Whilesomederivefrominstrumentation,particularlyintheheritagesciencefield,adistinguishingfeatureisthecreationofobjectsthroughothermethods.Thiscanincludesocialsurveyscollectedthroughfieldwork,consumerdataobtainedthroughpartnershipwithbusiness,orobjectsdepositedinmuseums.Indeed,manySSAHresearchobjectswerecreatedforpurposesotherthanresearch.Fromarchaeologicalfindstolargeadministrativedatasets,theirhandlingcreatesuniquechallengesandrequirementsforembeddedexpertise.Increasingly,datalinkageisenablinginfrastructuredatatobeusedinnewways,maximisingvalueanddrawingnewinsightsby,e.g.connectingdatacollectedspecificallyforresearchwithdatasetscreatedbygovernment.

ThereissignificantcapabilityacrosstheSSAHinfrastructurelandscapeinthecapture,processingandanalysisofcomplexdataaboutpeople.Complexitycanariseforanumberofreasons.Thecollectionmethod,forinstancesocialsciencesurveys,mayrequirecarefulconsiderationofrepresentativeness.Datamaybepersonalorsensitive.

Page 77: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

77

Inthecaseofnon-researchdata,suchasmedievalmanuscriptsorrecentadministrativedatasets,expertcurationmaybeneededbeforeobjectsareusableforresearch.Processingandprovidingaccesstosuchdatafrequentlyinvolvesworkingwithinlegal,ethicalandpublicacceptabilityframeworks.

Theongoingdigitisationofphysicalcollectionsgeneratesfurthercomplexdata,suchashigh-resolution3DmodelsofobjectsorXML-encodedtexts.Overall,enablingaccesstocomplexdata,maximisingvaluethroughcurationandlinkageandensuringsecureandethicalusearespecialismsoftheSSAHlandscape.Digitisationofresearchobjectsoffersopportunitiesforincreasedaccessandinternationalcooperationwhilepotentiallyloweringaccesscostsforusersandproviders.

Most(86%)SSAHinfrastructuresalsoserveotherdisciplines.Thisrequiresdepositprotocols,processingstandardsandaccessmethods,whicharediscipline-anduser-agnostic.ItalsofacilitatesthedevelopmentandapplicationofteachingmethodsandtoolsthathavevaluebeyondtheSSAHsector.Forexample,traineesurgeonshaveusedtextilecollectionstodevelopfinemotorcontrol,whileremote-imagingtechnologydevelopedforconservationpurposeshasbeenusedbystructuralengineerstoassessbuildingsafety.

Digitaltechnologyhaschangedthewaywecollect,mapandrepresentphysicalandvirtualresourcesandthewaywecanconnectwithresearchersandotheraudiencesonaglobalscale.Dataficationoftext,imageandsoundcoupledwithapproachestoallowpatternrecognition,statisticalanalysisandotherformsofsoftware-basedinterrogationhasopenedupthepossibilitiesfornewformsofdigitalresearchwithapproachessuchasuseofAI,conceptandentityrecognitionandvirtualisation.

Physicalartefactsbasedinuniversities,galleries,libraries,archivesandmuseums(GLAMs)andotherheritageorganisationsservethousandsofusersandtensofmillionsofresearchobjectrequestsperyear(Figure11.2).Manyofthesecollectionsareunique,irreplaceableandincreasinglyfragile,demandinghighlevelsofskillforaccess,conservation,interpretationandspecialistfacilitiesforstorageandanalysis.Continuousgrowthofpublicresearchobjectcollectionscanstemfromlegaldepositrequirements,legislativebarrierstoobjectdisposalandincreasedresearchobjectproduction.Thiscreatessignificantchallenges intermsofsitingsuchasincreasingstoragecosts,makingitdifficulttoreneworrelocate aninfrastructure.

0

2

4

6

8

10

12

14

1 - 10 11 - 100 101 - 500 501 - 1,000 1,001 -5,000

5,001 -10,000

>10,000

serutcurtsarfni fo rebmu

N

Figure 11.2.Annualnumbersofusersvisitingsocialsciences,artsandhumanitiesinfrastructures. Thedistributionisbimodalwithoneinfrastructurepeakinthelowhundredsandanotherinthetensofthousands.

Page 78: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

78

11.3 Impacts and outputsSocialsciences,artsandhumanitiesinfrastructurescontributeextensivelytosocioeconomicimpact,fromthedevelopmentofpublicpolicytodirectlyworkingwithbusinesses.Overhalf(57%)ofinfrastructuresworkwithbusiness(Figure11.3).Examplesofvaluetobusinessincludetheprovisionofattitudesoreconomicdataandcreationof,oradviceon,ethicalorlegalframeworkssuchascopyrightlawforbusinessactivity.Infrastructuresthatdevelopresearchcapacityinquantitativesocialscienceorheritagescienceinparticularalsogeneratesignificantvalueforthelabourmarket.Indeed,privatesectordemandforsuchcapabilitycreatessignificantchallengesforinfrastructuresthatdependonhumanexpertisefordelivery.

Socialsciences,artsandhumanitiesinfrastructuresenablegovernmentandbusinesstounderstandeconomicdriversandoutlooks.Longitudinaldataresourceshaverevealedthelabourmarketimpactsofvocationaleducation,forinstance,whileothersocial

scienceinfrastructureshaveworkedwithmajorretailerstounderstandcustomerorigins.Keyareasofengagementwitheconomicsectorsoutsideresearchandeducationincludethecreativeindustriesandrecreation(72%ofSSAHinfrastructures)andpublicpolicybroadly (63%ofSSAHinfrastructures)(Figure11.4).

Includedinthe72%ofinfrastructuresworkingwithcreativeindustriesandrecreationareworld-renownedGLAMsandheritageorganisationsthatareamongsttheUK’smainvisitorattractions,bothforlocalpopulationsandforvisitorsfromabroad,playingahighlysignificantroleinthemulti-billion-poundheritagetouristeconomy.AbouthalfofallvisitorstotheUKcitecultureastheirreasontovisit,withArtsandHumanitiesResearchCouncil(AHRC)IndependentResearchOrganisations(IROs)accountingforeightoftheUK’stenmostpopularattractions36 .ItisestimatedthatthenationalGrossValueAdded(GVA)oftheheritageeconomyis£29billionequatingto2%ofthenationalGVA,withheritagetourismexpenditurecontributing£16.9billion.

0%

10%

20%

30%

40%

50%

60%

All work Most work Some work Not at allWorking with businesses

Figure 11.3. Extenttowhichsocialsciences,artsandhumanitiesinfrastructuresdirectlyworkwithbusinesses.

Page 79: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

79

Case study: Using data analysis to support the National Online Hate Crime Hub

HateLab,partoftheESRC-fundedSocialDataScienceLab,makesuseofsocialmediadatatoinvestigatehatespeechandcrime.ResearchersatthelabhavedevelopedanOnlineHateSpeechDashboard37,incollaborationwiththeNationalOnlineHateCrimeHubandinconsultationwithallfourpoliceforcesinWales,GreaterManchesterPolice,theWelshGovernment,thegovernment’sBehaviouralInsightsTeamandseveralhatecrimecharities.

Thedashboardtrackstrendsofonlinehatespeechinrealtime,bygeographicalregion.Thisassistsanalyststoidentifyareasthatrequireoperationalandpolicyattentionandallowspoliceandsupportorganisationsbothtorespondmorequicklytospikesinhateandtopre-emptthespreadofhatespeechandcrimefollowing‘triggerevents’.Cruciallyitspeedsupaccesstothisinformationinthe‘goldenhour’aftersuchanevent.TheDirectoroftheNationalOnlineHateCrimeHubstatedthatefficienciescreatedbythedashboardhaveledtosavingsof£500,000.

Almostthreequartersofinfrastructures(72%)reportedsubstantivepolicyorpublicservicedeliveryimpact.Longitudinaldatainfrastructuresinthesocialsciencesenableinfluencesonhealthandeconomicoutcomestobeunderstoodacrossthelifecourse.Linkageofdatasetshasenabledincreasinglypowerfulanalysesinthisfield,generatingconsiderableadditionalvaluefrombothgovernmentdataandpubliclyfundeddataresources.Otherinfrastructures,suchastheWhatWorkscentres,evaluatepolicyeffectivenessorfacilitateaccesstopolicy-relevantresearch.

Policyrelevancecanberelativelyspecific(forinstance,thetax-benefitmicrosimulationmodelEUROMOD)orapplicabletoarangeofgovernmentresearchinterestareasatnationalandlocallevel.Administrativedatainfrastructuresoffernewopportunitiestoanswerquestionsofpublicimportanceinatimelymanner.

Page 80: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

80

Figure 11.4. Topeconomicsectors(inadditiontoresearchandeducation)whichinfrastructuresinthesocialsciences,artsandhumanitiessectorcontributetoorworkwith.

11.4Socialsciences,artsandhumanities infrastructure users

Apartfromdirectaccess,71%ofSSAHinfrastructuresprovideservicesandresourcestoawidecommunityofusers.Activitiescanincludeadvisingontheavailabilityandappropriateuseofresearchobjectsorprovidingtraining.Otherinfrastructuresdevelopmethodologyorpolicyonresearcherethics,curationofartefactsorobjectandmaterialsanalysis.Socialsciences,artsandhumanitiesinfrastructuresarecharacterisedbyopenaccessandhavethehighestrateofunrestrictedaccessacrosssectors(60%ofinfrastructures).Just6%requireaccesstobemediatedviaaninternaluser.

HeritageorganisationsandGLAMinfrastructuresinthehumanitiesservehundredsofthousandsofresearchusersfromoutsidepublicresearchorganisationseachyear.Theneedtofacilitatepublicaccessonaveryextensivescalegeneratesitsownchallengesintermsofaccessibilityanddiscoverabilityofcollectionsandtheirmaintenanceandpreservation.

Socialsciences,artsandhumanitiesinfrastructuresareinherentlyinternationaland96%haveusersfromoutsidetheUK.Almosthalfofrespondentssaidthatthecapabilitytheydeliverisgloballyunique,with81%notingthattheyattractinternationalusersduetolackofsimilarcapabilityelsewhere.Thesector’sinfrastructuresarehighlycollaborative(85%)nationallyandinternationally,attractinginvestmenttotheUK.Sixinfrastructuressurveyed,forinstance,attractmorethan20% oftheirincomefromEUfundingsources.

Public Policy66 (63%)

Services: Creative industries, recreation

76 (72%)Communcations & information

46 (44%)

Services: Social

46 (44%)

Services: Computing & Communciations

33 (31%)Services: Health

41 (39%)

Servicing: All other

15 (14%)Servicing: Hospitality

11 (10%)

Page 81: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

81

Case study: The Engine Shed

HistoricEnvironmentScotland(HES)isanIROenablingresearchthatprovidesanunparalleledviewofhowhumanactivityandinterventionhasshapedScotland.Itsresearchinfrastructuresupportsworld-classresearchinarangeoffields,includingsurveyingandrecording,heritagescienceandphysicalanddigitalarchiving.

TheEngineShedisScotland’sdedicatedbuildingconservationcentre,basedinStirling.PartofHES,itservesasacentralhubforbuildingandconservationprofessionalsandthegeneralpublic.TheEngineShedwasestablishedonthepremisethatScotland’sbuiltheritageholdscountlessstories–aboutthepeoplewhobuiltit,livedinitandusedit–andthatknowledgeofthepastprovidespointerstothefuture.Itsin-houseexpertsprovideadvicetotheheritagesectorandthepublictoensurebestpracticeandhelpraisestandardsinconservationoftraditionalbuildings.AspartoftheEngineShed’sinnovativetrainingforpractice-basedresearchinconservation,stonemasonryandtraditionalbuildingmaterialsandmethods,augmentedrealityand3Dprintingisusedtoenableaccuratereconstructions.Thisresearchalsodrivesaprogrammeofskills-basedpublicengagementwithlocalcollegesandschoolsaspartofawiderefforttoensurethat‘childrenofthedigitalage’remainconnectedtoandconfidentworkingwithphysicalmaterials.

TheEngineShedhousestheHESDigitalDocumentationTeamthatusescutting-edgedigitaltechnologiestodocumentheritagein3Dtoinformtheresearchthatunderpinssustainableconservation,heritagemanagement,learningandinterpretationefforts.Theteamgeneratestheresearchdatathatareusedforinteractivetoursandvirtualvisits,creatinginnovativeimmersivevisitorexperiences.HESispartoftheemergingUKResearchInfrastructureforHeritageSciencethatwilldriveaccesstotheseblendedfacilities,enhancingscientificresearchandcross-disciplinaryandinternationalcollaborations.

© A

shle

y Co

ombs

Page 82: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

82

Chapter 12: Environment sector

Page 83: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

83

Environmentalinfrastructureiscriticaltoreach,observe,model,simulateandpredictourcomplexenvironment,aswellastounderstandhowhumansimpactandareaffectedbyit,includinghealthandwellbeing.Environmentalresearchersstudytheentireplanet,fromthedeepoceansandthecentreoftheEarthtotheedgeoftheatmosphereandthehostileenvironmentsofthepolarregions.Thesectorhasastrongtrackrecordofdiscoveriesthatbringaboutaction,fromidentifyingtheholeintheozonelayertotheobservationsandmodellingrevealingtherisksofclimatechange.Environmentalscienceisessentialtoensuretheenvironment,peopleandbusinesssucceedtogetherinmeeting21stcenturychallenges.

Theglobalpaceofdemographicchangeisdrivingincreasinglysevereandfrequentenvironmentalimpactsfromgrowingdemandsandpressuresonenvironmentalresources.Environmentalinfrastructureiscriticaltoensurewater,foodandenergysecuritybymanagingtheEarth’sresources,boostingresiliencetonaturalhazards,enablingmitigationofandadaptationtoclimatechange,andmuchmorebesides.Thesechallengesarecoupledwithopportunities,duetotheincreasingavailabilityofenvironmentaldata,advancementofdigitalcapabilities,fast-paceddevelopmentinsensing,automationandAIandimprovedforecastingskillfromhourstodecades.

Risingtothecutting-edgesciencechallengesofourtimeanddeliveringenvironmental,economicandsocialsolutionstoreal-worldproblemsdemandsworld-leadinginfrastructure.Wealsoneedtobecognisantofthespecialistneedsoftheenvironmentsectorforinfrastructure.Acharacteristicoftheenvironmentsectoristhebreadthofscalesfromnanotoplanetary,fromsecondstomillionsofyearsandtheharshandhazardousenvironmentsoftenencountered.Totacklecomplexproblemsanddrivescientificprogress,wemustfacilitatewhole-systemapproachesthatensuretheUKenvironmentsectorleadstheworldinresearchandinnovationspanningscientificdisciplinesandborders.

12.1 Characteristics of the landscapeNinety-fouroftheinfrastructureswhorespondedtothequestionnaireidentifiedtheirprimarysectorasenvironment.Betweenhalfandthreequartersoftheremaining657infrastructuresintheotherfivesectorsalsoidentifiedenvironmentasasectortheirinfrastructurecovered(Figure12.1).Thisdemonstratesthebreadthandscopeoftheenvironmentsectorandhighlightsthecross-cuttingnatureofitsinfrastructures.Forexample,74%ofcomputationalande-infrastructuresalsoidentifiedtheenvironmentsectorasasecondarydomain.

0%

20%

40%

60%

80%

BH&F PS&E SSAH Energy E-INF

Figure 12.1. Percentageofinfrastructuresinotherprimarysectorsthatidentifiedenvironmentasasecondarysector.

Page 84: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

84

Case study: From the poles to the skies

TheNaturalEnvironmentResearchCouncil(NERC)ownsseveralresearchshipsthatsupportcomplex,multidisciplinaryresearchandincludestate-of-the-arttechnologyandinstrumentstomeetresearchneedsacrossalldisciplines. TheshipsenableoceanographicresearchinthemostextremeandremoteoceanicenvironmentsonEarth.OverfifteenyearsofNERCinvestmenthascreatedthelargestandmostdiversefleetofroboticresearchvehiclesinEurope,including10,000itemswithacollectivevalueestimated at£20million.NERCunmannedvehiclesgofurtheranddeeperthananycommercialormilitarycapability.

TheFacilityforAirborneAtmosphericMeasurements(FAAM)isEurope’slargestflyingatmosphericlaboratory,housedinamodifiedBAe146-301aircraft.Theaircraftcarriesalargeandversatilesuiteofinstrumentationtocharacteriseprocessesthroughoutthetroposphereuptoaround10kmaltitude.BarringAntarctica,itiscapableofoperatinganywhereintheworld.TheFAAMprovidestheUKatmosphericsciencecommunitywithaworld-classplatformforairborneresearch,tosupportresearchinareaslikeweather,climate,airqualityandEarthobservation.

Nat

iona

l Oce

anog

raph

y Ce

ntre

Nat

iona

l Cen

tre fo

r Atm

ostp

here

Sci

ence

UKR

I

Theinfrastructureswithintheenvironmentsectorarebroad,diverseandgeographicallydistributedacrossthecountry.Seventy-eightpercentofenvironmentalinfrastructuresarelocatedoutsideofLondonandsouth-eastEngland.Nearlytwothirds(66%)aresinglesitefocused,withaquarterdistributedorgrouped.Asmallnumber(7%)identifyasahybrid/mixedmodel,forexample,theSvalbardIntegratedArctic EarthObservingSystemwhichhasphysical andvirtualassets.

TheenvironmentalscienceresearchsectorhasmanystrengthsindifferentplacesandorganisationsincludingHEIs,governmentdepartmentsandagencies,PSREssuchastheMetOfficeandUKResearchandInnovationanditsNERCresearchinstitutes.Non-governmentalorganisationshaveasmallyetinfluentialresearchportfolio.Regardingthelegalstructure,thevastmajority(88%)ofenvironmentalinfrastructuresarelocatedwithinalegalentity,suchasauniversityorresearchinstitute.Theremaininginfrastructuresareevenlysplitacrossshort-termexternallyfundedprojects,nationalandinternationallegalentities.

Page 85: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

85

Environmentalinfrastructuresareinhighdemandwithjustoverhalfreportinganincreaseindemandoverthelasttenyears,withanexpectedincreaseindemandinphysical,virtualandremoteaccessasshowninFigure12.2.

Environmentalinfrastructuresareoftenofnationalandinternationalimportanceanduniqueness.ThirtypercentofusersatUK-basedinfrastructureshavecomefromoutsidetheUK.Overhalf(56%)ofinfrastructuresstatedtheiruserswouldhavetotraveloutsideofthecountrytoaccessasimilarcapability.Mostimportantly,aquarter(26%)identifiedthattherewasnoothersimilarcapabilityintheworld;theseincluded

Birmingham’sInstituteofForestResearchFreeAirCarbonEnrichmentFacility(Figure12.3).

Theglobalchallengeswearefacingrequireglobalsolutions.Workinginaninternationalarenaandpartneringinternationallyisakeycharacteristicoftheenvironmentalsciencecommunityandtheinfrastructuresthatsupportit.Theoverwhelmingmajority(96%)ofenvironmentalinfrastructurescollaboratewithotherinfrastructuresandorganisationsand86%collaborateinternationally(Figure12.4).Thiswidecollaborativescopeisfurtherdemonstratedby95%ofinfrastructuresattractingusersfromothercountries.

Increased

Stable

Decreased

Not relevant

R V P

Figure 12.2. ExpectedchangeindemandforenvironmentalinfrastructuresforPhysical(outerring–P),Virtual(middlering–V)andRemoteaccess(innerring–R)overthenext5-10years.

05

101520253035

Within the sameregion

To anotherregion

To a differentcountry

To anothercontinent

No other similarcapability

serutcurtsarfni fo rebmu

N

Figure 12.3. Distancethatusersofenvironmentalinfrastructureswouldhavetotraveltoaccess asimilarcapability.

Figure 12.4. Numberofenvironmentalinfrastructuresthatcollaboratewithotherinfrastructuresandorganisationsnationallyandinternationally.

Nationally only

Internationally only

Nationally and internationally

Does not collaborate

9

477 4

Increased

Stable

Decreased

Not relevant

R V P

Page 86: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

86

Case study: Tackling the space weather threat

Geomagneticstormsarerapidlybecomingoneofthebiggestpotentialthreatstomodernsociety.Theycancauseseriousdamagetopowergrids,communicationssatellitesandothervitalinfrastructure.Thepotentialongoingcostsfromasingleseriouseventhavebeenestimatedatupto£1.3trillionayear.

EISCAT_3D,thenext-generationEuropeanincoherentscatterradarsystem,isaninternationalcollaborationthatwilldelivermoresophisticatedradarobservationstoimproveourunderstandingoftheEarth’satmosphereanditsinteractionwiththegeospaceenvironment,includingspaceweathermonitoringandforecasting.UKenvironmentalsciencehascontributed£6.2millionofthe€65millioncosttobuildEISCAT_3D.

C. Heinselman

Courtesy of The National Institute of Polar Research, Japan

Thishighlevelofattractionontheinternationalstageisduetoinfrastructuresofferingabetteroverallpackage,e.g.support(57%),auniquecapability(51%),beingpartofaninternationalcollaboration(54%)orbeinghigher-quality(41%).Furthermore,overaquarter(27%)expectthatthenumberofinternationalusersislikely toincrease.

Theenvironmentsectorhadthehighestnumberofinfrastructures(70%)withanexpectedoperationallifespanofovertwenty-fiveyears,comparedtotheaverageof60%.Continuityoflong-terminfrastructuresforsustainedobservationsandthecollectionoflong-termdatasetsisvitalforthesector,suchastheMetOfficeObservationsNetworkthathasbeeninoperationsince1853.Theclearmajorityofenvironmentalinfrastructures(92%)areinoperation,withtheremainderindevelopment(2%),design(3%)andimplementation(3%).

12.2 Impact and outcomes for theeconomy,industry andpolicymaking

Environmentalsciencestimulatescleangrowth,avoidscoststoallowindustrytoremainresilienttoriskandshocksandsupportseffectivepolicy-making.Environmentalinfrastructuresareassociatedwitheconomicactivitysuchaspublicpolicy,agriculture,miningandhealthservices(Figure12.5).Additionally,71%ofenvironmentalinfrastructuresworkdirectlywithUKbusinessesand59%directlycontributetoshapingpublicpolicyanddeliveringpublicservices.Overhalf(57%)provideresourcesand/orrelatedservicestothewidercommunityinadditiontoprovidingtheinfrastructureitself.

Page 87: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

87

Case study: Creating new insights by unlocking our geological past

TheNationalGeologicalRepository(NGR)includesthelargestcollectionofUKgeosciencesamples,with16millionspecimenscuratedoverthepasttwocenturies.Itincludesover23,000rockcoresfromboreholesandhydrocarbonwellsaroundtheUK,themajorBritishcollectionofrocksandover3millionmicro-andmacrofossils–allavailableforinspection.TheNGRcollectionsarebeingscannedanddigitisedandmadeavailableonline,includingover1.3millionscannedUKonshoreboreholerecords.TheNGRhasbeenused,forexample,byenergyfirmstoavoidunnecessarydrillingcostsofaround£12millionperwellandbyminingcompanieslookingfornewsourcesofcriticalmetals.

BOSCORFistheUKnationalrepositoryfordeepseasedimentcoresprovidingspecialistlong-termstorageandcurationforover2500sedimentcores.Thecollectionisgrowingby100-200coresperyearandincludescoresfromallmajoroceanbasins.BOSCORFprovidesresearcherswithaccesstothisessentialmarinecollectionandenablesscientiststocarryouthighimpactscience.

Nat

iona

l Oce

anog

raph

y Ce

ntre

Briti

sh G

eolo

gica

l Sur

vey

Figure 12.5. Topeconomicsectorsthatenvironmentalinfrastructurescontributetoorworkwith(excludingresearchandeducation).

Utilities: Energy45 (54%)

Public Policy49 (58%)

Agriculture38 (45%)

Fisheries 30 (36%)

Construction26 (31%)

Mining28 (33%)

Forestry24 (29%)

Manufacturing: Instrumentation24 (29%)

Page 88: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

88

Theenvironmentsectorusesinnovativeandworld-leadinginfrastructuretorespondrapidlytonaturalhazardsandemergencies.Infrastructureprovidesourscientists,techniciansandpartnerswiththetoolstopredict,manageriskandensurethat,intheUKandglobally,peopleandbusinesscanprosperinaresilient,productiveandhealthyenvironment.Thisisbecomingincreasinglyimportantasenvironmentalscienceinfrastructureprovidesthedata,insightsandmodellingtotheUKanditspartnerstofindenvironmentalsolutionssuchasthechallengespresentedbyclimatechange.

ApartnershipbetweentheUniversityofLeicesterandlocalbusinessessecuredwiderutilisationofspace-basedEarthobservation(EO)data,enablingfortySMEstoincreasetheirtotalGVAby£950,000withinfouryears.Thepartnershipachievedthisviatargetedinterventions,developmentofproductsandservicesandtrainingintheuseofEOdata,generating£2.9millionofinvestmentinthe EastMidlandseconomy.

Formorethanthirtyyearsmarineinfrastructureshaveunderpinnedpioneeringconservationbiologyresearchbyenvironmentalscientists,tosupporttheUKgovernment’sleadershiproleininfluencinginternationalpolicyanddeliveringenvironmentalbenefitsandincome

fromsustainablefisheries.BirdIslandandKingEdwardPointresearchstationsandtheRRSJamesClarkRossarecriticalinfrastructuresinAntarcticaandthesub-Antarctic.Theyhaveenabledcriticalexpertiseandevidencetobegatheredforinternationalpoliciesandagreementstoprotectandconservemarineandterrestrialecosystems,aswellastosustainablymanageSouthernOceanfisheries.ThishasresultedinalargeareaoftheRossSearegionbeingdesignatedaMarineProtectedAreaandthevirtualeliminationofseabirdmortalityassociatedwithfishing.

TheUK’senvironmentalinfrastructurealsoenableseconomic,societalandpolicybenefitsacrosstheglobe,deliveringagainstIntergovernmentalPanelonClimateChange(IPCC)commitmentsandtheSustainableDevelopmentGoals.Infrastructureprovidesresearcherswiththetoolstoproduceinnovativesolutionstochallengesallovertheworld.Forexample,environmentalscientistshaveusedweatherpredictionstoreducepovertyandsecurefarmerlivelihoodsinAfrica.Theseforecastshavedeliveredsignificantbenefitstogovernments,businesses,aidagenciesandcommunitiesbyimprovingnationalweatherservices,providingearlywarningofcropfailureandenablingpoorfarmerstotakeoutcommercialinsuranceagainstweathershocks.

Case study: Responding rapidly to emergencies

FollowingtheeruptionoftheEyjafjallajökullvolcanoinIcelandin2010,volcanicashdisruptedaviationonaglobalscalewithhugeeconomiclosses.MetOfficeinnovationsinashdispersionmodellingandforecasting,underpinnedbyFAAM,avoidedtheunnecessaryclosureofUKairspaceandsavedairlines£290millionperday.

S Mobbs NCAS G Gratton FAAM

Page 89: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

89

TropicalApplicationsofMeteorologyusingSATellitedata(TAMSAT)andground-basedobservations,forexample,recentlyenabledUS$2.8milliontobepaidtofarmersin370locationsinZambiafollowingaseveredryspell.ThefarmersarepartofamandatoryinsuranceschemeintroducedbytheZambiangovernmenttoprotectfarmersagainstextremeweatherevents,thelargestschemeofitskindinAfrica.

12.3 E-infrastructure and data needs of the sector

Tacklingenvironmentalchallengesrequiresinnovativewaysofmodelling,simulatingandobservingtheenvironment.Thereisanincreasingneedtomanagelarge,interoperabledatasets,whichcomewithchallengessuchasvariabledataquality.OftheUK’senvironmentalinfrastructures,72%haveasignificante-infrastructureand/ordatarequirementandtwothirdsarealsoassociatedwiththecomputationalande-infrastructuresector.Overthreequarters(76%)envisagede-infrastructureanddatabecomingmorerelevanttotheminthenext fivetotenyears.

Theenvironmentsectorhasaworld-leadingdataanalysisandstorageinfrastructureknownasJASMINandgloballycompetitiveHPCcapabilitiesthroughtheUK’snationalsupercomputerARCHER.JASMINisagloballyuniquedata-intensivesupercomputerforenvironmentalscienceandcurrentlysupportsover160scienceprojects.Itsusers’researchtopicsrangefromearthquakedetectionandoceanographytoairpollutionandclimatescience.JASMINhasmorethan44petabytesofavailablestorage,equivalenttostoringover10billionphotos.ThesectoralsobenefitsfromNEXCS,MONSooNanditssuccessorMonsoon2todeliversupercomputinginfrastructuretoenablecollaborationbetweenNERCandthe MetOfficeinclimateandweathermodelling. Itprovidesacommoncomputingplatform, post-processingcapability,afastdatalinkandaccesstodataarchives.

NERC-fundedresearchersattheUniversityofReadingworkedwiththeMetOfficetodevelopcomputermodelsthatcanidentify‘stingjet’airstreamsandpredictseverewindsseveraldaysinadvance.ThisenabledtheMetOfficetostrengthenitsseverewindwarningserviceanddeliverannualsavingsincluding:

Twenty-threelives:duetoworkbeingsuspendedonhighbuildingsinextremewinds

350,000tonnesofCO2:byreducingfuelneededforaircraftdiversions

£120million:byenablingairlinestoimproveaircraftrouting

£5million:fromemergencyservicesmakingmoreinformedresourcingdecisions

AmodeldevelopedbyNERC’sNationalCentreforAtmosphericScienceprovidesairportswithwarningsofseverewinds.Nowincorporated intoMetOfficeforecastingmodels,itsaves£1.25millionperyearfortheMinistryof DefenceintheFalklands,forinstance,byminimisingflightdiversions.

Case study: Early weather warnings save lives and reduce costs

National Oceanic and Atmospheric Administration

Page 90: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

90 andreas160578 from Pixabay

Chapter 13: Energy sector

Page 91: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

91

EnergyresearchandinnovationinfrastructurescoverabroadrangeofR&D,fromunderpinningscienceinuniversitiesthroughtolargedemonstrationfacilities.Itencompassesadiverserangeofresearchareasthatcanbecategorisedasfollows:

Powergeneration

NuclearFusionandFission Renewablegeneration(wind,marine, wave,tidal,solarandgeothermal)

FossilFuels(oil,gasandcoal)

Energydistribution

Electricalpowernetworksystems Naturalgasdistributionnetworks Alternativeenergyvectors(hydrogenandfuelcells,alternativefuelsincludingbiofuels)

Enablingtechnologies

EnergyStorage Carboncaptureandstorage Energyefficiencyanddemandreduction(buildings,transportandindustry)

Wholeenergysystemsunderstanding.Includingenergydemand,policy andregulation

Energyresearchalsoincludessupportingtechnologiessuchaselectrochemistry,materialsscience,systemsengineering,robotics,remoteandautonomoussystemsandadvancedmanufacturing.Muchoftheunderpinningscienceforenergyresearchisundertakeninfacilitiesthatarecross-cuttinginnatureandwhichhavenotidentifiedenergyastheirprimarysector.ExamplesincludetheSirHenryRoyceInstitute,Diamond,NationalPhysicalLaboratoryinfrastructuresinthePS&EsectorandtheBritishGeologicalSurveyfacilitiesintheenvironmentsector.

EnergyR&DisastrategicpriorityfortheUKandisakeycomponentofthegovernment’sIndustrialStrategy1andCleanGrowthStrategy38. Thekeyhigh-levelchallengesforenergyR&DintheUKinclude:

Developmentoflowcarbon,secureandaffordableenergytechnologies

Transitionfromthecurrentfossilfuel basedenergysystemtoafuturelow carbonsystem

ntegrationofintermittentrenewableenergysourcesintotheenergysystem

Decarbonisingsub-sectorsofenergyincludingheat,transportandindustry

Developmentofenergystorageinalltheenergyvectorsincludingelectricity,gas,heatingandcooling

13.1 Current landscapeGiventhefocusedsubjectarea,theenergysectorconsistsofarelativelysmallgroupofdedicatedinfrastructures.Thirty-threeinfrastructuresidentifiedenergyastheirprimarysectorinthequestionnaireresponses.However,asnotedabove,asignificantnumberofinfrastructureswithinothersectorsprovidecrucialunderpinningresearchcapability.Forty-fourpercentofthe718non-energyinfrastructuresalsocoverenergyasapartoftheirremitandsupportunderpinningscienceforenergyR&D.Thisindicatesthatthereisastronglinkbetweenenergyandtheothersectors(Figure13.1),especiallythePS&E,computationalande-infrastructureandenvironmentsectors.

Page 92: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

92

Powergeneration

TheFloWaveOceanEnergyResearchFacilityisamarineenergyresearchfacilityconstructedforcutting-edgeacademicresearchintowaveandtidalcurrentinteractions.FloWaveisalsoacuttingedgetoolforcommercialdeveloperstoensuretheirtechnologiesandprojectsperform‘rightfirsttime’andarede-riskedasmuchaspracticalbeforecuttingsteelorgoingoffshore.

Energydistribution

TheUniversityofManchesterHighVoltageLaboratory(officiallycalledtheNationalGridPowerSystemsResearchCentre)isthehometoresearchfundedbyindustry,theUKgovernmentandtheEU.Themixtureofhighlyskilledresearchersandacademicsprovidetheedgeininnovativeandexperimentationconsultancythatisnotfoundinotherservices.Thelab,alongwithitstestfacilities,iscapableofworkingwithexistingutilitiesanddevelopmentcompaniesintestingandassessingequipmentathighvoltages.Thestaffarecapableofprovidingconsultancyfortheneedsoftoday’stransmissionanddistributionexpansionandinnovation.

Enablingtechnologies

TherecentlyfoundedFaradayInstitutionistheUK’sindependentinstituteforelectrochemicalenergystoragescienceandtechnology,supportingresearch,trainingandanalysis. TheFaradayInstitutionbringstogetherscientistsandindustrypartnersonresearchprojectstoreducebatterycost,weightandvolumetoimproveperformanceandreliabilityandtodevelopwhole-lifestrategiesfromminingtorecyclingtoseconduse.

UKR

I and

Mr S

tuar

t Bro

wn

Page 93: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

93

EnergyinfrastructuresaredistributedinallfourcountriesoftheUK,withparticularconcentrationsinsouthWales,ScotlandandcentralEngland.Oftheinfrastructuresidentifyingenergyastheirprimarysector,91%alsoidentifiedwithPS&Eand64%werealsorelevanttotheenvironmentsector.Forexample,energyistheprimarysectoroftheEdinburghCentreforCarbonInnovation(ECCI)andtheEastRidingofYorkshireCouncil(Ergo),buttheyalsoidentifystronglywithenvironmentaswell.TheSustainableProductEngineeringCentreforInnovativeFunctionalIndustrialCoatings(SPECIFIC)andNationalNuclearLaboratory(NNL)bothmentionedthatenergyistheirprimarysector,whilsttheyalsocoverPS&E.

Themajorityofenergyinfrastructures(82%)aresinglesitephysicalentities,whichagainisahigherpercentagethantheotherfivesectors.Manyofthesmaller,morehighlyfocusedfacilitiestendtobelocatedinuniversities,suchastheFloWaveOceanEnergyTestFacilityatEdinburghUniversity.Co-locatinginauniversityprovidesthesupportingscientificcapabilityinareassuchasmaterialsresearchthatunderpinthissector.

13.2 Recent investmentsManyoftheinfrastructuresintheenergysectorarerelativelynewwith81%oftheidentifiedinfrastructureshavingstartedoperations

withinthelastfifteenyears.ThisisduetotheincreasedinvestmentinenergyR&Dthathastakenplaceovertheperiod,investmentthathasbeenmadeinresponsetointernationallyrecognisedfuturecleanenergy39needs.Forexample,spendontheEPSRC-ledUKResearchandInnovationenergyprogrammehasincreasedfromaround£30millionperannumtoaround£180millionperannumsince2004.TheEnergyTechnologyInstitute(ETI)wascreatedin2008withaten-yearbudgetofupto£100millionperannumthatwas50:50public/privatefunded.AtthesametimetherehasbeenasignificantexpansioninenergyR&DsupportbyBEIS.RecentlytheUKgovernmenthaspledgedtodoubleenergyR&Dtoaround£400million perannumasdescribedintheMissionInnovationprogramme40.

Recentinvestmentsreflecttherelativeeconomicandpoliticalimportanceofdifferentenergytechnologies.Forexample,theexpansionofgeneratingcapacityforoffshorewindenergybetween2008and2018fromunder0.5GWtoover8GWofinstalledcapacityhasbeensupportedbysignificantinfrastructureinvestmentinOREbothpriortoandduringtheexpansion.FacilitiessuchastheORECatapult,theFlowaveandCOASTfacilitiesallcontributedtobuildingunderstandingofandovercomingtheengineeringchallengesassociatedwithplacinggenerationinfrastructureinthesea.

0%

20%

40%

60%

80%

100%

BH&F PS&E SSAH ENV E-INF

Don't identify withenergy

Identify withenergy

Figure 13.1. Distributionofinfrastructuresfromtheotherfivesectorsthatidentifiedwithenergy.Identificationwasparticularlystronginthephysicalsciencesandengineering,environmentandcomputationalande-infrastructuresectors.

Page 94: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

94

Case study: Coastal, Ocean And Sediment Transport (COAST)

HousedintheMarineBuildingattheUniversityofPlymouth,theCOASTlaboratoryprovidesarangeofworld-classphysicalmodellingfacilities.Physicalmodelsarepowerfultoolsthatfacilitatetheunderstandingofthepotentialbehaviourandde-riskingofengineeringprojects.

Waves,currentsandwindaregeneratedatscalessuitableforresearch,designandoptimisationstudiesacrosstheocean,coastalandfluvialengineeringandphysicalsciencesectors.Recognisedasaninternationalcentreofexcellenceforresearch,developmentandteachinginthesefields,COAST’sclientsincludecentralandlocalUKGovernment,theEuropeanCommissionandinternationalfundingagencies,aswellasconsultants,contractorsanddevelopers.Sinceitsinceptionin2012,COASThasbecomealeadinglightintheglobaldrivetofurtherthelearninganddevelopmentofthenascentmarinerenewableenergysector,andisseatedattheheartofthecollaborativeSupergenOREHub.

MorerecentlytherehasbeensignificantinvestmentinnuclearfissionR&Dfacilities,mostlyinuniversitiesorbuildingonexistingcapabilityinNNL,SellafieldLtd,theDaltonCumbriaFacilityandUKAtomicEnergyAuthority(UKAEA)atCulham.ThisinvestmentisongoingandincludesrecentlyapprovedadditionalsupportfortheNationalNuclearUserFacility(NNUF)phase2expansion.ThisexpansionininfrastructureisinrecognitionthattheUKneedstodevelopandcommissionthenextgenerationsofnucleartechnologies.Inscaleanddiversitynuclearfacilitiesreflectgeneralenergyinfrastructure,withsomebeingdistributed,suchasNNUFandsomebeingsinglesitenationalcapability,suchasNNL.Facilitiesexistassingle-sitedeitherbecausetheydealwithhighlyspecificchallenges,suchhighlyactivematerialsatNNL,orbecausetheyserveaspecificmarketthatissufficientlylargetowarrantasingleenergyresearcharea.Wheredemandandexpertisearedistributed,distributedinfrastructurescanbemoreappropriatetoavoidhavingtorelocateandcentralisecapability,ortoavoidtheduplicationofcapability,e.g.NNUF.

NotalloftheenergyresearchinfrastructureisfocusedonmiddleorhighTechnologyReadinessLevels(TRLs)41.Forexample,theUKhasastrongtrackrecordinnuclearfusionresearch

andtheUKAEAfacilityatCulhamCentreforFusionEnergy(CCFE)hashostedtheJointEuropeanTorus(JET)andMegaAmpSphericalTokamak(MAST)facilitiessincetheearly1980s.TheworkundertakenatCCFEinvolvesabreadthofresearchincludingcutting-edgeplasmaphysicsandplasmacontrolandthedevelopmentofnewmaterials,roboticsandcontrolsystemsthatcanwithstandahighlyhostileoperatingenvironment.ItshouldbenotedthatthefusionfacilitiesareagoodexampleofinternationalfacilitycollaborationandplayauniqueroleincontributingtotheUK’sinternationalobligations(e.g.JET).Theycanalsoformanucleusofexpertisearoundwhichanationalprogrammecancoalesce,e.g.MAST.

InotherenergyareastheUKhasmoremodestcapabilities,withmostofthefacilitiesbeinglocatedinuniversities:

Solarenergy:theUKhasascientificleadinmanycutting-edgesolarenergytechnologies(thinfilmphotovoltaic(PV),organic/dyesensitisedPVandperovskitePV).TheSPECIFICInnovationandKnowledgeCentre,afacilityinPortTalbotandtheCentreforRenewableEnergySystemsTechnology(CREST)atLoughboroughUniversityarethetwosignificantcentresinsolarenergy

COAS

T

Page 95: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

95

Bioenergy:outsideuniversitiesthereislittleinfrastructureinbioenergy.TheUKdoeshavefacilitiesinagriculture,plantbreedingandgenomics,capturedintheenvironmentsector,butlittleontheconversiontechnologiestoturnbiomassintofuels

Power distribution:infrastructureismostlyfocusedonelectricaldistributionfacilitiesatStrathclydeandManchesteruniversities

HydrogenandFuelcells:researchismostlyundertakeninuniversities

Energysystemtransition:theUK’scapabilitiesaremodest

TheUKenergysystemisundergoingaslowbutfundamentaltransitionasincreasinglow-carbonenergysourcesarebroughtonline.Itisunclearexactlywhatthefutureenergylandscapewilllooklikeorwhatmixofenergysourceswillpredominate,butitisclearthatthefuturesystemwillbesmarterandmoreconnectedandhavetoco-ordinateawidevarietyofenergysources.Asaconsequence,thereisagrowinginfrastructurecapabilityinsmartmetering/systemsandtheassociateddata,modellingandsimulationthatisneededtounderstandtheimpactofthesechangesandtodevelopthetechnologyrequiredtoenablethem.MuchofthiscapabilityisinUKuniversities,whoarethedevelopersandcustodiansofmostoftheenergysystemmodels,butthereareincreasinglinksbetweentheacademiccapabilityandindustry,facilitatedbyinstitutionssuchastheEnergySystemsCatapult.

13.3 The role of data & e-infrastructure in the sector

Twothirdsofenergyinfrastructuresreporta‘significante-infrastructure/datarequirementorcomponent’.E-infrastructureisseenasnecessarybythesectortoaddressthechallengesofcapturingdata,undertakingcomplexmodellingandthesimulationofvarioussubsectors/subsystemswiththeaimofultimatelybeingabletosimulatetheentireenergysystem.E-infrastructureisalsoneededforappliedsolutionstorealsectorissues,suchasthereal-timemonitoringofremotefacilities(e.g.windfarms)whichisvaluableforperformancechecks,earlydetectionoffaultsanderrorsandensuringthesecurityofthesystemisintact.Threequartersofenergyinfrastructuresconsider

thate-infrastructureanddatawillbecomemorerelevantoverthenextfivetotenyears.

Intheenergysectordataareaparticularlyvaluableresourcethatcanbeusedtoinformmodels,improveaccuracyofforecastingandcostoptimisation,informpolicyinterventionsandhelpbusinessestodevelop.Thesedatacancomeinmanyforms,suchasindividualuserdata,weatherdataforpredictionofpeaksandtroughsinelectricityproduction,systemsperformanceandcontroldataneededformaintaininggridstabilityandmarketdataforensuringoptimumefficiencyforsuppliersandconsumers.Itisimportantthatresearchers,businessesandaggregatorshavesufficientaccesstodatatoenableinformeddecisions.Hencedataareavaluableassetandarelegallyprotectedbothascompanypropertyandthepropertyoftheindividualcustomer.

Infutureenergysystems,theintegrationofvariedandnewsourcesandtypesofdatamayposechallengesintermsofbothstorageandcoordinatedsecuritypolicy,whichmaybesolvedbyinvestinginthelinkbetweenthecomputationalande-infrastructureandenergysectors.Futureenergyinfrastructuresneedtobelinkeddigitallytogethertoenabletheexchangeofdata,modelsandresults–otherwisewholeorevenpartialenergysystemscannotbemodelledorcontrolled.E-infrastructurecanalsoenabledigitaltwinningtechnologydevelopmentfortheenergysectorusingasensor-enableddigitalreplicaoftheenergysystem.Thismayenhancethepotentialformulti-vectorandmulti-sectorenergyinfrastructureapplicationsbydevelopingjointenergy-computationalande-infrastructureinfrastructures.

13.4EnergyasakeyeconomicsectorEnergyisakeyeconomicsectorandassuchishighlyregulated.Almostnoenergygenerationtechnologiescanbeinstalledwithouteithercertificationofthetechnology(e.g.nuclear)and/orpermissionsforinstallation(e.g.offshorerenewables).Thismeansenergytechnologiesneedtobethoroughlyunderstoodbeforetheyareallowedtomarket,resultinginastrongdriverfortechnologydevelopment,testingandcertificationcapability.Hence,energyistheonlysectorwhereeveryinfrastructurehassignificantinvolvementwithbusinessacrosstheboard

Page 96: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

96

Figure 13.2. Distributionofenergyinfrastructuresonadiscovery-to-commercialisationspectrum.

0%

10%

20%

30%

40%

50%

60%

Mostly discovery More discovery Balanced More commercialisation

Figure 13.3. Topeightsectorsoftheeconomythatenergyinfrastructuresworkwithorcontributeto(excludingresearchandeducation).

Manufacturing: Instrumentation13 (41%)

Utilities: Energy30 (58%)

Manufacturing: All other11 (34%)

Public Policy

11 (34%)

Transportation: Automotive10 (31%)

Manufacturing: Electronics10 (31%)

Construction

9 (28%)Manufacturing: Machinery

9 (28%)

andithasthehighestskewinoutputtowardscommercialisation(Figure13.2).

Energyinfrastructuresaremainlyseenasimportantbytheutilitycompaniesandtheenergysupplychain(Figure13.3).Othereconomysectorsthatenergyinfrastructureshaveastrongrelevancetoincludepublicpolicy,transportation(automotive,aeronautical),manufacturing,instrumentationandconstruction.ThisemphasisesthatenergyinfrastructuresmakeawidebreadthofeconomiccontributionsandplayapivotalroleinthereductionofcarbonemissionsacrosstheUKeconomyalmostregardlessofsector.

WhilemostR&D-focusedinfrastructureshavebeenconstructedandoperatedusingpublicfunding,themajorityofdevelopment–anddeployment-focusedinfrastructuresareboth

public-andindustry-funded.TheyrepresentasharedorpooledresourcethatisavailabletomultipleindustriesandacademiaandthatdrawsonUKacademicexpertise.Whereinfrastructuresarecost-anduse-effectiveforindustrytobuildthemselvestheydoso,suchastheIntegratedTransportElectricityandGasResearchLaboratoryInTEGRel42,whichisledbyNorthernGasNetworksandisinpartnershipwithNorthernPowergridandNewcastleUniversity.Thispublic-privatefundingmodelisparticularlyevidentwheretherearemorenascentmarkets,whichrequiregovernmentsupportforpre-commercialactivitytoproveandde-risknewtechnology.Thisdual-supportmodelishighlydesirableasindustryisfacedwithappliedproblemsthattheacademicresearchbaseiswellplacedtohelpsolve,whileacademiagainsaccesstouniquechallengesthatcanpushthefrontiersofscience.

Page 97: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

97

Case study: Fusion energy infrastructures at UKAEA

UKAEA’scampusatCulhaminOxfordshireisoneoftheworld’sleadingcollectionsoffusionenergyresearchinfrastructures.ItsmainmissionistoleadthecommercialdevelopmentoffusionpowerandrelatedtechnologyandpositiontheUKasaleaderinsustainablenuclearenergy.UKAEAatCulhamhousesanumberofenergyinfrastructures.

JET atCulhamistheworld’slargestmagneticfusionexperimentandisalsothelargestEUfacilityintheUK.Itexploresthepotentialoffusionasasourceofenergyusingatokamak,aninfrastructurethatholdshotplasmainatightmagneticfield.Asatomsfuse,energyisreleasedandabsorbedasheatinthewallsofthevessel.

MASTistheUK’sfusionenergyexperiment.MASTholdsplasmainatightermagneticfieldthanconventionaltokamakslikeJETbyformingasphereshapedplasmaratherthanadoughnut.Thishasthepotentialtoproducemoreeconomicalandefficientfusionpower.

The Materials Research Facility (MRF) hasbeenestablishedtoanalysematerialpropertiesinsupportofbothfissionandfusionresearch.ItispartoftheNNUFinitiative,launchedbythegovernmentandfundedbyEPSRC,tosetupamulti-sitefacilitygivingacademiaandindustryaccesstointernationallyleadingexperimentalequipment.TheMRFisalsopartoftheSirHenryRoyceInstituteforAdvancedMaterials.

EURO

fusi

on

Mon

ty R

akus

enU

KAEA

Page 98: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

98

Chapter 14: Computational and e-infrastructure sector

Page 99: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

99

Theterme-infrastructurecoversallinfrastructurethatenablesdigital/computationalresearch.Itshouldberegardedas‘scientificinstrumentation’.ThebuildingblocksareshowninTable8.1.

Table8.1.Thebuildingblocksofe-infrastructure

Networks International/national(GÉANTandJanet),local

Software Tools(operatingsystems,digitalandsoftwarelibraries,accessmanagementsystemsetc.)

Applicationcodes(modelling,simulation,dataanalytics)

Computers Supercomputers

High-throughputcomputersfordataanalysis

Data infrastructure Infrastructureformoving,storing,analysing,visualisingandarchivingdata

Access mechanisms Cloudtechnologies

Accessmanagementandidentitymanagementtechnologies

Computationande-infrastructureisanimportantunderpinningcomponentoftheresearchecosystemacrossUKResearchandInnovationandiscriticaltotheoperationsofanumberofpublicsectorbodiessuchastheMetOffice.JiscistheUK’sproviderofdigitalsolutionstoresearchandeducation.ThisincludesthesuperfastJanetnetwork,Eduroam,domainregistries,digitalcontent,trainingandinfrastructure.

ThecurrentUKe-infrastructureecosystemhasevolvedovermanyyearsratherthanbeing‘designed’.Thisreflectsthediversityofthecommunitiessupportedandtherangeoffundingsourcesandmechanisms.Overthelastfiveyearsastrongcultureofcollaborationhasbeendevelopedamongstkeye-infrastructuresacrossallfields.TheUKisinagoodpositiontobuildonthesefoundationsandexplorethescopeforincreasedcollaborationandsharingofe-infrastructureinthefuture,includinglinkingintoglobalinitiativessuchastheEuropeanOpenScienceCloud(EOSC)andEuroHPC.

Seventy-twopercentofinfrastructuresfromothersectorsreportedarequirementfore-infrastructure.Itislikelythatthisunderrepresentstheactualrequirement becausecomputationalanddigitalapproachesarebecomingubiquitousacrossallfields ofresearch.

14.1 Current landscapeThecomputationalande-infrastructuresectorhasstrengthindiversity,reflectingthediversityofresearchneeds.Thisdegreeofdiversitydefieseasycategorisation,butFigure14.1attemptstocaptureit.

Atthecentreofcomputationalande-infrastructurelandscapearethepeople:boththeacademicandindustrialusers,andtheexpertswhoruntheservices.TheinfrastructureisdependentontheJanetnetworktoprovideaccessroutesandthetechnologyformovingdata.Akeyelementisthesoftwareinfrastructure.Asignificantmajorityofresearchacrossalldisciplinesreliesonspecialistresearchsoftwareformodelling,simulationandanalysis.Softwareiswheremuchintellectualproperty,knowledgeandunderstandingresidesandthisiswhysoftwarehassuchlongevity.Peoplereplacetheircomputeanddatahardware,butdonotdisposeoftheircodes.Softwareshouldbeconsideredaresearchoutputinitsownrightandformskeyinfrastructure.Finally,therearethediversehardwarecomponents,suchascomputinganddataplatforms,tailoredtomeettheresearchandinnovationrequirementsofusers.

Page 100: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

100

Figure14.1.TheUK’scurrentnationalresearchandinnovatione-infrastructureecosystem.

Theuseofe-infrastructureissignificantacrossallsectors(Figure14.2).Itisusedasatoolin59%ofinfrastructuresthatdidnotidentifye-infrastructureastheirprimarysector.Itistheprimarydisciplineof17%ofBH&Finfrastructuresandaround10%ofPS&E,SSAHandenvironmentinfrastructures.

>100,00Academic

& IndustrialUsers

JANET Network

Access

IRIS

Data platforms fortranslational focus of

social science, arts and humanities

CCPs

OPERATIONAL RESEARCH - Supercomputing

GEN

ERIC

SPECIFIC

- data-intensive computing GENERIC SPECIFIC -

High-th

roug

hput

com

putin

g

Software Infrastructure & Projects

Page 101: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

101

Case study: UK Data Service (UKDS) and retirement income

TheUKDSisanESRC-fundedinfrastructurepartnershipbetweenbetweenEssex,Manchester,EdinburghandSouthamptonuniversities,UniversityCollegeLondon(UCL)andJisc.Itprovidestraining,supportservicesandaccesstomajorUKgovernment-sponsoredsurveys,cross-nationalsurveys,longitudinalstudies,UKcensusdata,internationalmacro-data,andbusinessandqualitativedata.

ResearchbytheResolutionFoundationusedacombinationofdataresourcesfromtheUKDSandOfficeforNationalStatistics(ONS)toassessfuturepensionerincome.Fortheiranalysisofoutcomesforrecentcohortsofpensioners,thefoundationuseddatafromtheBritishHouseholdPanelSurveyandUnderstandingSociety,itssuccessor.Forward-lookingprojectionsusedtwoONSsurveys:theNewEarningsSurveyandtheAnnualSurveyofHoursandEarnings.

Theresearchersfoundthatfuturepensionersshouldexperiencesimilarlevelsofearningsreplacementadequacyassumingretirementatstatepensionage,comparedwithrecentretirees.Theanalysisshowsthatthepoliciesbeingimplementedarepreventingdeteriorationinoutcomesacrossfuturecohortsofpensioners,butthatambitionsforearningsreplacementadequacyappeartoremainquitefaroutofreach.

TheresultsinformedthediscussionwithintheDepartmentforWorkandPensions(DWP)policypaperAutomaticEnrolmentReview2017:MaintainingtheMomentum.DWPwilllowertheageatwhichemployeesarerequiredtobeauto-enrolledinworkplacepensionsfromtwenty-twotoeighteen,aswellaswideningeligibilitytoworkersintheUKwhoearnlessthan£5876peryear.

0% 20% 40% 60% 80% 100%

BH&F

PS&E

SSAH

Energy

ENV

E-INF

Not used Primary discipline Used as a tool

Figure 14.2.E-infrastructureusagebyinfrastructuresinsectorsthatdidnotidentifycomputationalande-infrastructureastheirprimarysector.

Page 102: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

102

Tounderstandthediversity,complexityandtypesofe-infrastructuresweconductedasecondaryclassificationofinfrastructures,dividingthemintothefollowing:

E-infrastructurefacilities(e.g.ARCHER,DistributedResearchusingAdvancedComputing-DiRAC)

Experimentalfacilitieswithamajorrequirementfore-infrastructuretosupporttheresearchthatfacilityusersarecarryingout(e.g.Diamond,SquareKilometreArray)

Datafacilitiesandresourceswithamajorrequirementfore-infrastructuretosupporttheresearchthatfacilityusersarecarryingout(e.g.JASMIN,UKDS)

Researchcentres/institutesthatmayhavetheirowne-infrastructuretosupportresearchprogrammes,butwhichmayrequireaccesstothethreeclassesofe-infrastructureabove(e.g.EarlhamInstitute,HealthDataResearchUK)

Themajorityofinfrastructures(66%)fallintothefourthofthesecategories,aroundaquarter(24%)fallintoeitherthesecondorthirdcategoryandtherest(10%)fallintothefirstcategory.

Unlikesectorsdominatedbylarge,physicalinfrastructuresthatarevisitedinperson,manye-infrastructuresareaccessedremotelyovernetworksand,fromauser-accesspointof

view,theirphysicallocationislessinformation.However,forsomeoftheexperimentalfacilitiesthathaveane-infrastructurerequirement,userswouldstillbelikelytoattendinperson.

Thehardwareunderlyinge-infrastructurechangesrapidly,withmajorrefreshesneededonatimescaleofthreetofiveyears.Thisisevidencedbytherecentcapitalinvestmentsmadeinthissector(Figure14.3).Thismayhelpexplainwhyalargerproportionthaninothersectorsarereliantonshort-termfunding(28%versusanaverageof14%).However,manyinfrastructuresinthissectordohaveasignificantlifespan(Figure14.4).Itislikelythatthee-infrastructurecapabilityitselfmayhavealonglifespan,butthetechnologythatitreliesonwillneedregularreplacement.Forinstance,Diamondwillhaveadecades-longlifespanbutduringthattimewillneedtoupgradeandreplaceitsdatastorage,softwareandresearchcomputingfordataanalysisanditsnetworkcapacity.

TheResearchCouncilsperformedadetailedquestionnaireofe-infrastructurefacilitiesin2017andthereportgeneratedfromitcontainsconsiderableinformationabouthardware,software,servicesandpeople43.FromthatquestionnaireitwasapparentthatHEIsremainthemainproviderofdataandcomputeservicestothenationale-infrastructureecosystem, withthirty-sixHEIsprovidingnationalor regionalservices.

0

50

100

150

200

250

2011 2012 2013 2014 2015 2016 2017 2018

Mill

ions

(£)

Figure 14.3. Recentcapitalinvestmentsmadeine-infrastructureaccessibletothewideracademiccommunity.InvestmentsarelargelyaimedatmaintenanceofexistingcapabilitywiththeexceptionoffundingofARCHER2in2017.

Page 103: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

103

14.2E-infrastructure,data and innovation

Dataareoftenkeytoinnovation.TheHartreeCentreisanincreasinglyimportantinfrastructureforUKindustryandacentreofexcellenceintermsofhowtoapplyHPC,cognitivecomputingand‘bigdata’expertisetoawidevarietyofindustrialchallenges.ContinuingtodevelopthiscollaborativeapproachwillboosttheUK’scompetitiveedgeandhelpdelivereconomicgrowthandjobcreation.

WhilstHartreeistheonlyinfrastructuredirectlytargetedatindustry,thereisconsiderableindustrialusageofothere-infrastructuresviaeitheracademic/industrialcollaborationsordirectusage.Seventy-onepercentofe-infrastructuresstatedthatatleastsomeoftheirworkisinformedbytheneedsofbusinesses.Forexample,ARCHERcollaborated

withRolls-Roycetodemonstratethescalingofmodellingacrossmanyapplications.However,e-infrastructuresgenerallysupportresearchatthediscoveryendofthespectrum(57%)orhaveabalancedportfolio(37%).

Thetopeconomicsectorsthate-infrastructurescontributetoinadditiontoresearchandeducationincludecommunications,computing,healthservices,pharmaceuticalmanufacturing,publicpolicyandtransportation(Figure14.5).WhatisnotapparentfromFigure14.5isthedepthanddiversityofeconomicsectorsthataresupportedbye-infrastructures.Eache-infrastructuresupportsanaverageofseventeeneconomicsectors,fargreaterthananyotherdomainsectorandeverysectoroftheeconomyissupportedbyatleastaquarterofalle-infrastructures.

Figure 14.5. Topsectorsofeconomythatcomputationalande-infrastructureinfrastructurescontributeto(excludingresearchandeducation).

16%

26%

15%

43% Up to 5 years

5-15 years

15-25 years

Over 25 years

Figure 14.4. Expectedoperatinglifespanofcomputationalande-infrastructures.Overhalfhaveanexpectedoperatinglifespanexceedingfifteenyears.

Services: Health49 (77%)

Services: Computing & Communciations

50 (78%)Communcations & information

11 (34%)

Manufacturing: Pharmaceutical

37 (58%)

Transportation: Automotive33 (52%)

Public Policy36 (56%)

Utilities: Energy

9 (28%)Manufacturing: Electronics

31 (48%)

Page 104: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

Case study: Rolls-Royce and ARCHER

Rolls-RoyceusethenationalHPCservice,ARCHER,totestthescalingoftheircodesforavarietyofapplications:fluiddynamics,noise,combustionandastructuralmodelofafullenginetestrig.

Rolls-Roycearemajorplayersintheaeronauticalsectorwithanannualspendof£800millionandatotalimpactonUKGrossDomesticProduct(GDP)ofover£10.2billion.ScalingisimportanttoRolls-Roycetoensurethey

canmeettheirdesigntimescalesandtheywereabletorunamuchlargerscaleonARCHER.AccessdemonstratedtheartofwhatwaspossibleforRolls-Royceandhassettheircomputationalscienceandengineeringroadmapforthecomingtwotothreeyears.

Rolls

-Roy

ce

Case study: The Materials and Molecular Modelling Hub

Thishubprovidesresearcherscarryingoutresearchintomaterialswithaccesstoastate-of-the-artHPCfacilitynamedThomasafterBritishphysicistThomasYoung.Modellingandsimulationenablefundamentalinsightsintotheprocessesandmechanismsthatunderliephysicalphenomenaandhasbecomeanindispensableelementofcontemporarymaterialsresearch.

Thefacilitywasestablishedin2017.ItisapartnershipbetweenEPSRCandaconsortiumof

universitypartners:ImperialCollege,Kent,KingsCollegeLondon,Oxford,Cambridge,QueenMary,Queen’sUniversityBelfast,SouthamptonandUCL.Aswellasaccesstothesupercomputer,thefacilityalsoofferstrainingactivitiesandskillsdevelopment,pluscommunity-building.

104

Page 105: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

105

Annex A: Definition of research and innovation infrastructure used within this programme

Researchandinnovationinfrastructuresarediverse.TheprogrammehasdrawnonthedefinitionsusedbyESFRI44andtheHorizon2020ResearchInfrastructureProgramme11:

facilities, resources and services that are used by the research and innovation communities to conduct research and foster innovation in their

fields. They include: major scientific equipment (or sets of instruments), knowledge-based resources such as collections, archives and scientific data, e-infrastructures, such as data and computing

systems and communication networks, and any other tools that are essential to achieve excellence

in research and innovation.

Infrastructurescanbesingle-sited(asingleresourceatasinglelocation),distributed(anetworkofdistributedresources),orvirtual(theserviceisprovidedelectronically)butareusuallyaccessedthroughasingleentrypoint.

Thisprogrammefocusesonmajorresearchandinnovationinfrastructuressupportedthroughgovernmentandaccessibletoallusersfromacademiaandindustry.Ingeneralthismeans:

Evidenceofsustainedand/orsubstantialUKpublicfundingcommitment(tobuild,operate,upgrade,decommission)isrequired(canbethroughmultiplechannels)

Privatesectororganisationsandinstitutionsfundedbyandforuseofasingleresearchestablishment(e.g.asingleuniversityorPSRE)willbetreatedasoutofscope

MajorresearchandinnovationinfrastructureswithinPSREs,UKuniversitiesorEuropeanandinternationalorganisationsthatarevitalfortheUKresearchandinnovationcommunitywouldbewithinscope

Requirement1:purposeAninfrastructuremustprovideanessentialplatformtoconductorfacilitateexcellent researchandinnovationthatbenefitstheUK,asdemonstratedbyindependentassessmentsuchaspeerreview.Thiscouldbethroughprovisionofequipment,facilities,analyticalservices,dataandunderpinninginfrastructure.Thismightbeencapsulatedwithinafacility,researchandinnovationorganisationorpartofanorganisation.

Theinfrastructureshouldberegardedandoperatedasastrategiccapabilityenablingcollaboration,supportingthemeetingofspecialistandtechnicalneedsandprovidinginnovationinservicesupport(e.g.regulatorycompliance)whichleadstoefficiencyofoperationandreducedduplication(e.g.uniquecriticalmass,coordination,scheduling).

in scope out of scope

Accessmustbeopentorelevant, publicly-fundedUKusercommunities beyondtheowner/operator

Accessibletoonlyoneoraverylimitednumberofresearchersororganisations

Publicly-fundedusersmayincludeHEIs,institutes,PSREs,researchandtechnologyorganisationsandotherresearchand innovationorganisations

Usedonlybyprivately-fundedR&D (e.g.industry)

Accessmayextendtoprivateor charitableusers(e.g.industry),inaddition topublicly-fundedusers

AccessmayincludeinternationalusersofUKfacilitiesandUKusersofinternationalfacilities

Accessmaybemanaged,e.g.throughuserregistration,fees,competition,meritreview,conditions,security;oritmaybeunmanaged

Page 106: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

106

Requirement2:accessibilityAninfrastructuremustprovideaccess,resourcesorrelatedservicestothewider,UKresearch and innovation communityoutsidetheinfrastructureinstitutionitself.

Requirement3:scaleandlongevityAninfrastructuremusthavesomedegreeofstrategic,internationalornationalimportance.Someinfrastructureswhicharecurrentlyregionallyimportantbutinkeyareasofemergingcapabilitymightalsobecaptured.

Aninfrastructureshouldbe: AssessedascriticalforUKresearchandinnovationexcellenceinoneormoresectors(consideredatfrontierofknowledge,addressingthemostpressingchallenges,demonstrableUKleadership,cutting-edgequality,importanceandrelevancetooneormorefields)

AssessedasbeneficialforUKresearchandinnovationimpact.Thiswouldincluderelevanceandalignmentwithgovernmenteconomicandsocietalchallengesandpriorities.Evidenceofimportancetotheusercommunitythrougharangeofpathwaysincludesleverageofco-funding,roleaninfrastructureplaysbothwithinthelocaleconomyandatanationallevel

Inadditionthereisanimplicitexpectation thatshort-term,focusedprojectswithoutlong-termsustainability(existingorplannedandrelativetoassetandtechnologylifecycles)wouldnotbewithinscope.

Page 107: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

107

Annex B: MethodologyThisfinalanalysisoftheUK’scurrentresearchandinnovationinfrastructureshasdrawn heavilyondatacollectedthroughtwoquestionnairesthatreachedover950existinginfrastructures.Thisannexfirstcoversthecontentofthequestionnaires,theapproachtakentoreachtargetrespondentsandresponserates.Itincludestheapproachtakentoassessandfillanygapsinthedatasetandimplement aclassificationsframeworktosupportthe morerobustanalysispresentedhereinthefinalreport.Thisisfollowedbyasectioncoveringcaveatsonthedatacollectedplushowbest useofavaluablethoughimperfectdataset hasbeenmade.

Throughouttheinitialanalysisadditionalinformationgatheredthroughworkshopsandstakeholderinterviews,plusreviewsofexistingreports,hasbeenusedtosense-checkmessagesfromthedataanalysisandtoprovidesupplementaryinsightontheinfrastructurelandscape.Thisannexdoesnotgointodetail onthissupportingwork.

Questionnaire approachQuestionnairesoneandtwowereconductedduringspring/summer2018.Thegap-fillingquestionnairewasconductedduringwinter 2018andwasanamalgamationofquestionnairesoneandtwo.

Broadly,thefirstquestionnaireasked questionstogatherawiderangeofdescriptiveinformationoninfrastructures.Thesecondquestionnairesoughttodigdeeperinasmallnumberofkeyareasandgathertheviewsofinfrastructuresonfuturetrends,aswellascurrent/futurebarrierstomaximisingqualityoutputs.Thefollowingtableliststhetopicscoveredbythequestionnaires.

Page 108: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

108

Questionnaire one Questionnaire two

Backgroundinformation: Descriptionoftheinfrastructure Location Configuration(singlesite/distributed/virtual) Strategicplans

Legalnature: Legalnatureofthoseinfrastructuresestablished asnationallegalentities

Lifecyclestage: Stageofinfrastructureinlifecycle Firstyearofoperations Lifespan

Domain/sector: RelevanceofRoadmapsectors RelevanceofsubdisciplineswithinRoadmapsectors Relevanceofe-infrastructure(disciplineofinfrastructure versususedastool)

Expectedgrowthofrelevanceofe-infrastructure

Domain/sector: Roadmapsectorscovered Primarysector Significanceofe-infrastructure Sectorsofeconomysupported

Work with others outside academia: Contributiontopublicpolicymaking/deliveryofpublicservices Workwithbusinesses,charitiesandthenon-academicpublicsectorathomeandabroad

Scope & collaboration: Scope/reachofinfrastructure Extentofaccesstoexternalusers Provisionofresources/servicesto widercommunity

Collaborationwithorganisations,nationally andinternationally

Topcollaborators Extentofdiscoveryversuscommercial focusedresearch

Extentofworkwithbusiness

Position in landscape: AccesstoUKusers Easeofsubstitutiontoalternativeinfrastructures ComplementaryinfrastructuresintheUKandabroad AttractionofusersbasedoutsideoftheUK

Users: Howusernumbersaremeasured Numberofusers Whereusersarefrom

Costs and decision points: Majordecisionpointsinthenextfiveyears Directandindirectfundingfromindustry,charityand othernon-governmentorganisations

Potentialforleveragingnon-governmentcontributions Viewsofwhethersourcesoffundingwillchange

Capacity: Howcapacityismeasured Percentageofcapacityused Targetcapacityuse

Reviews and evaluations: Whetherinfrastructurepeerreviewsusers Independentreviewsofinfrastructures

Costs: Establishmentcosts Annualcostsofoperations PrimaryUKpublicfundingsource Dependenceonpublicfinance Whetherinfrastructuretheresultofa public-privatepartnership

Future trends: Technologicaldrivers/trendsimpactinginfrastructurein mediumterm

Scientific/researchdrivers/trendsimpactinginfrastructureinmediumterm

Societaldrivers/trendsimpactinginfrastructureinmediumterm Possibleevolutionofinfrastructurestoaccountfordrivers/trends Barrierstomaximisingqualityoutputsnowandinmediumterm Numberoffutureyearscapacity/capabilityneedsconsideredfor Trendindemandoverlasttenyears Expectedgrowthofinternationalusersrelativetonationalusers

Staffing: Headcount StafffromUKandabroad Femalestaffpercentage Black,Asianandminorityethnicstaffpercentage Numberofstudents

Page 109: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

109

Targetrespondentsand response ratesThetargetaudienceforthefirstquestionnairewasallUKinfrastructuresandUKResearchandInnovationundertookextensivepreparatoryworktoidentifyasmanyaspossibleandtoestablishcontacts.Alistofalmost700infrastructureswithcontactswasdevelopedinconsultationwithsectorexperts,governmentdepartments,thecross-governmentanalystnetworkandtheDevolvedAdministrations.

Theseinfrastructureswereeachinvitedtocompletethefirstquestionnaire.InparallelthequestionnairewaspromotedtoallHEIvicechancellorsbyResearchEnglandandtheirdevolvedequivalentsforwidercoverageandtoreachinfrastructureswithunknowncontacts,plushithertounknowninfrastructures.AlinkwasalsoplacedontheUKResearchandInnovationwebsiteandpromotedbythenationalacademies,theAssociationofInnovation,ResearchandTechnologyOrganisations(AIRTO)andothers.

Thefirstquestionnairewascompletedby835entities–325(47%)ofthe697infrastructuresdirectlyinvitedtoparticipatecompletedthequestionnaire,whilst510responsescameaboutfromthewiderpromotionalwork.Ofthe835responses,712fulfilledthecriteriaofbeinganationalorinternationalinfrastructureandforty-threeresponsesrepresentedregionalinfrastructures.Thesecondquestionnairewassenttoeveryonewhocompletedthefirstquestionnaire.Theresponserateforthe712national/internationalinfrastructuresfromthefirstquestionnairewas83%.

Datafromthefirstandsecondquestionnairewereusedforthe‘InitialAnalysisreport7’,publishedinNovember2018.OneofthereasonsfortheInitialAnalysisreportwastostimulatefurtherengagementwiththecommunityandtofillthegapsincompletionwithsomesectors;forthispurposeagap-filingquestionnairewasconductedinWinter2018.Aswellasengagingnewinfrastructures,institutionswhichhadcompletedthefirstandsecondquestionnaireswereidentifiedandinvitedtocompletethegap-fillingquestionnairefortheirinfrastructures.ThisensuredthatweincludeddataattheappropriatelevelaccordingtotheclassificationdevelopedandpresentedintheInitialAnalysisreportanddidnotexcluderesponsesthatwereotherwiseimportanttotheprogramme.Thegap-fillingquestionnairereceivedafurther110responsesleadingtoadatasetcovering945infrastructures.

ClassificationframeworkAllquestionnaireresponseswereindependentlyclassifiedaccordingtotwomeasures:organisationallevel(e.g.institution,sub-node)anduniquenessofcapability.Questionnairedata,independentdeskstudiesandverificationfromsectorexpertswereusedtoinformandvalidatetheclassification.Thiswasdonetoallowamorenuancedandrobustapproachtodataanalysis.ThoseinscopearehighlightedinTablesB2andB3.

Page 110: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

110

Cluster outofscope

Aclusterofinstitutionswithassociatedinfrastructures,suchasacampus,scienceparkoruniversityconsortium,suchasthe N8groupofuniversities

Institution outofscope

Aninstitutionwhosecorepurposeisgreaterthantooperateasingleinfrastructure.Eithertheinstitutionhousesmultipleinfrastructuresand/oritperformssignificantotherfunctions,suchaspublicengagement.Examplesincludeuniversitiesandnationallabs

Coordinatinginfrastructureinscope

Aninfrastructureinitsownrightthatcoordinatesotherinfrastructureswithinit.AnexamplewouldbetheCentreforLongitudinalStudiesthatalsohostsfourdistinctcohortinfrastructures.Itdiffersfromaninstitutioninthatitdoesnotperformsignificantotherfunctions.ManydistributedESFRIprojectsarecoordinatinginfrastructures

Infrastructureinscope

Facilities,resourcesandservicesthatareusedbytheresearchandinnovationcommunitiestoconductresearchandfosterinnovationintheirfieldsandprovideadistinctcapability

Infrastructurescanbephysicalorvirtualresources,orthefacilities,instruments,toolsandtechniquesthatsupportthem.Theycanbelocatedatasinglesite,mobileordistributedacrossmanyplacesAsingleinfrastructurecanalsobeaninstitution,e.g.Diamond.Itwouldbecategorisedasinfrastructureifitdidnotperformsignificantotherfunctions(e.g.teaching,outreach)

National Node inscope

Nationalcomponentpartsdistributedinternationalinfrastructures

Sub-nodes:RegionalNodeoutofscope

Regionalcomponentpartsofdistributednationalor internationalinfrastructures

Local Nodeoutofscope

Localcomponentpartsofnationalorinternationalinfrastructures

Table B2.Organisationallevelofentitiesidentifiedthroughquestionnaires.

Internationalinscope

OnlycapabilityintheUK.Othersimilarcapabilitiesmayexistinothercountriesoritmaybeoneofakindglobally.Differsfromanationalinfrastructureinthatithasaninternationalreputation,withstronginternationaldraw

National inscope

OneofonlyahandfulofcapabilitiesintheUKortheonlyoneintheUK.Differsfromaninternationalcapabilitybybeingmorenationallyfocused,althoughitmayhavesomeinternationalusersorcollaborateinternationally

Regionalsectoranalysesonly

InfrastructurecapabilityreplicatedintheUKataregionallevel.It’slikelytobetheonlyoneintheregion,oroneofasmallnumberintheUK

Localoutofscope

Infrastructureisoneofseveralsimilarcapabilitiesinaregion(regionssuchasWalesorinthesouth-eastofEngland).Outofscopeforallanalyses

Table B3. Capabilityscopeofentitiesidentifiedthroughquestionnaires.

Page 111: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

111

CaveatsonquestionnairedataNoquestionnairewillevercapturethetotalityofresearchandinnovationinfrastructuresinthelandscape.Someinfrastructuresmayhavemissedthecommunicationsaltogether.Forsomesectors,suchasthesocialsciences,artsandhumanities,theconceptofaninfrastructureisrecentandlessembedded,riskingnon-participationasaresultofalackofself-identification.Someofthelargestinfrastructuresmayhaveconsideredthattheyweresowellunderstoodtherewasnoneedtocompletethequestionnaire.Wemitigatedthesebiasesbycross-referencingourengagementagainstlistingssuchasESFRI24andMERIL45.

Thereisnotanevenspreadofinfrastructuresacrossthesixbroadresearchandinnovationsectors.Anyoverarchinganalysesofthelandscapewillbedrivenbysectorswiththelargestnumbersofinfrastructures(i.e.physicalsciencesandengineeringandbiologicalsciences,healthandfood)andwhilstthisgivesthecorrectoverallpictureitshouldberememberedthatitmaynotberepresentativeofaparticularsector.Intermsofcross-sectorcomparisons,forquestionswithsmallsamplesizeswehavenotdrawnconclusionsfromsmalldifferencesinthedata.

Webelievethatwhilstspecificgapsmayexistinthequestionnairedatafrommissingindividualinfrastructures,thereisrepresentativecoverageoverall.GapsidentifiedafterpublicationoftheInitialAnalysisreportthroughsectoranalysisandstakeholderinputwereaddressed,particularlyinthespaceandclinicaldisciplineareas.

Anothersourceofpotentialbiasarisesfromvariationininfrastructures’scaleandpositionintheorganisationaltopology.Intermsofscaletherecouldbeabiasifequalweightingwasgiventoeachinfrastructure,forexample

whetheritisthenationalarchive(e.g.theBritishLibrary)orasmallerspecialistone.SincetheInitialAnalysiswaspublishedwedevelopedandappliedtheorganisationalandcapabilitycategorisationpresentedinAnnexBtocontrolforthisandremoveentriesthatwereoutofscopeforthisprogramme. Thequalityofdatageneratedbyquestionnairescanbevariable.Questionnairesaresubjecttodifferencesinunderstandingandinterpretation,especiallywhenlanguageandterminologydiffernaturallybetweenthebroadsectorswetargeted.Tocaptureasbroadapictureaspossible,somequestionswereoptionalleadingtovariationinsamplesizesandnoteveryquestioncouldbeposedinawaythatwaseasytoanalyse.Additionally,whilstwewerecarefulinclarifyingourcriteriaforengagement,wereceivedcompletionsfrominfrastructuresthatdidnotfittheseorthatwerefromacampusoraninstitutionratherthanfromtheinfrastructureswithinthem.

Wecontrolledqualityinanumberofways.Everyentrywasreadandassessedagainstourcriteria(AnnexA).Weidentifiedandencouragedinstitutionalresponsestoprovideuswithdataforeachoftheirinfrastructures.Thosefailinganycheckswerenotincludedintheanalysisforthisreport.ReasonsforexclusionarepresentedinChapter2,Figure2.1.

Duringdataexplorationfactualerrorswerecorrectedusinginformationprovidedinexplanatoryfieldsorthroughfurtherinvestigation,forexamplefollowingmisinterpretationofwhetherafundingsourcewaspublicorprivateorbycorrectingtypingerrors.Wealsoincludedtheoptionofaddingasupplementarysecondaryclassificationtoeachinfrastructure.Thisdidnotoverwritetheoriginaldatabutinsteadallowedadditionaldataexploration.

Page 112: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

112

AHRC ArtsandHumanitiesResearchCouncil

AI ArtificialIntelligence

AIRTO AssociationofInnovation,Research andTechnologyOrganisations

AMRC AdvancedManufacturing ResearchCentre

ATI AlanTuringInstitute

BAME Black,Asianandminorityethnicbackgrounds

BBSRC BiotechnologyandBiologicalSciencesResearchCouncil

BGS BritishGeologicalSurvey

BH&F Biologicalsciences,healthandfood

CCFE CulhamCentreforFusionEnergy

CCP5 ComputationalCollaborationProject No 5

CERN ConseilEuropéenpourlaRechercheNucléaire(EuropeanOrganisationforNuclearResearch)

CLF CentralLaserFacility

CLOSER Cohort&LongitudinalStudiesEnhancementResources

COAST Coastal,OceanAndSedimentTransport

Diamond DiamondLightSource

ECMWF EuropeanCentreforMedium-Range WeatherForecasts

E-INF Computationalande-infrastructure

ELIXIR Europeanlifescienceinfrastructureforbiologicalinformation

EMBL EuropeanMolecularBiologyLaboratory

EMBL-EBI EuropeanMolecularBiologyLaboratory-EuropeanBioinformaticsInstitute

ENV Environment

EPSRC EngineeringandPhysicalSciences ResearchCouncil

ESFRI EuropeanStrategyForumonResearchInfrastructures

ESO EuropeanSouthernObservatory

ESRC EconomicandSocialResearchCouncil

ESRF EuropeanSynchrotronRadiationFacility

ESS EuropeanSpallationSource

EU EuropeanUnion

EU-XFEL EuropeanX-rayFree-Electron LaserFacility

FAAM FacilityforAirborneAtmosphericMeasurements

FTE FullTimeEquivalent

G7 GroupofSeven(Canada,France,Germany,Italy,Japan,theUKand theUSA)

GLAM Galleries,Libraries,Archives andMuseums

HEI HigherEducationInstitute

HESA HigherEducationStatisticalAgency

HPC HighPerformanceComputing

ILL InstituteLaue-Langevin

IPERIONCH Europeanresearchinfrastructure forrestorationandconservationofCulturalHeritage.

ISIS ISISNeutronandMuonSource

JANET Ahigh-speednetworkfortheUK researchandeducationcommunity,providedbyJisc

JASMIN JointAnalysisSystemMeetingInfrastructureNeeds

JET JointEuropeanTorus

JWST JamesWebbSpaceTelescope

LHC LargeHadronCollider

LIGO LaserInterferometerGravitational-WaveObservatory

MAST MegaAmpSphericalTokamak

MC2 MaterialandChemical CharacterisationFacility

MRC MedicalResearchCouncil

N8 CollaborationoftheeightmostresearchintensiveuniversitiesinnorthernEngland

NERC NaturalEnvironmentResearchCouncil

NIAB NationalInstituteofAgriculturalBotany

NMR NuclearMagneticResonance

NNL NationalNuclearLaboratory

NNUF NationalNuclearUserFacility

ONS OfficeofNationalStatistics

ORE Offshorerenewableenergy

PS&E Physicalsciencesandengineering

PSRE PublicSectorResearchEstablishments

PV Photovoltaic

R&D Researchanddevelopment

SSAH Socialsciences,artsandhumanities

UCL UniversityCollegeLondon

UKDS UKDataService

UK-RIHS UKResearchInfrastructurefor HeritageScience

XML ExtensibleMarkupLanguage

Acronyms and Abbreviations

Page 113: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

113

Acronyms and Abbreviations References

1. DepartmentforBusiness,EnergyandIndustrialStrategy,TheUK’sIndustrialStrategy (websiteaccessedMay2019)

2. DepartmentforBusiness,Energy&IndustrialStrategy,InternationalComparativePerformanceoftheUKResearchBase,2019(websiteaccessedJuly2019)

3. InstituteforScientificInformation,TheAnnualG20Scorecard–ResearchPerformance2019 (websiteaccessedJuly2019)

4. EconomicInsight,WhatistheRelationshipbetweenPublicandPrivateInvestmentinScience,ResearchandInnovation?,2015(websiteaccessedJuly2019)

5. EstimatefromUKResearchandInnovationeconomicmodels(unpublished)

6. McKinseyGlobalInstitute,GlobalGrowth:CanProductivitySavetheDayinanAgingWorld?,2015

7. UKResearchandInnovation,InitialAnalysisofInfrastructureQuestionnaireResponsesandDescriptionoftheLandscape,2018

8. Independent,NumbersStudyingPhysicsRiseasBlockbusterFilms,theHadronColliderandtheMarsRoverInspireStudents,2015

9. EuropeanStrategyForumonResearchInfrastructuresScripta,Innovation-orientedCooperationofResearchInfrastructuresVol3,2018(websiteaccessedMay2019)

10. HMGovernment,InternationalResearchandInnovationStrategy,2019(websiteaccessedMay2019)

11. EuropeanCommission,AboutResearchInfrastructureswebpage(websiteaccessedJuly2019)

12. EuropeanSynchrotronRadiationFacility,ClearViewof“Robo”NeuronalReceptorOpensDoorforNewCancerDrugs(websiteaccessedApril2019)

13. DiamondLightSource,InsideDiamond,2017(websiteaccessedApril2019)

14. L’InstitutLaue-Langevin,NeutronsEnableFine-tuningofPesticidestoBoostCropYieldsandReduceEnvironmentalImpact(websiteaccessedApril2019)

15. EuropeanStrategyForumonResearchInfrastructures,TheESFRIMethodology (websiteaccessedMay2019)

16. G7Germany2015,GroupofSeniorOfficialsonGlobalResearchInfrastructuresProgressReport,2015(websiteaccessedMay2019)

17. HigherEducationStatisticsAgency,HigherEducationStaffData(websiteaccessedMay2019)

18. Technopolis,ScienceResearchInvestmentFund:AReviewofRound2andWiderBenefits,2009

19. ResearchEngland,ResearchandKnowledgeExchangeFundingfor2018-19:RecurrentGrantsandFormulaCapitalAllocations(2018)

20. OfficeforNationalStatistics,UKSIC,2007(websiteaccessedMay2019)

21. CreativeIndustriesClustersProgramme,BusinessofFashion,TextilesandTechnology(websiteaccessedMay2019)

22. NationalInstituteforHealthResearch,NIHRInfrastructure(websiteaccessedMay2019)

23. AdvancedManufacturingResearchCentre,Charities’FundingContributionstoUKMedicalResearchExcellence,2017(websiteaccessedMay2019)

24. EuropeanStrategyForumonResearchInfrastructures,Roadmap,2018(websiteMay2019)

25. Sci2(ScienceofScience)Tool,IndianaUniversityandSciTechStrategies,(websiteaccessedMay2019)

26. UKBiobank,Homepage(websiteaccessedMay2019)

27. MedicalResearchCouncil,ClinicalResearchCapabilitiesandTechnologiesInitiative(websiteaccessed May2019)

28. TheFrancisCrickInstitute,WorldwideInfluenzaCentre(websiteaccessedMay2019)

29. ThePirbrightInstitute,Homepage(websiteaccessedMay2019)

30. ScottishInformaticsandLinkageCollaboration,Homepage(websiteaccessedMay2019)

31. TheEuropeanBioinformaticsInstitute,Homepage(websiteaccessedMay2019)

32. EuropeanMolecularBiologyLaboratory,Homepage(websiteaccessedMay2019)

33. Data.parliament.ukWrittenEvidenceSubmittedbyCLOSER,2017(websiteaccessedMay2019)

34. HouseofCommons,Evidence-basedEarlyYearsIntervention:EleventhReportofSession2017–19,2018(websiteaccessedMay2019)

Page 114: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector

114

35. HouseofCommons-ScienceandTechnologyCommittee,Evidence-basedEarlyYearsIntervention:Government’sResponsetotheCommittee’sEleventhReportofSession2017–19-FifteenthReportofSession2017–19,2019(websiteaccessedMay2019)

36. HistoricEngland,HeritageandtheEconomy2018,(websiteaccessedMay2019)

37. MetropolitanPolice,HateCrimeorSpecialCrimeDashboard(websiteaccessedMay2019)

38. DepartmentforBusiness,EnergyandIndustrialStrategy,CleanGrowthStrategy,2017 (websiteaccessedMay2019)

39. HMGovernment,TheUKLowCarbonTransitionPlan–NationalStrategyforClimateandEnergy,2009(websiteaccessedMay2019)

40. MissionInnovationSecretariat,MissionInnovation:AcceleratingtheCleanEnergyRevolution– Strategies,Progress,

PlansandFundingInformation,2017(websiteaccessedMay2019)

41. NASA,TechnologyReadinessLevels(websiteaccessedJune2019)

42. NewcastleUniversity,EnergySystemsIntegration(websiteaccessedMay2019)

43. HP-SIG,2017NationalE-infrastructureReport,2017(websiteaccessedMay2019)

44. EuropeanStrategyForumonResearchInfrastructures,ESFRIGlossary(websiteaccessedMay2019)

45. MappingoftheEuropeanResearchInfrastructureLandscape(MERIL),Homepage(websiteaccessed May2019)

Page 115: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector
Page 116: The UK’s research and innovation infrastructure: Landscape ......5 Chapter 10: Physical sciences and engineering sector 65 10.1 The current landscape 67 10.2 Characterising the sector