the structures of simple solids - yazd chemistry... · 2016-01-04 · 1 [email protected]. 1 the...

58
1 [email protected]. 1 The structures of simple solids Alireza Gorji [email protected] Department of Chemistry, Yazd University [email protected]. Solid State Chemistry Introduction Metals Alloys Ionic Solids Crystal Defects Band Theory 2

Upload: others

Post on 14-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

1

[email protected]

The structures of

simple solids

Alireza Gorji

[email protected]

Department of Chemistry, Yazd University

[email protected].

Solid State Chemistry

• Introduction

• Metals

• Alloys

• Ionic Solids

• Crystal Defects

• Band Theory

2

2

[email protected].

Unit Cell & Lattice

3

[email protected]

6

[email protected].

1926 Goldschmidt proposed atoms could be

considered as packing in solids as hard spheres

11

[email protected]

Hexagonal

Close-Packing

8

[email protected]

[email protected]

Cubic

Close-Packing

12

[email protected]=0.414 r 23

Holes in close-packed structures

[email protected]

14

[email protected].

Features of Close-Packing

Coordination Number = 12

74% of space is occupied

Largest interstitial sites are: octahedral (O) ( r = 0.414) ~ 1 per sphere

tetrahedral (T±) (r = 0.225) ~ 2 per sphere

27

[email protected].

A NON-CLOSE-PACKED structure adopted by some metals is:

68% of space is occupiedCoordination Number 8

8 Nearest Neighbors at 0.87a

6 Next-Nearest Neighbors at 1a

28

bcc

15

[email protected]

Primitive cubic

[email protected]

16

[email protected]

Polymorphism of metals

[email protected]

Alloys and Intermetallic compounds

19

[email protected]

Some of these intermetallic compounds contain a very electropositive metal

(for example, K or Ba) in combination with a less electropositive metal or

metalloid (for example, Ge or Zn), and in a Ketelaar triangle lie above the true

alloys. Such combinations are called Zintl phases.

[email protected].

Molecular

Solids

38

20

[email protected]

[email protected].

Ionic

Solids

40

21

[email protected]

[email protected].

STRUCTURES DERIVED

FROM CUBIC CLOSE

PACKING

CCP/FCC

42

22

[email protected]

[email protected].

Ionic structures from the cubic close-packed

44

23

[email protected].

Rock Salt

45

[email protected]

24

[email protected]

[email protected].

Rock Salt

48

25

[email protected].

CCP Cl- with Na+ in all Octahedral holes

Lattice: fcc

4NaCl in unit cell

Coordination: 6:6 (octahedral)

Cation and anion sites are topologically identical

49

[email protected]

26

[email protected]

[email protected].

CaF2 Fluorite

52

27

[email protected]

CaF2 Fluorite / {Na2O Anti-Fluorite}

[email protected].

CCP Ca2+ with F- in all Tetrahedral holes

Lattice: fcc

4CaF2 in unit cell

Coordination: Ca2+ 8 (cubic) : F- 4 (tetrahedral)

In the related Anti-Fluorite structure Cation and Anion positions are reversed

CaF2 Fluorite / {Na2O Anti-Fluorite}

54

28

[email protected].

ZnS Zinc Blende (Sphalerite)

55

[email protected].

ZnS Zinc Blende (Sphalerite)

56

29

[email protected]

[email protected].

CCP S2- with Zn2+ in half Tetrahedral holes (only

T+ {or T-} filled)

Lattice: fcc

4ZnS in unit cell

Coordination: 4:4 (tetrahedral)

Cation and anion sites are topologically identical

ZnS Zinc Blende (Sphalerite)

58

30

[email protected].

NaCl (Halite)

Very common (inc. 'ionics', 'covalents' & 'intermetallics' )

Most alkali halides (CsCl, CsBr, CsI excepted)

Most oxides / chalcogenides of alkaline earths

Many nitrides, carbides, hydrides (e.g. ZrN, TiC, NaH)

CaF2 (Fluorite)

Fluorides of large divalent cations, chlorides of Sr, Ba

Oxides of large quadrivalent cations (Zr, Hf, Ce, Th, U)

Na2O (Anti-Fluorite)

Oxides /chalcogenides of alkali metals

ZnS (Zinc Blende/Sphalerite)

Formed from Polarizing Cations (Cu+, Ag+, Cd2+, Ga3+...)

and Polarizable Anions (I-, S2-, P3-, ...);

e.g. Cu(F,Cl,Br,I), AgI, Zn(S,Se,Te), Ga(P,As), Hg(S,Se,Te)

Examples of Structure Adoption

59

[email protected].

COMPLEX-ION VARIANTS

60

31

[email protected].

STRUCTURES DERIVED

FROM HEXAGONAL

CLOSE PACKING

hcp

61

[email protected]

32

[email protected].

NiAs Nickel Arsenide

63

[email protected]

NiAs Nickel Arsenide

33

[email protected].

NiAs Nickel Arsenide

65

[email protected].

HCP As with Ni in all Octahedral holes

Lattice: Hexagonal - P

a = b, c (8/3)a

2NiAs in unit cell

Coordination: Ni 6 (octahedral): As 6

(trigonal prismatic)

NiAs Nickel Arsenide

66

34

[email protected].

ZnS Wurtzite

67

[email protected].

ZnS Wurtzite

68

35

[email protected]

[email protected].

ZnS WurtziteHCP S2- with Zn2+ in half Tetrahedral holes

(only T+ {or T-} filled)

Lattice: Hexagonal - P

a = b, c (8/3)a

2ZnS in unit cell

Coordination: 4:4 (tetrahedral)

70

36

[email protected].

Comparison of Wurtzite and Zinc Blende

71

[email protected].

Comparison of Wurtzite and Zinc Blende

72

37

[email protected]

Rutile

[email protected].

Rutile

74

38

[email protected].

NON CLOSE-PACKED STRUCTURES

CsCl Cesium Chloride

75

[email protected].

CsCl Cesium Chloride

76

39

[email protected].

Lattice: Cubic - P (N.B. Primitive!)

1CsCl in unit cell

Coordination: 8:8 (cubic)

Adoption by chlorides, bromides and iodides of

larger cations, e.g. Cs+, Tl+, NH4+

CsCl Cesium Chloride

77

[email protected]

41

[email protected]

The Perovskite structure ABO3

[email protected]

42

[email protected]

The Spinel structure AB2O4

Normal Spinel

O2- fcc

AII (1/8)hT

BIII (1/2)hO

MgAl2O4

[email protected]

The rationalization of structures

44

[email protected]

[email protected]

The energetics of ionic bonding

Lattice enthalpy and the Born–Haber cycle

45

[email protected]

The Born–Mayer equation

[email protected]

The Born–Mayer equation

46

[email protected]

The Madelung constant

[email protected]

47

[email protected]

[email protected]

The Kapustinskii equation

48

[email protected]

[email protected]

Consequences of lattice enthalpies

50

[email protected]

حلشدن گرماگیر

حلشدن گرمازا

گرمای حلشدن

[email protected]

51

[email protected]

Defects and nonstoichiometry

Types of Defects

[email protected]

Point Defects

56

[email protected]

The electronic structures of solids

The conductivities of inorganic solids

[email protected]

Band formation by orbital overlap

58

[email protected]

Extrinsic semiconductors

Intrinsic

semiconductors

Ge/As Ge/Ga

[email protected]