the study on model simulation and experiment for mass … · 2001-04-26 · (2001 8 16 , 2001 12 13...

7
196 HWAHAK KONGHAK Vol. 40, No. 2, April, 2002, pp. 196-202 - (2001 8 16 , 2001 12 13 ) The Study on Model Simulation and Experiment for Mass Transfer in Bubble Mode Absorber of Ammonia and Water Jae-Cheol Lee, Ki-Bong Lee, Byung-Hee Chun, Chan-Ho Lee, Jong-Joo Ha and Sung-Hyun Kim Department of Chemical Engineering, Korea University, Seoul 136-701, Korea (Received 16 August 2001; accepted 13 December 2001) . . . , , . , . Abstract - An absorber is a major component in the absorption refrigeration systems and its performance greatly affects the overall system performance. In this study, both the numerical and experimental analyses on the absorption process of bubble mode absorber were performed. Gas was injected into the bottom of absorber at constant solution flow rate. Region of gas absorption was estimated by both the numerical and experimental analyses. Higher flow rate of gas makes the region of gas absorption increases. As the temperature and concentration of input solution decrease, the region of gas absorption goes down. In addition, the absorption performance on the countercurrent was superior to that of cocurrent flow. Mathematical model equa- tions were derived from material balance for gas and liquid phase based on the negligible mass transfer of water from liquid to gas phase. Comparison of model simulation and experimental results shows similar values. This means that this numerical model can be applied for design of bubble mode absorber. Key words: Absorption Process, Absorption Heat Pump, Ammonia-Water, Bubble Mode, Heat and Mass Transfer 1. . 1992 CFC HCFC 1997 2002 , 1997 2008-2012 5.2% . . . . , [1-2]. [3-5]. [6-8] . , , , . To whom correspondence should be addressed. E-mail: [email protected]

Upload: others

Post on 18-Feb-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Study on Model Simulation and Experiment for Mass … · 2001-04-26 · (2001 8 16 , 2001 12 13 ) The Study on Model Simulation and Experiment for Mass Transfer in Bubble Mode

HWAHAK KONGHAK Vol. 40, No. 2, April, 2002, pp. 196-202

����-� ��� ��� ���� � � �� ��

��������������� �����†

����� �����(2001 8 16� � , 2001 12 13� ��)

The Study on Model Simulation and Experiment for Mass Transferin Bubble Mode Absorber of Ammonia and Water

Jae-Cheol Lee, Ki-Bong Lee, Byung-Hee Chun, Chan-Ho Lee, Jong-Joo Ha and Sung-Hyun Kim†

Department of Chemical Engineering, Korea University, Seoul 136-701, Korea(Received 16 August 2001; accepted 13 December 2001)

� �

���� ��� ��� �� ��� ����� �� ��� ���� ��� �� �� ��� � ! "#

$. % &�� � �'()* ���� +� �,- .)/ ��01! 2� �345$. �647 89:� ;< =>?

��� 4@A� B.�� ��C ()4D E ��� FG HIC �,- .)/ 0J ��01! K4D LM45$. N

O ��� PI Q!�R E ��HI: S:45>T, NO;<� UF/ VF: W!�R, X� NO;<Y NO��� Z

I ? [\ ]^ ()_� ��� ���`I a�45$. �b\ c� cd�G� e4f B.�� �g� <g

>?� @Z cd�G? :6� I �,- .)hY/ 01hYC ij� hY k)� hY l! m5>T, IC K4D

% .n� -; op�! qSr � st$.

Abstract − An absorber is a major component in the absorption refrigeration systems and its performance greatly affects the

overall system performance. In this study, both the numerical and experimental analyses on the absorption process of bubble

mode absorber were performed. Gas was injected into the bottom of absorber at constant solution flow rate. Region of gas

absorption was estimated by both the numerical and experimental analyses. Higher flow rate of gas makes the region of gas

absorption increases. As the temperature and concentration of input solution decrease, the region of gas absorption goes down.

In addition, the absorption performance on the countercurrent was superior to that of cocurrent flow. Mathematical model equa-

tions were derived from material balance for gas and liquid phase based on the negligible mass transfer of water from liquid to

gas phase. Comparison of model simulation and experimental results shows similar values. This means that this numerical

model can be applied for design of bubble mode absorber.

Key words: Absorption Process, Absorption Heat Pump, Ammonia-Water, Bubble Mode, Heat and Mass Transfer

1. � �

��� ����� � � � ��� ����� ���� ��

�� ����� �! "#��� $%&' (). *+ 1992, -.

/0 12�3� CFC 4 HCFC� 567 %% 1997� 2002,$8 9

# :�;<=� >?', 1997,�� 2008-2012,@� 9AB CDE

F GHI7 5.2% JK� L7 MN� >� OP QRK S�&T).

KUV WX7 YZ>= [V \] ^_ ` abc def� �� gh

�� N^ijk 56>� d_l ;Fm�� ); no7 p' ().

*+ abc def� _q�r ` ab=� ij� 6st� u�V

� 9�� i%bvw��� d9�K l;� xyz� {|�rK).

x}��� ab= ~��� ���l 4 =��5~ ��� � b (

). ���l ab=� �y� d9� ��� �2� !9W����

�>� �� W6h &y 56&' (�z, 6s� �5 4 ��� �

� ~q� �U E� ���7 E�' ()[1-2]. ���� d9� ��

�� ��� �bV � 9���k zY� b (� =��5~ ab

=� �V ^_E ����� ��`K)[3-5]. �Uz �� b,l�

b��5k �V =��� ab=� ^_E u�+ ��&T�z[6-8]

D� abD 7 �V ^_z b��5 ¡�� abD � ¢Ok �

V b��5� Y"q7 £¤V ��� ¥� WXK).

¦ ^_�3� �� §���t� � 9�7 D� =��� ab�

2� �6¨ b (©ª �«>� ¬q=�� }�­� ®h� ̄ ° a

b=±� C©, ²©, =�³� ´K� � b��5k D;>?�µ,

� ¡�� D� D¶~�� �·� ab=�3 ��� =�abD 

¡�� ¢O>� D� def !9W��3� �6 E¸q7 £P>?).†To whom correspondence should be addressed.E-mail: [email protected]

196

Page 2: The Study on Model Simulation and Experiment for Mass … · 2001-04-26 · (2001 8 16 , 2001 12 13 ) The Study on Model Simulation and Experiment for Mass Transfer in Bubble Mode

����-� ��� ��� ���� � � �� �� 197

2. ���� �� �

2-1. ����

=W�3 sW��� � 9�� (y, � 9� B#] B#K¹(film

theory)� ¯� º~ W�� ">µ � B#7 `|�� ~q&� ²

©_G� � � 9�K xy�)[9]. =W� sW� bulk»¼K º~

� ©�½7 ¾ KW� � 9�K xyz� ¿�). ÀÁ� C©E

x2V ÂÃ�3 §���E =W�3 sW�� � 9�K xyÄ �

�, B#�3 abd7 �¬>µ �2V sW�� Kl>#3 ;·�).

`tÅB�3� 6s Æ� rI� �K d7 Çy ¤�>µ, ¤�� b

¤=� ); È�� � =W ��� È��). �Uz ·] §���

=�E 6s Æ�� É� ÊyE� =��5~ ab� ��, W���

� rI� §��� =Ë� ¢3 sW� ²©� Ì� ®h>� ¿�

Í� =W Î =�E ÏÐ º~²©� ©�>� �). � Ñ�� =W

] BÆ º~7 ��>µ sW��� � 9�] BÆ xy�). 1988

, Perez-Blanco[8]� =W� §���� ab� sW� �� ¤�� �

V �GBbk )Ò� ÓK _>?).

ϕ=−(y−yeq)/(1−yeq) (1)

ϕ=�GBb

y==W�3� §��� ²©

yeq==W�3� §��� º~²©

�Uz sW� �K =W�� ¤�&� �2] ad�2x �� ��

�, }�­K 1 cm� =�� ��, =� Æ�� b¤=E È�&y 9

Ë =�»¼K º~²©� ©�>� Ô�© 4ÕKWK r�&z[10], a

b=� �5� =�E 100 cm� ab=k Ö×Æ©� 0�Ø �� �

� Ë�;tK 3Õ K±[11]Kµ �$�� D ÂÃ�3 0-2Õ K±�

=�E 5��). Î, ab�2] �$� Õ=�2� `=�2�3 Ö

¡Ù7 Ú b (). =W�3� º~ÂÃ� ²© ÛV D ÂÃ� 1=

À, WC�3 §��� I�ÜK 0.95KWKÍ� =WK º~� ©�

½)' >�© Ý� ÞbV §���� )k ßE ¥�Í� rI�

�K ¤�&� �2] 'à>� ¿', §��� =W� Åx ab�2

K�' 2�>?).

2-2. ���� ��

D¶~ ab=� >Å�3 �5&y Wá>� §��� =�E 6

s� ab&� ��k �5>= [V E2] )Ò� Ó).

- =�� â9_~K).

- � 9�] =W� §����3 sW��� xy�).

- =� ã#�3� � 9�äåF� �æ ã#�3 x2>).

- =� 3�t� Wç·6, èé �] ³�>� ¿�).

- ¬q� =�� Ö×Æ©� WáV).

- =�� C©, ÀÁ, $êëB� KW=Ëv2c7 ¯°).

- =Ë� sË� C©� Ó).

- sË�3 =��� � 9�] ì;V).

- ÀÁ] 1=À�� x2>)' E2V).

ÛV � � =¦ �qí] [12-14]� �îí7 ïÂ>?).

2-3. � � ��� ��

=Ë �5_�3 �H&� =�� Õ=Ì=� TreybalK 1980� �ã

V � 9� !9[11]� �V � c7 56>?).

Reo<2100x ¾

dp=0.0287do1/2 Reo

1/3 (2)

10,000<Reo>50,000x ¾

dp=0.0071Reo−0.05 (3)

2,100<Reo>10,000x ¾�

Reo� íK 2,100, 10,000x ��� dpí7 K6>� logðã� ñ2

dp=�H&� =�� �­

Reo=�Hë�3 =Ë� Reynolds number

do=�Hë� �­

=�� Ö×Æ©(terminal velocity)� `Á, $Á �/' òÁ� ó�

º~�3 Ç7 b ().

Fg−Fb+FD=0

Fg=mg/gc

Fb=mρg/ρpgc

FD=CDVtρAp/2gc

ô Vt=[2g(ρp−ρ)m/ApρpCDρ]0.5 (4)

Fg==�� ·6>� `Á Fb==�� ·6>� $Á

FD==�� ·6>� òÁ ρ=6s� õ©

g=̀ ÁEÆ© ρp==�� õ©

CD=òÁBb Ap=òÁ#�

Vt=Ö×Æ©

=�� Ö×Æ©� ab= C©� =�}�­� �V öb�÷ ´K

E ®hö� ¯� BÆ��� ®h>� íK).

=�� Æ© Vb� =�� Ö×Æ©(terminal velocity)� 6s� �Æ

Va� S�� zY� b ().

Vb=Vt+Va (5)

2-4. ���� ��

� 9�Bb K� Treybal[11]K �ãV =�� sWt� � 9�

� c7 56>?).

K l=Nsh,l Dl/db (6)

Nsh,l=2.0+0.0187NReb0.779Nsc

0.546 (db g0.333Dl

−0.666)0.116 (7)

K l=6s�3� � 9�Bb Nsh,l=6s�3� Sherwood Number

Dl=6s�3� È�© db==�� �­

NReb==�� Reynolds Number Nsc=Schmidt Number

g=̀ Á EÆ©

� 9�Bb ÛV ab=C©, 6s²©, =�}�­� �V öbK

Í� ´K� ®h� ¯� BÆ��� ®hV).

2-5. �� �� ��

ÏÐ ´K dZk =�WáÆ© Vb� ;t dt� ø� zY� b ().

dZ=Vbùdt (8)

� 9�� �V =¦c] )Ò� ÓK zY� b ().

(9)

[ c� � 9�I(dm)] =�� }�­� ®hI(dR)�� ã�¨

b ().

(10)

c (10)��$8 ab= ´K� =�}�­� �V )Ò� Ó] Wú

dmρlK lAb X i X–( )

Vb

------------------------------------dZ=

dm ρgas4πR2dRρlK lAb X i X–( )

Vb

------------------------------------dZ= =

HWAHAK KONGHAK Vol. 40, No. 2, April, 2002

Page 3: The Study on Model Simulation and Experiment for Mass … · 2001-04-26 · (2001 8 16 , 2001 12 13 ) The Study on Model Simulation and Experiment for Mass Transfer in Bubble Mode

198 ����������������� !�"#$

�c7 Ç7 b ().

(11)

K l=� 9�Bb Ab==�� 6s5K� � 9�#�

X i=6s ã#�3� º~²© X=6s²©

m=§��� � 9�I Vb==�� Æ©

ρgas=§��� =Ë� õ© ρl=6s� õ©

c (11)� Ó] ab= ´K� �V Wú�c �� ��� )Ò� Ó

K 6s� I�Æ, 6s� ²©, �/' ab= C©� �3© =�

}�­� �V Wú�v2cK �©�).

(12)

(13)

i%bE ¥� ��

(14)

i%bE (� ��

(15)

Q=abd N=;t" ¬q&� =�b

Rcylinder=ab=� }�­ U=ûü d9� Bb

Tcooling water=i%b C© Cp=6s� d6I

Å, ;t" ¬q&� =�b(N)� ;t" �ý&� =Ë�I� ��

¯� B�� =�� Ì=k K6>� �þ��� B�¨ b ().

2-6. � ��� ��

¦ �ÿ] ab=�3 bºvw��� â9 �S�� E2>?' =

� n[� úAV Momentum� ®h� �³>� ¿��µ D í� ¢

Ok [ â9 _~ =�� ab� �V ab=�7 ��� 6s� C

©, ²©� Õ�7 �y �Êy�). �î[7]] =��5~ abk =W

bulk� sW bulk� �S�� E2>� ��7 K6V �ÿKµ, �î

[8]] ab=�7 Wá>� =� >z� n[�3 xyz� Momentum

®h� � � d� diffusion� � NA+ �y��z, � �ÿ �

� =��5~ ab= D � ¢O>=�� Ý/E (� �ÿK). Û

V �î[6]� �ÿ] ¦ �ÿ� �5V �K \K (�z sW�3� �

� �V ¤�7 �z�� 'à>� §��� =�E Ý� b¤= =�

� E@! ²©� y�� ¡�k �K' (y D� D ¡�� x�

>� ¿�).

3. ����

3-1. ���

=��5~ ab=� ´KE 100 cm, �­K 3 cmKµ ±$ Ýl7

� � b (©ª �Ì�� D¶~�� �·>?). ab= >Å$�

3 mm� =��5$k ��>?�µ =Ë� >Å�3$8 WÅ�� �

5�). 6s] ab= >Å Û� WÅ�� �ý� b (©ª �·>?

). � 9� Ýl7 � �= [ 5Z� �ä� �.k 20 cm t��

� ��>?', 12Z� d9�k ��ö��÷ C© ��W�k È�>

?). ÛV ÀÁ Ýl7 Ú��= [ 7Z� ��ú8(manometer)k

��>?). ab=� �ý&� 6s] 500 W� �./� Ed=(cartridge

heater) 3ZE ��� 6s�Ì�3 �d;<' �ý��� 500 W, embedded

type� �./� Ed=(cartridge heater)k ��>� �>� C©� Â

�>?). D ���3 �2� C©� ÔK8 �� ;Fm� �>�

��8� on-line�� Ð�>?', !� �ä] 9=9©©k �2>

� D �� _V ã" #$(standard curve)�$8 ²©k �«>?).

;%��� Junsei5� §��� b6s 28% �&7 '( )] *«>

� 56>?). ÛV 6s ný ef� ��6I 2 L/min, �� PHÀ

dZdR-------

ρgasVb

ρ lK l X i X–( )------------------------------=

dmdR------- 4πNρgasR

2–=

dXdR-------

4πNρgasR2

m---------------------------=

dTdR-------

4πQNρgasR2

mCp

--------------------------------–=

dTdR-------

4πQNρgasR2

mCp

--------------------------------–2πRcylinderU T Tcooling water–( )ρgasVb

mCpρlK l X i X–( )----------------------------------------------------------------------------------------+=

Fig. 1. The stages of ammonia absorption process.

���� �40� �2� 2002� 4�

Page 4: The Study on Model Simulation and Experiment for Mass … · 2001-04-26 · (2001 8 16 , 2001 12 13 ) The Study on Model Simulation and Experiment for Mass Transfer in Bubble Mode

����-� ��� ��� ���� � � �� �� 199

K 5 kgùf/cm2� )Kyf+ vc� (n)Kh2IPump5� �&7 5

6>?�µ, on/off ,$, metering ,$ �] 1/4 in F-�.F � �

ú/ Swagelok5 �&7 56>?). 6s6 flow meter� ú/ Krohne

5� signal converterk, =Ë�ýÂ�6 flow meter� ��6I 20 L/

min� 0x Hi-Tec5� $c EF6 MFCk 56>?). ab= D �

�� Z1©� Fig. 3�, =��5~ ab=� �V Z1©� Fig. 4�

zY±T).

3-2. ��!"

� 9�D ] 1=À W�� ÂÃ�3 �­K 3 cm� ab=� 0-

30%� §��� b6s7 283-288 K, 0.3 kg/min� �ý;<' §��

� =Ë� �Æ7 ®h(1-9 L/min);2E#3 b�>?). K¾ % ÂÃ

�3 §��� =Ë� 6s7 3�� w�� 4àn#3 %%� ¡�

k ¢O>?). ab=� �Ì�� �·>?�µ =�� Ýl7 ë5>

= [ K`ë _ÂE �6 Åxë _Â� �·>� abd7 �Ý>

= [V i%b� ný>� ¿�). D� def ;Fm� �6&� a

b=� !9ÂÃ�� Â:� 7K� (�z �5V »¼�3 D 7 D

;>?�µ, �ý 6sI] 3�� w�� »w7 Ú��= [ D�

;Fm� ¢ )r ´] í�� �2>?). D � ¡�� ab= ´

K� �V ²©, C©, ÀÁ� ®h� zY� b (T�µ, D� def

;Fm� 56&� ab=�3� ·lÂÃ� ¦ D ÂÃ�� ¢Ok

[ Table 1� 2/>?).

Fig. 2. The theoretical schematic of numerical analysis.

Fig. 3. Experimental absorption system�1. Absorber 18. Cartridge heater2. Manometer 19. Data aquisition system3. NH3 bomb 10. Solution tank4. Sampling port 11. Solution pump5. Thermocouple 12. Flow meter6. Valve 13. Neutralization tank7. Venting

Fig. 4. Schematic of bubble mode absorber.

HWAHAK KONGHAK Vol. 40, No. 2, April, 2002

Page 5: The Study on Model Simulation and Experiment for Mass … · 2001-04-26 · (2001 8 16 , 2001 12 13 ) The Study on Model Simulation and Experiment for Mass Transfer in Bubble Mode

200 ����������������� !�"#$

4. �� � ��

4-1. � �#$ � %�

[� D v8�3 R9V ß� ÓK ab=� �­] 3 cm, 6s�

�Æ] 0.3 kg/min� ÂÃ�3 2WW�� ©�½)� E2 >�3 a

b= ´K� ¯° ±$� C©�� 4 ab� �V 6s� ²© ®h�

�V �5k D;>?). D¶ �:� ab=� 6s] ab= WÅ

Û� >Å�� x2V �I�� �ý, �H&� L�� E2>?�µ

=Ë� ab= >Å�3 x2V �I�� �ý&� L�� E2>?).

¦ D ] i%bk ný>µ ;�¨ b ¥� ;FmKÍ� b��5

¼; i%b� 56>� ¿� ÂÃ�� 2>?). c (11)-(14)�3 ;

Ú b (<K ´K� ¯� ab= C©, 6s� ²©E ®hö� ¯�

�U E� ®bE �=��� ë=&y ®hV). �5� =�� }�

­� ®h� ¯� ab= ´K(Z), 6s� �I(m), 6s� ²©(X), a

b= C©(T)� �>� Wú�v2c (11)-(14)k ö> �y � ¡�k

2/>?).

Fig. 5� �­K 3 cm� ab= >Å$�3� 6sK 28%, 288 K�

�ý&µ Ó] >Å$� 0.3 cm ?/êF �Hë�3 §��� =ËE

�ý� ¾� ab= ́ K� �V 6s� C©, ²©� ®hk zY@ L

K). abd� �V ab= ±� C©®h� 6s� ²© ®h©k �

# é`ab»¼7 A� Ú b (). =ËE 1 L/min(Reo=552)�� �

5� �� c (2)k Õ= =� Ì=� 56>?�µ ab»¼] % 10 cm

K>»¼Kµ 5 L/min(Reo=2760)� �� 40 cm, 9 L/min(Reo=4968.15)

� �� 70 cm K> »¼�3 é`��� ab�). Fig. 6] 6s� C

©E 283 K� �ý� ��� �5 ¡�K). 288 K¾� ¢ ab»¼

K BC DÒ7 ; Ú b (). ab�W] C©� EFV öbKµ a

b=�3� abd7 ����� GH7 b (� i%��E I�ö7

��n� ¡�K=© >). Fig. 7] =Ë� sË� �ývw7 }��

V ¡�K). 6s� �ý²©� C©� 28%, 283 KK). Fig. 7�3 ;

Ú b (<K 3�� ¢ w�� �� lxÂÃ�3 ab»¼� ´K

E 15 cm EIKz DÒ7 Ú b ().

4-2. ��& '(

%%� D ÂÃ� ¯� ab»¼ 4 =�� ³� »¼7 È�>=

[>� ²©, C© 4 ÀÁ7 �2>?). Fig. 8] 288 K� §��� =

Ë� §��� 30% 6sK ab= >Å$� ný&y 3�� �k ¾

� ´K� ¯° ²© ®hk ��"). EF� ný �ÆK ´� bª,

²© ¤E _¼K #�' K¾ ´KE ¤E¨bª, 6s� ²©© ¤E

V). KUV �wq] ²©� ��� C©�Jf�3© zYzµ, %

´K�) ��� ��ú8(manometer)� � �2� ÀÁ� �V Ô

K8� ÖS>� � ab»¼� =� ³� ́ Kk ñ�¨ b (). 30%

Table 1. Comparison experimental operation conditions with those oftypical absorber for heat pump system

Experiment in this study Typical absorber

Pressure 1 bar 0.5-4 barTemperature 295-310 K 300-340 KRe.sol. 530 500-100Re.gas 500-3,000 500-1,500

Fig. 5. Numerical simulation of cocurrent system 1(at input solution’stemperature=288 K).

Fig. 6. Numerical simulation of cocurrent system 2(at input solution’stemperature=283 K).

���� �40� �2� 2002� 4�

Page 6: The Study on Model Simulation and Experiment for Mass … · 2001-04-26 · (2001 8 16 , 2001 12 13 ) The Study on Model Simulation and Experiment for Mass Transfer in Bubble Mode

����-� ��� ��� ���� � � �� �� 201

6s� 9 L/min�� §��� =Ëk ný>� �� =Ë ab´Kk

% 70 cm� ��¨ b (T).

w�D �3© ¡�� 3�� ��� �KE��, L] EF �Æ�

3� 20 cm KÑ� ²©E Ý� x2>', ´] EF �Æ�3� ab

= >Å$�3 ab&� ¿' M] EF� :K ¤E>� I�V ab

= ´KE ¤EV). �� ��� ný6s� ²©E ´7bª ³� E

F� ´K� ¤E>� �N7 zY@). 3�D � ¢ D  ÔK8

k �>�3© � ab»¼7 È^+ Ú b (T�µ =� ³� ´K

ÛV A� OP¨ b (T). Fig. 9�3 � b (<K 288 K� 30% 6

s� 9 L/min�� §��� EFk ný>� �� 60 cmK> »¼�3

abE �$� xyM7 Ú b (). Fig. 10] 6s� ²©k 20%�

>� =Ë� }�vw�� ný;Q w� D � ¡�K). Fig. 9� ¢

O>� � ¾ È^+ =Ë ab´KE Jy�� �N7 È�¨ b ().

ný 6sK 20%� �� 30% 6sx ¾� ¢ =ËnýIK 9 L/min

� �� �� 25 cm EIK Jyæ).

¦ D 7 �>� WÀ, WC ÂÃ�3� §��� ab=� �2a

bRKk ��¨ b (T�µ, 6s� =Ë� nývw� ¯�, §��

� 6s� ný²©� ¯� ab´K� ®hE EFö7 Ú b ().

4-3. ��� �� � )*

Fig. 11] 3� �­�� ný 6s� C©k 288 K� >?7 ¾� a

b=�3� ²© ��� �V �5¡�� D �k ¢OV LK). Fig.

12� w� �­�� 283 K� 6sK ný� ¾� �5¡�� D �k

¢OV LK). �5� ¡�� D� D  `� (7 b (� �� ��

¢STq7 ��¨ b� ¥��, Fig. 11-12�3 � b (<K ab= 9

Ë�3 xyz' (� �wqKz é` ab´K �] D ¡�� �

5¡�E �n ; x�>' (Ò7 Ú b (). ÛV abE xy� Ñ

Fig. 7. Numerical simulation of countercurrent system(at input solu-tion’s temperature=283 K).

Fig. 8. The effect of gas flow rate on temperature profile(cocurrent).

Fig. 9. Effect of gas flow rate on concentration profile(countercurrent 1).

Fig. 10. Effect of gas flow rate on temperature profile (countercurrent 2).

HWAHAK KONGHAK Vol. 40, No. 2, April, 2002

Page 7: The Study on Model Simulation and Experiment for Mass … · 2001-04-26 · (2001 8 16 , 2001 12 13 ) The Study on Model Simulation and Experiment for Mass Transfer in Bubble Mode

202 ����������������� !�"#$

n

.:

of

of

nd-

ics

� ©�>� �Ö ²©� (y3© ¢UV ¡�k zY±' (). �U

z 3�� ¡�� ¢ w�� ¡�E �5¡�� D �� ¢O?7

E V L�� zY�). � K�� �5¡�E �S� �V ���

� ¢STq� �V »w7 G�V LKÍ� 3�� ¢ W���� �

S� �V ��~qK ; xyz� w�� �� ?7E V L��

5W�). ÛV w� �­ ¡��3 �5¡�� ¢ ab»¼K Ì

� zY� L] =Ë �5_�3� �5ÀÁK (y �W� ¢ =�E

X° Æ©� Wá>= ¾�K). �Uz �5¡�� Y"qK D �

¡�k �>� È�&T�µ KUV D 7 �>� '( È�¨ b ¥�

i%b� »wKz, 'C Û� 'À ÂÃ�3� ab= Ýl ÛV x2

?7 Y[ ��3 �5k �>� ��¨ b (Ò7 �úV).

5. � �

§��� =Ë� ab� �V b�� �5� D � ¢Ok �>�

)Ò� Ó] ¡¹7 ÇT).

(1) §��� =Ë� ab� ný =ËI, ný6s ²©, C©, ný

vw� EFV »w7 p�). ný =Ë� :K \7bª � ab »

¼K Zyzµ, ný6s� ²©, C©E L7bª, ÛV ný6s� n

ý=Ë� vwK 3� w�k K[ ¾ �5&� =Ë� ab»¼K J

yæ). 3 cm �­� ab=k �V D �3 WC, WÀ�3� ��

70 cm 2©� ab´KE I�ö7 Ú b ().

(2) rI� �� �V � 9�] ì;>µ §��� =Ë� Åvw

ab�2�� 2�V �ÿ� D  ¡�� � �wq� ¡�í� (y

x�k �K' (y ¦ �ÿ� Y"q� �6E¸qK £¤&T).

(3) ¦ �ÿ7 �>� D ��� �W>= yà! 'C, 'ÀÂÃ�

3� D� ab�27 ��E¸>µ, D� abc def� �6 E¸

V ab= �·� u6 E¸>).

� �

¦ ^_� �®\2^_]8(V/���Å ERC)� ^_��� �

b�&T�µ K� ^K F5�_�).

����

1� Lee, K. B.: “Study of the Absorber for Ammonia-Water Absorprtio

Heat Pump,” Ph. MA. Thesis, Korea University, Seoul, Korea(2001).

2. Lee, K. B., Chun, B. H., Lee, J. C., Park, C. J. and Kim, S. H

Experimental Heat Transfer, in press(2001).

3. Kang, Y., Lim, W. M. and Kim, S. D.: HWAHAK KONGHAK, 25,

460(1987).

4. Lee, K. B., Chun, B. H., Lee, J. C., Park, C. J. and Kim, S. H.: HWA-

HAK KONGHAK, in press(2001).

5. Sujatha, K. S., Mani, A. and Srinivasa Murthy, S.: International Commu-

nity Heat Mass Transfer, 26, 975(1999).

6. Herbine, G. S. and Perez-Blanco, H.: ASHRAE Transactions, 101, 1324

(1995).

7. Sujatha, K. S., Mani, A. and Srinivasa Murthy, S.: Heat and Mass

Transfer, 32, 255(1997).

8. Merrill, T. L. and Perez-Blanco, H.: International Journal of Heat

and Mass Tranfer, 40, 589(1997).

9. McCabe, W. L., Smith, J. C. and Harriott, P.: “Unit Operations

Chemical Engineering,” McGraw-Hill, Singapore, 115(1993).

10. Seader, J. D. and Ernest, J. H.: “Separation Process Principles,” Wiley,

New York, 123(1998).

11. Treybal, R. E.: “Mass-transfer Operations,” McGraw-Hill, New York

139(1980).

12. Reid, R. C., Prausnitz, J. M. and Poling, B. E.: “The Properties

Gases and Liquids,” McGraw-Hill, Singapore(1986).

13. Perry, R. H. and Green, D. W.: “Perry’s Chemical Engineers’ ha

book,” 6th ed., McGraw-Hill International Editions, Japan(1984).

14. Korean Thermophysical Properties Data Bank of Thermodynam

and Properties Lab. of Korea University.

Fig. 11. Comparison between simulation and experimental data 1(inputsolution 288 K, cocurrent).

Fig. 12. Comparison between simulation and experimental data 2(inputsolution 283 K, countercurrent).

���� �40� �2� 2002� 4�