the star time projection chamber

20
1 The STAR Time Projection Chamber Fabrice Retière (LBNL) for the STAR collaboration

Upload: marcel

Post on 25-Jan-2016

39 views

Category:

Documents


2 download

DESCRIPTION

The STAR Time Projection Chamber. Fabrice Reti è re (LBNL) for the STAR collaboration. TPC function Large acceptance gas detector | h |

TRANSCRIPT

Page 1: The STAR Time Projection Chamber

1

The STAR Time Projection Chamber

Fabrice Retière (LBNL)

for the STAR collaboration

Page 2: The STAR Time Projection Chamber

2

Introduction

TPC functionLarge acceptance gas detector

||<1.8

Full azimuthal coverage

Momentum reconstructionTracking with design hit position resolution ~500 m

Pid using dE/dxDesign resolution : 7%

TPC design

Tuning the TPCPosition reconstruction

Drift velocity

Drift distortion

dE/dxUnderstanding ionization

Gain calibration

Page 3: The STAR Time Projection Chamber

3

STAR detector

0.5 Tesla magnet0.25 for year 1

Trigger CTBZDCLevel 3

Year 1 detectorsTPCRICH1 SVT ladder

Page 4: The STAR Time Projection Chamber

4

Page 5: The STAR Time Projection Chamber

5

TPC gas volume

Gas : P10 (Ar-CH4 90%-10%) @ 1 atm

Drift voltage : -31 kV

Page 6: The STAR Time Projection Chamber

6

Pad readout

2×12 super-sectors

60 cm

127 cm

190 cm

Outer sector6.2 × 19.5 mm2 pad

3940 pads

Inner sector2.85 × 11.5 mm2 pad

1750 pads

Page 7: The STAR Time Projection Chamber

7

Electronic readout

FEE, custom design IC : SAS + SCA (512 time bins)Readout 140K channels, i.e. 70M pixels

Readout boardCarry ~1000 Channels to DAQ

SCAADC

SCAADC

X 16

MUX

TPCPad

PreampShaperAmp

AnalogMemory

Fiber optictransmitterto DAQ

SAS IC SCA + ADCIC

FEEBoard

ReadoutBoard

Page 8: The STAR Time Projection Chamber

8

TPC at workFirst RHIC events

Detector very stableGood for physics without calibration

Page 9: The STAR Time Projection Chamber

9

TPC at work dE/dx measurement before calibration

K pd

dEdx resolution good for Pid

e

Page 10: The STAR Time Projection Chamber

10

Tuning the TPCProcesses to control

IonizationPid using dE/dx

Electron driftDrift distortion

Drift velocity (laser)

GainGas gain

Electronic gain

Particle

Page 11: The STAR Time Projection Chamber

11

Electron drift Drift velocity under control

Pressure (mbar)Alexei Lebedev, Bill Love, Jeff Porter (BNL)

Dri

ft v

eloc

ity

(cm

/s)

5.44

5.45

1010 1020

Laser for coarse value

Fine adjustment from tracking matching both side of the TPC

Page 12: The STAR Time Projection Chamber

12

Electron drift Drift correction in TPC

Distortion sourcesRadial B field (<2mm)

End cap location (800 m)

E field corrections to field cage (400 m)

0.5 mrad E/B field misalignment (400 m)

Detected using residual average over many tracks

Corrections using field maps and geometry survey

No tuning on data required

Ave

rage

res

idua

l (m

m)

0.3

-0.3

0.

60. 100. 140. Radius (cm)

Page 13: The STAR Time Projection Chamber

13

Electron drift B field map correction

Field map allows parameter free calculation

TPC active volume TPC active volume

Calculated distortion = ExBrMeasured Br/Bz

Bill Love, Al Saulys (BNL), Jim Thomas (LBNL)

20

60

100

140

Rad

ius

(cm

)

20

60

100

140

Rad

ius

(cm

)

-200 2000-100 100Distance to central membrane (cm)

-200 2000-100 100Distance to central membrane (cm)

0.4

-0.8

-0.4

0.

Br/

Bz

(%)

R/

dis

tort

ion

(mm

)

0

-1.

1.

Page 14: The STAR Time Projection Chamber

14

Electron driftInner/outer sector boundary

Data

Calculation

No wires at the boundary between inner and outer sector

E field leakE field radial component

ExB effect on R/

Radius (cm)

Outer sector Inner sector

Gating grid = -127 VGround plane = 0 V

1.6 cm

Pad row #10 20 30

Ave

rage

res

idua

l (m

m)

Ave

rage

res

idua

l (m

m)

0.2

0.1

-0.1

0.

gap

Inner sector

Inner sector

Outer sector

Outer sector

Page 15: The STAR Time Projection Chamber

15

Electron driftdistortions under control

TPC active volume

Huan Huang, Hui Long and Steve Trentelange (UCLA)Jim Thomas (LBNL)

20

60

100

140

Rad

ius

(cm

)

-200 2000-100 100Distance to central membrane (cm)

R/

dis

tort

ion

(mm

)

0

-1.

1.

-2.Pad row #10 20 30

Ave

rage

res

idua

l (m

m)

0.2

-0.1

0.

Inner sector Outer sector

All calculated distortionsAverage residual

Page 16: The STAR Time Projection Chamber

16

Gain uniformityGas gain

Eugene Yamamoto (UCLA)

Gain variationOver TPC sectors With time

PressureTemperature…

Correction using average dEdx

Require a lot of events to cancel out fluctuations

Gain monitor chamber being builtPulser for electronic gain calibration

1.3

1.4

1.5

Gai

n (a

rb. u

nit.)

1000

1.6

1010 1020 1030Pressure (mbar)

essure

essure

Gain

Gain

Pr

Pr7.3

Page 17: The STAR Time Projection Chamber

17

Gain uniformityElectronic gain

To measure uniformity of electronic gain

8% sigma variation but 20% RMS (tail)Precise channel level correction

Pulser also identifies dead channels = 0.25%

Pad pl

ane

Anode

Groun

d plan

e

Gating

grid

Pulser

TPC drift volume

Inner sector

Outer sector

Pu

lser

am

plit

ude

(arb

. uni

t.)

Page 18: The STAR Time Projection Chamber

18

Ionization and gain uniformity dEdx resolution

Remaining issue : correlation of dE/dx between pad rows

Yuri Fisyak (BNL)

No calibration 9 %

With calibration 7.5%

Design 6.7%

Track length (cm)

dE

/dx/

(dE

/dx)

(%

)

Page 19: The STAR Time Projection Chamber

19

Conclusion particle identification

Aihong Tang (Kent State U)

K

p d

e

dE/d

x (k

eV/c

m)

0

12

8

4

Page 20: The STAR Time Projection Chamber

20

The TPC is an excellent tool for physics

Approaching design performance

Good particle separation using dE/dx

7.5%

-proton separation : 1.3 GeV/c

Position resolution500 m

2-Track resolution2.5 cm

Momentum resolution 2%

Future challengesAchieve turn-key operationHandle increased luminosity

Lots of physics from the year 1 data

Collective flowIdentified particle spectraParticle correlationsEvent by event physicsStrangeness…