the time independent spherically symmetric solution of the ... · revisited with coordinates which...

11
+ [email protected] , [email protected], [email protected] 1 The time independent spherically symmetric solution of the Einstein equation revisited Jean-Pierre Petit, Gilles d’Agostini and Sebastien Michea + Manaty Research group _________________________________________________________________________________________ Key words : Non contractible hypersurface. Throat sphere, space bridge. Spherically symmetric solution. ____________________________________________________________________________________________________ Abstract : Spherical symmetry does not immediately mean central symmetry. The time independent, spherically symmetric solution of the homogeneous Einstein equation is revisited with coordinates which keep the signature invariant and prevent time and radial coordinate interchange. The associated hypersurface is not contractible and corresponds to a space bridge linking two Minkowski spacetimes though a throat sphere. As the determinant of the metric vanishes on that sphere one gets an orbifold structure. When crossing that sphere the particles experience a PT, mass and energy inversions. ____________________________________________________________________________________________________ Introduction and main idea of this article. In 1916 Karl Schwarzschild publishes [1] a solution of the vacuum Einstein equations (without second term) correspond to time translation invariance and spherical symmetry. It is only in 1999 that an English translation of this article will be available [2] thanks to S.Antoci et A.Loinger. Schwarzschild decides to express this solution by using a first set of real variables (a) t,x,y,z { } ! 4 The solution is then given in the form : (b) ds 2 = Fdt 2 G(dx 2 + dy 2 + dz 2 ) H ( xdx + ydy + zdz ) 2 He then introduces an intermediary variable : (c) r = x 2 + y 2 + z 2 Which, given (a) is essentially positive. He performs a new coordinates change that allows him to simply express the spherical symmetry hypothesis : (d) x = r sinθ cosϕ y = r sinθ sinϕ z = r cosθ

Upload: others

Post on 13-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The time independent spherically symmetric solution of the ... · revisited with coordinates which keep the signature invariant and prevent time and radial coordinate interchange

[email protected],[email protected],[email protected]

1

The time independent spherically symmetric solution of the Einstein equation revisited

Jean-Pierre Petit, Gilles d’Agostini and Sebastien Michea +

Manaty Research group

_________________________________________________________________________________________ Key words: Non contractible hypersurface. Throat sphere, space bridge. Sphericallysymmetricsolution.____________________________________________________________________________________________________

Abstract: Spherical symmetry does not immediately mean central symmetry. The timeindependent, spherically symmetric solution of the homogeneous Einstein equation isrevisitedwithcoordinateswhichkeepthesignature invariantandprevent timeandradialcoordinateinterchange.Theassociatedhypersurfaceisnotcontractibleandcorrespondstoa space bridge linking two Minkowski spacetimes though a throat sphere. As thedeterminant of the metric vanishes on that sphere one gets an orbifold structure. WhencrossingthatspheretheparticlesexperienceaPT,massandenergyinversions.____________________________________________________________________________________________________

Introductionandmainideaofthisarticle.In 1916 Karl Schwarzschild publishes [1] a solution of the vacuum Einstein equations(withoutsecondterm)correspondtotimetranslationinvarianceandsphericalsymmetry.Itis only in 1999 that an English translation of this article will be available [2] thanks toS.AntocietA.Loinger.Schwarzschilddecidestoexpressthis solutionbyusingafirstsetofrealvariables(a) t , x , y , z{ }∈!4

Thesolutionisthengivenintheform:(b) ds2 = Fdt2 − G (dx2 +dy2 +dz2 ) − H( xdx + ydy + zdz )2 Hethenintroducesanintermediaryvariable:(c) r = x2 + y2 + z2 Which,given(a)isessentiallypositive.He performs a new coordinates change that allows him to simply express the sphericalsymmetryhypothesis:(d) x = r sinθ cosϕ y = r sinθ sinϕ z = r cosθ

Page 2: The time independent spherically symmetric solution of the ... · revisited with coordinates which keep the signature invariant and prevent time and radial coordinate interchange

[email protected],[email protected],[email protected]

2

Hethenobainstheform:(e) ds2 = Fdt2 − (G + H r2 ) dr2 − G r2 (dθ 2 +sin2θ dϕ 2 ) Inorderforthemetrictobelorentzianatinfinityitisnecessarythat:(f) r →∞ implies F→1, G →1 , H → 0 Heintroducesnextanewchangeofcoordinates:

(g) x1 =

r3

3, x2 = − cosθ , x3 =ϕ , x4 = t

Notethat(a)+(c)implythat x1 ≥ 0 Inthosenewcoordinatesthemetricbecomes:

(h) ds2 = f4 dx4

2 − f1 dx12 − f2

dx22

1− x22 − f3 dx3

2 ( 1− x22 )

where f1 , f2 = f3 , f4 are three functions of x1 ( hence of r ) that must satisfy theconditions:

-Forlarge x1 : f1 =

1r4 = (3x1)− 4/3 , f2 = f3 = r2 = (3x1) 2/3 , f4 = 1

-Thedeterminant f1 f2 f3 f4 = 1

-Themetricmustbeasolutionofthefieldequation.-Exceptfor x1 = 0 theffunctionsmustbecontinuous.

Hiscomputationleadshimto:

(i) f1 =

( 3x1 +α3 )− 4/3

1− α ( 3x1 +α3 )− 1/3 f2= f3 = ( 3x1 +α

3 ) 2/3 f4 = 1− 1− α ( 3x1 +α3 )− 1/3

α beinganintegrationconstant.Using(g)wecanrewritehissolutionas:

(j) ds2 = 1− α

( r3 +α 3 )1/3

⎣⎢

⎦⎥ dt2 − r4

( r3 +α 3 ) ( r3 +α 3 )1/3 − α⎡⎣ ⎤⎦dr2 − ( r3 +α 3 )2/3( dθ 2 + sin2θ dϕ 2 )

Thatwecanrewrite:

Page 3: The time independent spherically symmetric solution of the ... · revisited with coordinates which keep the signature invariant and prevent time and radial coordinate interchange

[email protected],[email protected],[email protected]

3

(k)

ds2 = gt t dt2 − gr r dr2 − gθθ dθ 2 − gϕϕ dϕ 2

Thecoefficients

gt t , gr r et gθθ arefunctionsoftheonlyvariabler,thequantity gϕϕ beinga

functionofbothrandϕ .Thevariablervariesfrom0toinfinitywhilebeingstrictlypositivebydefinition(c).Letuslimitourselftothecase α > 0 andletconsiderapathcorrespondingtodt=dr=0.Ithasaperimeter:(l) p = 2π ( r3 +α 3 )1/3 Thisperimeterhasaminimalvalue p = 2πα .

Thehypersurfacesolutionisthereforenoncontractible.Thervariablecannotbeconsideredasa«radialdistance».Thishypersurfacedoesnothavea«centre»,theobjectcorrespondingtor=0hencetoàx=y=z=0isnotadotbutasphereofradiusα .WewillnowreplicateScharzschild'scalculationsbyreplacingthex,y,zandtvariablesbyGreekcharacters( ρ ishoweverkeptforalaterpurpose),sothatthereadernotbetemptedtoassimilatethemtodistances(x,yandz)ortime(t)andlosesightofwhattheyreallyare:realnumbers.

RevisitingSchwarzchildcomputation.LetusconsiderthezerosecondmemberEinsteinequation

Rµν = 0 intimeindependentand

sphericallysymmetricalconditions.Let ξ1 ,ξ2 ,ξ3 standforrectangularcoordinates,and ξo

as the time marker, with ( ξ0 , ξ1 , ξ2 , ξ3 )∈ R4 which stands real values for allcoordinates.Inadditionweassumethattherearenocrossedtermsinthelineelement,sothatthislastcanbewritten:(1)ds

2 = Fdξo2 −G (dξ12 + dξ22+ dξ32 )−H (ξ1dξ1 + ξ2dξ2 + ξ3dξ3 )2

whereF,G,Harefunctionsof ξ12 + ξ2

2 + ξ32 .

Atinfinitywemusthave(2) F and G →1 H → 0 Introducethefollowingcoordinatechange:

Page 4: The time independent spherically symmetric solution of the ... · revisited with coordinates which keep the signature invariant and prevent time and radial coordinate interchange

[email protected],[email protected],[email protected]

4

(3) ζ = ξ12 + ξ2

2 + ξ32

(4) θ = arcos

ξ3

ζ⎛⎝⎜

⎞⎠⎟

(5)

ϕ = arccosξ1

ξ12 + ξ2

2

⎝⎜⎜

⎠⎟⎟

whichgoeswith: ζ ∈ R + θ ∈ R ϕ ∈ R and:

ξ1 =ζ sinθ cosϕ ,ξ2 =ζ sinθ sinϕ ,ξ3 =ζ cosθ

thatwewillcall«pseudosphericalcoordinates».Itgives:(6) ds2 = Fdξo

2 − ( G + Hζ 2 ) dζ 2 − Gζ 2 ( dθ 2 + sin2θ dϕ 2 ) Introducethefollowingadditionalcoordinatechange::

(7)η1 =

ζ 3

3 , η2 = − cosθ , η3 =ϕ

Thenwehavethevolumeelement ζ2sinθ dζ dθdϕ = dξ 1 dξ 2 dξ 3 .Thenewvariablesare

thenpseudopolarcoordinatewith thedeterminant1.Theyhave theevidentadvantageofpolarcoordinatesforthetreatmentoftheproblem.

Inthenewpseudopolarcoordinates:

(8) ds2 = Fdξo

2 − ( Gζ 4 + H

ζ 2 )dη12 − Gζ 2 dη 2

2

1− η 22 + dη3

2 1− η 22( )⎡

⎣⎢⎢

⎦⎥⎥

forwhichwewrite:

(9)ds 2= f4dξo

2 − f1dη 12 − f2

dη 22

1−η 22 − f3 dη 3

2 (1−η 22)

Thenf1,f2=f3,f4arefunctionsofη1 whichhavetofullfillthefollowingconditions:

1–Forξ1 =∞ : f1 = 1

ζ 4 = (3η1)− 4

3 , f2 = f3 =ζ2= (3η1)

23 , f4 =1

2–Theequationofthedeterminant: f1 . f2 . f3 . f4 = 1

3–Thefieldequations.

4–Continuityofthef,exceptforη1 =0

Page 5: The time independent spherically symmetric solution of the ... · revisited with coordinates which keep the signature invariant and prevent time and radial coordinate interchange

[email protected],[email protected],[email protected]

5

In order to formulate the field equations one must first form the components of thegravitational fieldcorrespondingtothe lineelement(9).Thishappensinthesimplestwaywhen one builds the differential equation of the geodesic line by direct execution of thevariation,andreadsoutthecomponentsofthese.Thedifferentialequationsofthegeodesiclineforthelineelement(9)immediatlyresultfromthevariationintheform:

(10)

0= f1

d 2η 1d s 2

+ 12∂ f4∂η1

dη4d s

⎝⎜⎞

⎠⎟

2

+ 12∂ f1∂η1

dη1d s

⎝⎜⎞

⎠⎟

2

− 12∂ f2∂η1

11−η22

dη2d s

⎝⎜⎞

⎠⎟

2

+ (1−η22)dη3d s

⎝⎜⎞

⎠⎟

2⎡

⎢⎢

⎥⎥

(11)

0= f2

1−η22d 2η2

d s 2+∂ f2∂η1

11−η12

dη1d s

dη2d s

+f2η2

(1−η12)2dη2d s

⎝⎜⎞

⎠⎟

2

+ f2η2dη3d s

⎝⎜⎞

⎠⎟

2

(12)

0= f2(1−η22)

d 2η3

d s 2+∂ f2∂η1

(1−η22)dη1d s

dη3d s

−2 f2η2dη2d s

dη3d s

(13)

0= f4

d 2η4

d s 2+∂ f4∂η1

dη1d s

dη4d s

Thecomparisonwith

(14)

d 2ηα

ds 2= − 12 Γµν

α

µ ,ν∑

dηµ

d sdην

d s

givesthecomponentsofthegravitationalfield:

(15a)Γ1 1

1 = − 12∂ f1∂η1

(15b)Γ2 2

1 = + 121f1

∂ f2∂η1

11−η22

(15c)Γ3 3

1 = + 121f1

∂ f2∂η1

(1−η22)

Page 6: The time independent spherically symmetric solution of the ... · revisited with coordinates which keep the signature invariant and prevent time and radial coordinate interchange

[email protected],[email protected],[email protected]

6

(15d)Γ2 1

2 = − 121f2

∂ f2∂η1

(15e)Γ2 2

2 = −η2

1−η22

(15f)Γ3 32 = −η2 (1−η22)

(15g)Γ3 1

1 = − 121f2

∂ f2∂η1

(15h)Γ3 2

2 =η2

1−η22

(15i)Γ4 1

4 = − 121f4

∂ f4∂η1

The other ones are zero. Due to rotational symmetry it is sufficient to write the fieldequations only for the equator (η2 =0) , therefore, since they will be differentiated onlyonce, in the previous expressions it is possible to set everywhere since the begining

1−η22 =0 .Thenthecalculationofthefieldequationgives:

(16a)∂∂η1

1f1

∂ f1∂η1

⎝⎜⎞

⎠⎟= 12

1f1

∂ f1∂η1

⎝⎜⎞

⎠⎟

2

+ 1f2

∂ f2∂η1

⎝⎜⎞

⎠⎟

2

+ 1f4

∂ f4∂η1

⎝⎜⎞

⎠⎟

2

(16b)∂∂η1

1f1

∂ f2∂η1

⎝⎜⎞

⎠⎟=2+ 1

f1 f2

∂ f2∂η1

⎝⎜⎞

⎠⎟

2

(16c)∂∂η1

1f1

∂ f4∂η1

⎝⎜⎞

⎠⎟= 1f1 f4

∂ f4∂η1

⎝⎜⎞

⎠⎟

2

Besides these three equations the functions f1 , f2 , f3 must fullfill the equation of thedeterminant:

(17)f1 f2

2 f4 =1 i.e. 1f1

∂ f1∂η1

+ 2f2

∂ f2∂η1

+ 1f4

∂ f4∂η1

=0

Fornowweneglect(16b)anddeterminethethreefunctions f1 , f2 , f4 from(16a),(16c)and(13).Theequation(16c)canbetransposedintotheform:

Page 7: The time independent spherically symmetric solution of the ... · revisited with coordinates which keep the signature invariant and prevent time and radial coordinate interchange

[email protected],[email protected],[email protected]

7

(18)∂∂η1

1f4

∂ f4∂η1

⎝⎜⎞

⎠⎟= 1f1 f4

∂ f1∂η1

∂ f4∂η1

Thiscanbeintegratedandgives

(19)1f4

∂ f4∂η1

= α f1 (α beinganintegrationconstant)

Theadditionof(12a)and(12c’)gives:

(20)∂∂η1

1f1

∂ f1∂η1

+ 1f4

∂ f4∂η1

⎝⎜⎞

⎠⎟= 1

f2

∂ f2∂η1

⎝⎜⎞

⎠⎟

2

+ 121f1

∂ f1∂η1

+ 1f4

∂ f4∂η1

⎝⎜⎞

⎠⎟

2

Bytaking(17)intoaccountweget:

(21)−2 ∂

∂η1

1f2

∂ f2∂η1

⎝⎜⎞

⎠⎟= 3 1

f2

∂ f2∂η1

⎝⎜⎞

⎠⎟

2

Byintegrating:

(22)

11f2

∂ f2∂η1

= 32η1 +

σ2 (σ integrationconstant)

or:

(23)1f2

∂ f2∂η1

= 13η1 +σ

Afterasecondintegration:

(24)f2 = λ (3η1 +σ )23 (λ integrationconstant)

Theconditionatinfinityrequiresλ =1.Then

(19)f2 = (3η1 +σ )23

Henceitresultsfurtherfrom(22)and(17)

(20)

∂ f4∂η1

= α f1 f4 =αf22 =

α

(3η1 +σ )43

Byintegrating,whiletakingaccounttheconditionatinfinity

Page 8: The time independent spherically symmetric solution of the ... · revisited with coordinates which keep the signature invariant and prevent time and radial coordinate interchange

[email protected],[email protected],[email protected]

8

(25) f4 = 1−α (3η1 +σ )−13

Hence,from(17)

(26)

f1 =

(3η1 +σ )− 4

3

1−α (3η1 +σ )−13

As it canbe easily verified the equation (16b) is automatically fullfilledby the expressionthatwefoundforf1andf2

Thereforealltheconditionsaresatisfiedexcepttheconditionofcontinuity.

f1willbediscontinuouswhen1=α (3η1 +α3 )

−13 , 3η1 =α 3 −σ

Inorderthisdisconinuitycoincideswiththeorigin,itmustbe:

(27)σ =α 3

Therefore the condition of continuity relates in thisway the two integration constants σ andα .Wehave:

(28) 3η1 +α = ζ 3 +α

(29) f4 = 1− α

(ζ 3+α 3 )1/3

(30) f2 = (ζ 3+α 3 )2/3

(31)

dη 22

1− η22 = dθ 2

Finally:

(32)

ds2 = 1− α(ζ 3+α 3 )1/3

⎛⎝⎜

⎞⎠⎟

dξo2 − ζ 4

α 3 +ζ 3( ) α 3 +ζ 3( )1/3−α⎡

⎣⎢⎤⎦⎥

dζ 2 − α 3 +ζ 3( )2/3dθ 2 + sin2θ dφ 2( )

Whenζ → ∞ thelineelementtendstoLorentzform.

gt t tendstozerowhenζ tendstozero.

When ζ → 0 gζ ζ !

00.Anexpansionintoaseriesshowsthat

gζ ζ !

3ζα

→ 0

Consideralooplocatedintheplane θ = 0 ,with dξ0 = 0 .Itisnocontractile:forζ =0the

Page 9: The time independent spherically symmetric solution of the ... · revisited with coordinates which keep the signature invariant and prevent time and radial coordinate interchange

[email protected],[email protected],[email protected]

9

perimeterofthelooptendsto 2πα .

Notice that ζ = ξ12 + ξ2

2 + ξ32 is definitely not a «radius». The point ζ = 0 does not

correspond to some «center of symmetry». The spherically symmetric requirement doesnotidentifyautomaticallytoacentralsymmetry,assuggestedbyDavidHilbert[5]1ζ isjustoneofthe«spacemarkers»,nothingelse.It’sanumber,notalength.Theonlylengthtobeconsideredisthequantitys.

Expressingthemetricinabettercoordinatesystem.

Letusconsiderthecoordinatesystemintroducedin[3].

Introducethenewspacemarker ρ throughthefollowingcoordinatechange:

(33) ζ = α 1+ Logcos hρ( )

(34) ρ = ± argch ( e1+ ζ

α

⎜⎜

⎟⎟

3

3 −1

)

ζ = 0 → ρ = 0

With ξo = c t thelineelementbecomes:

(35)

ds2 = Logcos hρ

1+ Logcos hρc2dt2 − 1+ Logcos hρ

Logcos hρα 2 tan h 2ρ dρ2 − α 2 (1+ Logcos hρ )2 ( dθ 2 + sin2θ dϕ 2 )

When ρ → ±∞ wegetthefollowingLorentzform:

(36) ds2 = c2dt2 − α 2 dρ2 − α 2 ρ2 ( dθ 2 + sin2θ dϕ 2 )

Wecan figure this geometricalobjet as a spacebridge linking twoMinkowski spacetimes,though a throat sphere whose perimeter is 2πα . We cannot think about its «radius»becausethatspherehasnocenter.

When ρ→ 0

1Wequote,page67ofthegermanedition:«DieGravitation

gµν istzentrischsymmetrischinBezugaufdenKooridinatenanfangspunkt.«

Englishtranslation:«Thegravitation gµν iscentrallysymmetricwithrespecttotheoriginof

coordinates.»

Page 10: The time independent spherically symmetric solution of the ... · revisited with coordinates which keep the signature invariant and prevent time and radial coordinate interchange

[email protected],[email protected],[email protected]

10

(37) gt t =

Logcos hρ1+ Logcos hρ

c2 → 0

(38) gρ ρ = − 1+ Logcos hρ

Logcos hρα 2 tan h 2ρ → 0

0

(39) gθθ → α 2 gϕϕ → α 2 sin2θ

(40) gϕϕ =α 2 sin2θ

Wemayeasilyovercometheindetermination(33)throughanexpansionintoaseries,whichshowsthatwhen ρ → 0

(41) gρ ρ = − 1+ Logcos hρ

Logcos hρα 2 tan h 2ρ → − 2

Thedeterminantis:

(42) det gµν = − c2α 6 tan h2ρ sin2θ

Itvanisheson the throatsphere.Asaconsequence,on this lastwecannotdefinegaussiancoordinates,sothattheobjectisnolongeramanifoldbutanorbifold.Onthethroatspherethearrowoftimeandthespaceorientationcannotnedefined.Thiscanbeinterpretedasageometricstructurewherespaceandtimearereversedthroughthethroatsphere:whenaparticle crosses the throat sphere it experiences a PT-symmetry. According to Souriau’stheorem[4]thisT-inversiongoeswithamassinversion.

Inafuturepaperthephysicalinterpretationofsuchsolutionwillbeinvestigated.

References:

[1] K. Schwarzschild : Über das Gravitionalsfeld einer Kugel Aus incompressibler Flüssigkeit nach der Einsteinschen Theorie. Sitzung der phys. Math. Klasse v.23 märz 1916 [2] K. Schwarzschild : On the gravitational field of a sphere of incompressible fluid according to Einstein theory. Translation by S.Antoci and A.Loinger. arXiv :physics/9905030v1 [physics.hist-ph] 12 may 1999.

[3]J.P.Petit&G.D’Agostini:CancellationofthesingularityoftheSchwarzschildsolutionwithnaturalmassinversionprocess.Mod.Phys.Lett.Avol.30n°92015

[4]J.M.Souriau:Structuredessystèmesdynamiques.DunodEd.France,1970andStructureof Dynamical Systems. Boston, Birkhaüser Ed. 1997. For time inversion see page 190equation(14.67).

Page 11: The time independent spherically symmetric solution of the ... · revisited with coordinates which keep the signature invariant and prevent time and radial coordinate interchange

[email protected],[email protected],[email protected]

11

[5] D.Hilbert : “DieGrundlagender Physij. (ZweiteMitteilung)” inNachchrichten vonderKöniglichenGesellschaftzuGöttingen.Math.-Phys.Klasse.1917,p.53-76.Presentedinthesessionof23december1916