the transition zone: slabs ’ purgatory

24
The Transition Zone: Slabs’ Purgatory CIDER, 2006 - Group A Garrett Leahy, Ved Lekic, Urska Manners, Christine Reif, Joost van Summeren, Tai-Lin Tseng, Magali Billen, Wang-Ping Chen, Adam Dziewonski

Upload: channer

Post on 08-Feb-2016

31 views

Category:

Documents


0 download

DESCRIPTION

The Transition Zone: Slabs ’ Purgatory. CIDER, 2006 - Group A Garrett Leahy, Ved Lekic, Urska Manners, Christine Reif, Joost van Summeren, Tai-Lin Tseng, Magali Billen, Wang-Ping Chen, Adam Dziewonski. Tonga Seismicity. Predicted Slab Positions. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The Transition Zone:  Slabs ’  Purgatory

The Transition Zone: Slabs’ Purgatory

CIDER, 2006 - Group A

Garrett Leahy, Ved Lekic, Urska Manners, Christine Reif, Joost van Summeren, Tai-Lin Tseng,

Magali Billen, Wang-Ping Chen, Adam Dziewonski

Page 2: The Transition Zone:  Slabs ’  Purgatory

Tonga Seismicity

Page 3: The Transition Zone:  Slabs ’  Purgatory
Page 4: The Transition Zone:  Slabs ’  Purgatory

Predicted Slab Positions

Degree 45 and 24 spherical harmonic expansions of locations of slabs based on plate history reconstructions assuming no stagnation in transition zone.

Page 5: The Transition Zone:  Slabs ’  Purgatory

Tomographic Models

Harvard Berkeley

Page 6: The Transition Zone:  Slabs ’  Purgatory

Preliminary Conclusions

• Tomography reveals larger fast regions in the western Pacific transition zone.

• Deep earthquake stress axes show evidence of resistance to crossing the 660 km discontinuity.

• Structure below and above 660 km discontinuity has different spectral character.

• Implication: slabs stagnate in the transition zone for some length of time.

Page 7: The Transition Zone:  Slabs ’  Purgatory

A Simple Force Balance for slabs in the Transition Zone

Page 8: The Transition Zone:  Slabs ’  Purgatory

Fb =∫ gdxdz

x

z

Page 9: The Transition Zone:  Slabs ’  Purgatory
Page 10: The Transition Zone:  Slabs ’  Purgatory
Page 11: The Transition Zone:  Slabs ’  Purgatory
Page 12: The Transition Zone:  Slabs ’  Purgatory
Page 13: The Transition Zone:  Slabs ’  Purgatory
Page 14: The Transition Zone:  Slabs ’  Purgatory

Constraints on and Clapeyron slopes

• Density contrasts– Seismic constraints– Lab experiments on mantle minerals/rocks– Lattice dynamics simulation

• Clapeyron slopes– Lab experiments on phase transformation– Calorimatric Calculations

Page 15: The Transition Zone:  Slabs ’  Purgatory

Summary Phase Transition Data

  Seismic Constrains Calculations (Pyrolite)

Simulations (MgSiO3)

410 5% to 6% About 3%  

660 7% to 9% 6% to 7% About 8%

  Lab Experiments Calorimatric Calculation

dP/dT 410 (Mpa/K) to 2.5 to 4

dP/dT 660 (Mpa/K) to Mw+Pv

–3 to –1 About -3

dP/dT 660 (Mpa/K) Pyrolite -0.5  

Density Contrast

Clapeyron Slope

For Clapeyron Slope of Olivine Polymorphs: Duffy, T., Synchrotron facilities and the study of the Earth's deep interior. Rep. Prog. Phys. 68 (2005) 1811-1859.

Page 16: The Transition Zone:  Slabs ’  Purgatory

Slab Thermal AnomalyGaussian Cross-slabProfile Exponential

DecreaseIn PeakAnomaly

Max. SlabDepth: 1000 km

Max. SlabDepth: 500 km

Page 17: The Transition Zone:  Slabs ’  Purgatory

Phase Transition Anomaly

Temperature AnomalyTransition Height (km)

410: = 3.0 MPa/K = 3-6%660: = -1.3 MPa/K = 7-9%

410: = 4.0 MPa/K = 4%

660: = -2 MPa/K

= 3%

Page 18: The Transition Zone:  Slabs ’  Purgatory

Effect of Dip on Sum of ThermalAnd Phase Change Forces

0 10 ---Dip (degrees)-- 80 90

Tota

l For

ce (x

1012

N/m

)

16

12

8

4

0

Page 19: The Transition Zone:  Slabs ’  Purgatory

Effect of Density Change at Phase Boundaries

Change in Density at 660 (%)

Cha

nge

in D

ensi

ty a

t 410

(%)

6 6.5 7 7.5 8 8.5 9

6

5.

4

3

Page 20: The Transition Zone:  Slabs ’  Purgatory

Effect of Clapeyron Slope

Clapeyron Slope at 660 Mpa/KCla

peyr

on S

lope

at 4

10 M

pa/K

-3 -2 -1 -0.5

5

4

3

2.5

Page 21: The Transition Zone:  Slabs ’  Purgatory

Effect of Shear Forces

Major slowing occurs upon entering lower mantle

Lower mantleviscosity greaterthan 1022 Pa scan strongly hinderSlab.

um=1019 Pastran = 1020 Pas

Page 22: The Transition Zone:  Slabs ’  Purgatory

Metastable OlivineGrowth Rate:

G(T) = A*k*T*exp[-H/(RT)](1-exp[G/(RT)])

k=exp(10) Growth constant A = 1e-3 Extrapolation parameter for

low T in slab.

Depth of Metastable Olivine in Slabz ~v*ln(1-f)/(-2*S*G)

v Slab velocityS = 1/d Grain boundary Surface

Area/Volumef = 0.95 Volume fraction of

wadsleyite at completion of transformation.

Cooler Temperature strongly inhibits transformation.

Page 23: The Transition Zone:  Slabs ’  Purgatory

What about a Metastable Olivine Wedge?

Page 24: The Transition Zone:  Slabs ’  Purgatory

Conclusions• Buoyancy from temperature can be order of magnitude

larger than other forces.– Need dynamic model of temperature.

• Extra buoyancy from 410 phase change may be much larger than resisting buoyancy from 660.

• Shear forces beneath 660 may significantly hinder slab sinking into lower mantle.

• If phase parameters at 410 and 660 are comparable, then a moderately high viscosity in lower mantle can hinder slab.

• If metastable olivine exists, it can “easily” stop slabs in the transition zone, especially for large grain size (~ cms)