the strongest underwater turbines for deep-water equipment and machinery

33
КȖȕкțȘș «ТехȕȖșȚаȘȚ 2014» Phone +995 57 407 47 27; mail: [email protected]; skype: george_mamulashvili General Manager George Mamulashvili, PhD; Chief engineer Gilles Breche «Presentation of underwater environmentally friendly portable vortex micro-hydro power». Vortex energy sources. Studies, research, design and construction Smart Hydro Vortex Ltd

Upload: enggeorgii-mamulashvili-phd

Post on 12-Apr-2017

100 views

Category:

Science


7 download

TRANSCRIPT

Page 1: The strongest underwater turbines for deep-water equipment and machinery

КȖȕкțȘș «ТехȕȖșȚаȘȚ 2014»

Phone +995 57 407 47 27; mail: [email protected]; skype: george_mamulashvili

General Manager George Mamulashvili, PhD; Chief engineer Gilles Breche

«Presentation of underwater environmentally friendly

portable vortex micro-hydro power».

Vortex energy sources. Studies, research, design and construction

Smart Hydro Vortex Ltd

Page 2: The strongest underwater turbines for deep-water equipment and machinery

F o r t h e f i r s t t i m e

c r e a t e d a f u l l y A u t o n o m o u s

u n d e r w a t e r p o r t a b l e h y d r o -

p o w e r p l a n t w i t h f r e e - f l o w

m i c r o - t u r b i n e h i g h p o w e r ,

t h e d i m e n s i o n s o f w h i c h a l l o w

d i v e r s t o w o r k a t d e p t h s t o 4 0

m w i t h o u t s u r f a c i n g t o

r e c h a r g e t h e i r b a t t e r i e s .

T u r b i n e w e i g h t 1 3 6 . 4

k g , l e n g t h 1 . 5 m , d i a m e t e r o f

w h e e l i s 8 0 c m .

Innovation

5 kW

Page 3: The strongest underwater turbines for deep-water equipment and machinery

Innovation

P r o v i s i o n o f r e p a i r w o r k s o n t h e b o t t o m w i t h a n y e l e c t r o -

m e c h a n i c a l i n s t r u m e n t , i n c l u d i n g u n d e r w a t e r w e l d i n g .

5 ɤȼɬ

10 kW

Page 4: The strongest underwater turbines for deep-water equipment and machinery

Ensuring long battery repair

robots and other underwater

vehicles.

15 kW

Innovation

Page 5: The strongest underwater turbines for deep-water equipment and machinery

20 kW

Innovation

Autonomous lighting exotic tourism scuba diving and fishing farms.

Page 6: The strongest underwater turbines for deep-water equipment and machinery

30 kW

Autonomous energy supply to individual rural architecture and landscape with light.

Innovation

Page 7: The strongest underwater turbines for deep-water equipment and machinery

40 kW

We can provide these underwater homes with warmth and light

Innovation

Page 8: The strongest underwater turbines for deep-water equipment and machinery

Innovation To prevent frequent fires on offshore platforms to abandon the use

of fuel generators and safe to use underwater hydropower for its own needs, in order to avoid losses of millions of dollars

450 kW

Page 9: The strongest underwater turbines for deep-water equipment and machinery

КȖȕкțȘș «ТехȕȖșȚаȘȚ 2014»

Mainland world energy potential of underutilized water resources in TWh of electric energy production per year is achievable for such micro-hydro power also in rivers

and channels.

Market

Page 10: The strongest underwater turbines for deep-water equipment and machinery

Acceptable capacity in GW on a global scale for the use of micro-hydro power underwater river (coastal mainland) and

marine (tidal) - based to explore possible market.

Market

Page 11: The strongest underwater turbines for deep-water equipment and machinery

КȖȕкțȘș «ТехȕȖșȚаȘȚ 2014»

The cost of a KWh generated by micro-hydro electric energy compared to other sources within less than 0,01 €

taking into account the ratio of fuel and maintenance costs and payback of the construction of the power plant.

Market

Page 12: The strongest underwater turbines for deep-water equipment and machinery

According to International Rivers, the modern use of small, mini and micro-hydro power comes out to more economical

level than the construction of a large HPP.

Market

Page 13: The strongest underwater turbines for deep-water equipment and machinery

R&D Tests of model vortex turbines for micro-HPP conducted in the laboratory of hydrodynamics of the St. Petersburg State Polytechnic University and obtained positive results.

Page 14: The strongest underwater turbines for deep-water equipment and machinery

R&D S t u d i e s s h o w

t h a t p r o p e l l e r

t u r b i n e s h a v e a

h i g h c a v i t a t i o n

c o e f f i c i e n t a n d

t h e r e f o r e

v u l n e r a b l e t o

a c c e l e r a t e d

d e s t r u c t i o n .

Page 15: The strongest underwater turbines for deep-water equipment and machinery

It was determined that cavitation occurred at the exit of the blade at a flow

coefficient of approximately 0.33 for the 1.5 pitch blade geometry, while the

uniform blade geometry had a value of 1.35. When the rotation rate was

reduced to 250 rpm, cavitation occurred at a flow coefficient of 0.72.

From the simulations at both rotation rates, it was determined that both

geometry and rotation rate have a significant effect on the onset of cavitation

and water vapor inception within the flow field. As the rotation rate of the

turbine decreases, the onset of cavitation will be prolonged to larger flow

coefficients. (Cavitation Phenomena and Performance Implications in

Archimedes Flow Turbines Jacob D. Riglin, William C. Schleicher and

Alparslan Oztekin).

R&D

Page 16: The strongest underwater turbines for deep-water equipment and machinery

The option to install a HPP 5 kW river based on the hanging bracket on one of the banks of the canal or river.

Design

Page 17: The strongest underwater turbines for deep-water equipment and machinery

Installation of the underwater generator at the bottom on the cradle 40 m. Option deep installation of micro-hydro in the intertidal zone along the coast or on the river bottom.

Design

Page 18: The strongest underwater turbines for deep-water equipment and machinery

Design

1 Generator; 2.Frame; 3.Housing; 4.Turbine; 5.Shaft; 6.Servo; 7.Distributor; 8.A closed housing drive; 9.Diffuser; 10.Collector.

1

2

3

4

5

6

7

8

9

10

Cable connection under water in the socket

Page 19: The strongest underwater turbines for deep-water equipment and machinery

1 Generator; 2.Frame; 3.Housing; 4.Turbine; 5.Shaft; 6.Servo; 7.Distributor; 8.A closed housing drive; 9.Diffuser; 10.Collector.

Page 20: The strongest underwater turbines for deep-water equipment and machinery

Title Material Quantity Unit weight (kg) Total (kg)

Dwg N°

TH5 002 Shatf 42 Cr Mo 4 1 11,4 11,4 TH5 003 Blades'shaft Aluminium 1 13,4 13,4 TH5 004 Distributor

inside crown DIN C55 2 2,3 4,6

TH5 005 Inlet bearing casing DIN C55 1 3,3 3,3

TH5 006 Distributor casing DIN C55 1 19 19,0

TH5 007 Rear bearing casing DIN C55 1 2,45 2,5

TH5 008 Rear support DIN C55 2 5,5 11,0 TH5 009 Inlet cone Nylon 1 2,9 2,9 TH5 010 Axial inlet Glass fiber 1 5,7 5,7 TH5 011 Turbine wheel casing Glass fiber 2 5,3 10,6

TH5 012 Stagger angle system TH5 012-1 command crown DIN C55 2 3,3 6,6 TH5 012-2 command arm DIN C55 8 0,082 0,7 TH5 012-3 link rod Bronze 8 0,036 0,3 TH5 012-4 link plate DIN C55 1 0,05 0,1 TH5 012-5 cylinder link plate DIN C55 1 0,13 0,1

Total weight 7,7 TH5 013 distributor blades Bronze 8 0,22 1,8 TH5 014 Turbine blades Aluminium 8 0,95 7,6 TH5 015 Center casing Glass fiber 1 5 5,0 TH5 016 Turbine support Carbon steel 1 30 30,0

Turbine weight 136,4 External Parts

Designation furnisher Quantity Reference Obs. Bearings/Thrusts Tapered rolling bearing

d 50 SKF 2 33110_0

Cyl. Thrust bearing d

50 SKF 1 81210_1

Gaskets Gasket IE type D 50 Hutchinson 2 722650

Gasket IE type D 70 Hutchinson 1 722639

O-ring gasket 15x2 Hutchinson 8 Butylo nitrile

Calculation of the mass and materials required for HPP 5 kW Technical data

Page 21: The strongest underwater turbines for deep-water equipment and machinery

Horizontal Axial Turbine

General Input data Impeller datas fa ll he ight (m) 0 T ota l T wist a ngle (°) 180

de sign flow ra te (m3/ s) 0,21 e xpa nsion a ngle (°) 20

flow spe e d (m/ s) 1,8 nb of distributor bla de s 9

El powe r (kW ) 5 nb of impe lle r bla de s 8

N (rpm) 510 Iopt impe lle r (°) 2,5

Inne r ca sing dia (mm) 120

de pth turbine unde r surfa ce (m) 0,5

initia l Sta tic pre ssure (Pa ) 106228

thermodynamic results dH (kJ/ kg) 37,3

tota l dH (kJ) 8

inle t spe e d (m/ s) 8,8

initia l tota l pre ssure (Pa ) 1,1E+05

fina l tota l pre ssure (Pa ) 1,5E+05

T ota l dp (Pa ) 3,9E+04

outle t turbine dp (Pa ) 3,7E+04

fina l sta tic pre ssure (Pa ) 7,6E+04

fina l sta tic pre ssure (a tm) 0,75

dH turbine (kJ/ kg) 37,4

tota l dH turbine (kJ) 8

Ise ntropic Efficie ncy (%) 100,1

polytropic e fficie ncy (%) 85

Estima te ma x El. Powe r (kW ) 5

root Ca vita tion fa ctor 1,06

Overhaul ge ne ra tor spe e d multiplica tor ra tio

Rota tion spe e d (rpm) 510 350 0,69

e ff Me cha nica l powe r (kW ) 7 500 0,98

T orque (da N.m) 13 750 1,47

Inlet dimensions se ction (m²) 0,1

duct dia me te r (m) 0,4

inle t turbine se ction (m²) 0,02

Va x inle t turbine (m/ s) 8,83

inle t e xt dia me te r (m) 0,22

Outlet dimensions a pe rture a ngle (°) 20

impe lle r a xia l le ngth (m) 0,56

Outle t dia me te r (m) 0,4

outle t Va x (m/ s) 1,8

Technical data

Page 22: The strongest underwater turbines for deep-water equipment and machinery

channel speed 1,44 m/sec nb bla de s 8 e (mm) 5

twist a ngle (°) 180 twist pitch (m) 1,12

inle t dia (m) 0,22 outle t dia (m) 0,41

le ngth (m) 0,56

iopt 2,5

Impeller definition

inlet Impeller

dist. block (m²) 0,002 Me a n R (m) 0,085 block (m²) 0,002

re a l se ct (m²) 0,025 Um (m/ s) 4,55 re a l se ct (m²) 0,025

Va x (m/ s) 8,53 a lfa (°) 25,6 Va x (m/ s) 8,44

R (m) a lfa (°) U (m/ s) pitch (m) Va x (m/ s) dp (Pa ) Ca v

0,060 18,6 3,20 0,047 9,54 45539 1,28

0,085 25,6 4,55 0,067 9,22 42508 1,44

0,110 31,8 5,89 0,087 9,05 40984 1,53

Outle t turbine

block 0,01

re a l se ct 0,12

Va x (m/ s) 1,78

Shaft calculation sha ft le ngth (mm) 3200

Ma x torsion a ngle (°/ m) 0,03

Re (da N/ mm²) 46

Young modulus (da N/ mm²) 21000

poisson coe f 0,35

tra nsve rse modulus (da N/ mm²) 7778

ta u (da N/ mm²) 8,9

T orque N.m 187

Dia me te r (mm)/ stra in 46

Dia me te r (mm) long sha ft 62

Technical data

Page 23: The strongest underwater turbines for deep-water equipment and machinery

8

6da(°)= 26.353 ratio2 - 78.396 ratio + 52.706

4

0

2

10

12

0 0,2 0,4 0,6 0,8 1 1,2

stagger angle variation (°)=f(flow ratio)

da (°)

Flow ratio

de pth (m) 0,5 Pre ssure (P 106228

20 0,94 gap (mm) 3

Nb bla de s 9 e (mm) 5 I opt impe l 2,5

R (m) re a l se ct tota l se ct spe e d ra tio Va x (m/ s) U (m/ s) a lfa (°) de via tion dp (Pa ) coe f ca v

0,06 0,33 0,38 1,14 10,02 3,20 17,73 20,23 50248 1,064

0,085 0,49 0,53 1,09 9,64 4,55 25,25 27,75 46457 1,233

0,101 0,59 0,63 1,08 9,50 5,38 29,53 32,03 45158 1,297

0,110 0,65 0,69 1,07 9,44 5,89 31,95 34,45 44571 1,327

R (m) g % chord chord e (% c) ca mbe r (°) st a ngle (°) iopt pitch (m) sigma thk

0,06 6,91 53,7 9,32 15,7 10,11 2 0,042 0,005 0,004

0,085 10,10 72,0 6,95 22,9 13,88 2,4 0,059 0,008 0,003

0,101 13,04 83,4 6,00 29,2 16,01 0,3 0,070 0,001 0,005

0,110 14,17 80,0 6,25 31,6 17,22 0,3 0,077 0,002 0,005

inte rna l dia me te r (m) 0,12

e xte rna l ra dius (m) 0,22

outle t D ia me te r (m) 0,4

impe lle r le ngth (m) 0,56

twist a ngle (°) 180

ca lcula tion pitch (m) 0,03

impe lle r pitch (m) 1,12

e xpa nsion a ngle (°) 20

Technical data

Page 24: The strongest underwater turbines for deep-water equipment and machinery

Xa (m) Ra dius (m) a lfa (°) Ld (m) Ld1 (m) xo (m) x1 (m) x2 (m)

0 0,06 18,6 0,59 0,59 0 0,00 0,59 Inle t impe lle r

le a ding e dge 0 0,085 25,6 0,62 0,62 -0,01 -0,01 0,60

0 0,110 31,8 0,66 0,66 -0,03 -0,03 0,62

0,028 0,115 32,9 0,67 0,63 -0,04 -0,006 0,627

0,056 0,120 34,0 0,67 0,61 -0,04 0,024 0,631

0,084 0,125 35,0 0,68 0,58 -0,05 0,054 0,635

0,112 0,130 36,1 0,69 0,55 -0,05 0,085 0,639

0,140 0,135 37,1 0,70 0,53 -0,06 0,117 0,643

0,168 0,139 38,1 0,71 0,50 -0,06 0,149 0,647

0,196 0,144 39,0 0,72 0,47 -0,07 0,183 0,651

0,224 0,149 39,9 0,73 0,44 -0,07 0,217 0,655

0,252 0,154 40,9 0,74 0,41 -0,08 0,252 0,659

0,280 0,159 41,7 0,75 0,37 -0,09 0,288 0,663

0,308 0,164 42,6 0,76 0,34 -0,09 0,325 0,667

0,336 0,169 43,4 0,77 0,31 -0,10 0,363 0,671

0,364 0,173 44,2 0,78 0,27 -0,11 0,402 0,675

0,392 0,178 45,0 0,79 0,24 -0,11 0,442 0,679

0,419 0,183 45,8 0,80 0,20 -0,12 0,483 0,683

0,447 0,188 46,6 0,81 0,16 -0,13 0,524 0,687

0,475 0,193 47,3 0,82 0,12 -0,13 0,567 0,691

0,56 0,207 49,4 0,86 0,00 -0,16 0,703 0,703 tra iling e dge

Technical data

Data for calculation of helical blade turbines

Page 25: The strongest underwater turbines for deep-water equipment and machinery

X (m)

0

0,1

0,2

0,3

-0,50 0,00 0,50 1,00

Tra

iling

edge

Leadin

g e

dge S

ect

ion

3

Sect

ion

2

Technical data

Page 26: The strongest underwater turbines for deep-water equipment and machinery

Xa (m) 0,155 R 1 (m) 0,110 R 2 (m) 0,137 se ction1 ctions le ng

r (m) a lfa (°) Ld (m) ld1 (m) xo (m) x1 (m) x2 (m)

0,06 18,6 0,59 0,16 0,00 0,00 0,164

0,085 25,6 0,62 0,17 -0,01 -0,01 0,157

0,110 31,8 0,66 0,18 -0,03 -0,03 0,148

0,114 32,7 0,66 0,18 -0,04 -0,04 0,146

0,118 33,5 0,67 0,19 -0,04 -0,04 0,145

0,122 34,4 0,68 0,19 -0,05 -0,05 0,143

0,126 35,2 0,68 0,19 -0,05 -0,05 0,141

0,137 37,6 0,71 0,20 -0,06 -0,06 0,135

Xa (m) 0,311 R 1 (m) 0,137 R 2 (m) 0,164 se ction2

r (m) a lfa (°) Ld (m) ld1 (m) xo (m) x1 (m) x2 (m)

0,06 18,6 0,59 0,33 0,00 0,16 0,3278

0,085 25,6 0,62 0,34 -0,01 0,16 0,3293

0,110 31,8 0,66 0,37 -0,03 0,15 0,3306

0,115 33,0 0,67 0,37 -0,04 0,15 0,3308

0,121 34,1 0,68 0,38 -0,04 0,14 0,3309

0,126 35,3 0,69 0,38 -0,05 0,14 0,3310

0,131 36,4 0,69 0,39 -0,05 0,14 0,3310

0,164 42,7 0,76 0,42 -0,09 0,13 0,3291

Xa (m) 0,466 R 1 (m) 0,164 R 2 (m) 0,191 se ction3

r (m) a lfa (°) Ld (m) ld1 (m) xo (m) x1 (m) x2 (m)

0,06 18,6 0,59 0,49 0,00 0,33 0,492

0,085 25,6 0,62 0,52 -0,01 0,33 0,502

0,110 31,8 0,66 0,55 -0,03 0,33 0,513

0,123 34,7 0,68 0,57 -0,05 0,33 0,520

0,136 37,5 0,70 0,59 -0,06 0,33 0,527

0,150 40,0 0,73 0,61 -0,08 0,33 0,533

0,163 42,4 0,76 0,63 -0,09 0,33 0,540

0,191 47,0 0,82 0,68 -0,13 0,33 0,553

Technical data

Page 27: The strongest underwater turbines for deep-water equipment and machinery

5 Turbine** 1557,5 311,5 1869 373,8

10 Turbine* 3150 630 3780 378

15 Turbine* 4777,5 955,5 5733 382,2

20 Turbine* 6440 1288 7728 386,4

30 Turbine* 9765 1953 11718 390,6

40 Turbine* 13160 2632 15792 394,8

50 Turbine* 16625 3325 19950 399

60 Turbine* 20160 4032 24192 403,2

75 Turbine* 25462,5 5092,5 30555 407,4

100 Turbine* 34300 6860 41160 411,6

150 Turbine* 51975 10395 62370 415,8

200 Turbine** 70 000 14000 84000 420

300 Turbine* 116550 23310 139860 466,2

350 Turbine* 137200 27440 164640 470,4

400 Turbine* 158200 31640 189840 474,6

450 Turbine* 179550 35910 215460 478,8

The cost of manufacture and Assembly line of fluvial and tidal underwater micro hydro excluding the

cost of design and survey works.

Name Power

kW

Complete Prize

$

Installation

Prize $

Cost of

construction $

Per kW

The range of projects turbine is ready for release . The range contains RD micro turbines from 5 to 20 kW, a 30 to 75 and small from 100 to 450 kW.

Economy

** Working draft

Page 28: The strongest underwater turbines for deep-water equipment and machinery

The terms of return of investment

The first year The second year

The equipment kW The unit cost lot $ 2 500 000,00 The unit cost Lot

Costs 5 $ 373,80 800 $ 1 495 200,00 $ 373,80 800 $ 1 495 200,00

10 $ 378,00 400 $ 1 512 000,00 $ 378,00 400 $ 1 512 000,00

15 $ 382,20 400 $ 2 293 200,00 $ 382,20 400 $ 2 293 200,00

20 $ 386,40 400 $ 3 091 200,00 $ 386,40 400 $ 3 091 200,00

Total kW The unit prize 2000 $ 8 391 600,00 The unit prize 2000 $ 8 391 600,00

Income 5 $1 000,00 800 $ 2 504 800,00 $1 000,00 800 $ 2 504 800,00

10 $ 975,00 400 $ 2 388 000,00 $ 975,00 400 $ 2 388 000,00

15 $ 950,00 400 $ 3 406 800,00 $ 950,00 400 $ 3 406 800,00

20 $ 925,00 400 $ 4 308 800,00 $ 925,00 400 $ 4 308 800,00

Total 2000 $ 12 608 400,00 2000 $ 12 608 400,00

$ 4 500 000,00 $ 325 200,00

$ 8 716 800,00 $ 12 933 600,00

The amount of investment/profit balance$ 7 000 000,00 $ 5 933 600,00

Economy The financial plan return on investment Initial data: 1. The estimated rental value of the premises and equipment of the plant for production of turbines and installation of electrical equipment for three years ( including 0 ) of 2,5 mln. USD. 2. Investments require roughly 7 mln. USD. 3. The return on investment 2 years after completion and equipping of the leased shop. When return on investment the investor has the right to buy 20 % stake in the company at a nominal price and a 29% stake at the market.

Page 29: The strongest underwater turbines for deep-water equipment and machinery

Analogues P r o p e l l e r

c o u n t e r p a r t s h a v e

l e s s p o w e r w i t h

t h e s a m e

d i m e n s i o n s a n d

r e q u i r e a h i g h e r

n o m i n a l r a t e o f

t h e i n p u t s t r e a m .

Model Depth Diameter Output

power

The rate of flow

m m m/sec

kW

CC018A 3.6 - 5.4 1.8 16 3.0

CC025A 5.0 - 7.5 2.5 30 3.0

CC035A 7.0 - 10.5 3.5 63 3.0

CC050A 10.0 - 15.0 5.0 126 3.0

Run of river turbine

Page 30: The strongest underwater turbines for deep-water equipment and machinery

M o d e l

Minimum

immersion

depth

m

Diameter

m

R a t e d

o u t p u t

P o w e r

k W

7.0 3.5 63 3.0

CC050A 10.0 5.0 126 3.0

CC070A 14.0 7.0 247 3.0

Nominal flowrate

m/sec

CC035A

Analogues Propeller turbines can rotate at a right angle to the flow and have higher rotation speed than that caused by the danger of falling under the knife of fish and other species of flora and fauna.

Tidal turbine casting

Page 31: The strongest underwater turbines for deep-water equipment and machinery

Analogues The dimensions of the underwater hydroelectric turbines with spiral Riv GenТМ is 11 .9 m wide and 2.8 m high, 2.3 m in depth. Power output for this design is only 30 kW flow rate of 3 m/s. Comparable with the proposed design, where hydro reactor power of 20 kW and has dimensions of a length of 1.85 m and a wheel diameter of 1 m.

30 kW

Page 32: The strongest underwater turbines for deep-water equipment and machinery

Financial statistics Analysis of the cost of building a micro-hydropower for the World Bank.

Features of fabrication and

operation of a portable

underwater plant provides

a comparative low cost that

allows you to compete on terms

of return of investment with any

other renewable energy sources

such as wind and solar power

plants. As can be seen from the

table, we managed to reduce the

cost of installation kilowatt of the

micro-HPP by several times, due

to the compressibility of the flow

and thus the selection is almost

entirely the kinetic energy.

Page 33: The strongest underwater turbines for deep-water equipment and machinery

Advantages over analogues:

• Horizontal vortex turbine is several times more powerful than the

existing vertical turbine Savenius technology “In stream” and completely

environmentally safe for the surrounding flora and fauna

• Turbines with small dimensions can be installed in rivers with

velocity more than 1.8 m/sec at a depth of at least 1 m from the surface.

• The receptivity of the flow is the highest of all known turbines, as there

are large surfaces washing of turbine blades

• Turbine have a high torque value on the shaft that allows the use of

inexpensive gearboxes or really do without them, using underwater

low-speed generators

• the manufacturing Costs of turbines are low, since blades can be made

on special bending machines with high performance automated production

lines for manufacturing • power Plants with a jet of spiral turbines easily

scalable , thus no need to readjust the productive line with changing

customer demand • Low cost of fabrication, construction and operation,

allows the use of such hydroelectric power plant in different abnormal

conditions and their mobility allows them to disassemble and assemble,

depending on need, allowing them to be used in the temporary grade of

plants, is much easier to get permission to use them.

Conclusion