the splitting necklace problem - cermicsmeuniefr/necklace_tfjm_2017.pdf · 2017-05-30 · fm,...

33
The splitting necklace problem Fr ´ ed´ eric Meunier May 26th, 2017 ´ Ecole des Ponts

Upload: others

Post on 11-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

The splitting necklace problem

Frederic Meunier

May 26th, 2017

Ecole des Ponts

Page 2: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Two thieves and a necklace

n beads, t types of beads, aj (even) beads of each type.

Two thieves: Alice and Bob.

Beads fixed on the string.

Fair splitting = each thief gets aj/2 beads of type i

Page 3: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

The splitting necklace theorem

Theorem (Alon, Goldberg, West, 1985-1986)There is a fair splitting of the necklace with at most t cuts.

Alice AliceBob Bob

Page 4: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

t is tight

t cuts are sometimes necessary:

... ...... ...

.......

Page 5: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Plan

1. Proofs and algorithms2. Generalizations3. Open questions

Page 6: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Proofs and algorithms

Page 7: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Easy proof when there are two types of beads

Alice

type 1: > a1/2

type 2: < a2/2

Alice

Alice

...

type 1: < a1/2type 2: > a2/2

Page 8: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Main tool: the Borsuk-Ulam theorem

S t = t-dimensional sphere in Rt+1 (set of points in Rt+1 atdistance 1 from 0)

TheoremLet g be a continuous map S t → Rt . If g is• continuous and• antipodal (i.e., g(−x) = −g(x) for all x ∈ S t ),

then there exists x0 ∈ S t s.t. g(x0) = 0.

g

0

Page 9: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Temperature and pression on earth

Classical application of the Borsuk-Ulam theorem:

On earth, there are always two antipodal points with sametemperature and same pressure.

Explanation. For a point x on earth surface, define t(x) andp(x) to be respectively its current temperature and pressure(continuous).

g : S2 → R2+ defined by g(x) =

(t(x)− t(−x)p(x)− p(−x)

)is continous

and antipodal.

Borsuk-Ulam: there exists a point x0 on earth surface such that

g(x0) =

(00

).

Page 10: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Continuous necklace theoremProof for any t via...

TheoremLet f1, . . . , ft be piecewise continuous maps [0,1]→ R+. Then[0,1] can be partitioned into t + 1 intervals I1, . . . , It+1 and{1, . . . , t + 1} can be partitioned into two sets A1 and A2 suchthat for every j ∈ [t ]∑

i∈A1

∫Ii

fj(u)du =∑i∈A2

∫Ii

fj(u)du.

∫U fj(u)du = amount of type j beads in U ⊆ [0,1] when

fj(u) =

{1 if type j present at position u0 otherwise

Page 11: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Encoding of a splitting

Encoding of a splitting into t + 1 parts:

(x1, . . . , xt+1) ∈ Rt+1 such thatt+1∑i=1

|xi | = 1.

|xi | = length of i th partsign of xi = thief who get i th part

Xi =∑i

`=1 |x`|

0 1

...|x1| |x2| |xt+1|

X1 X2 Xt

Page 12: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Repartition of the beads

S t '{

(x1, . . . , xt+1) ∈ Rt+1 :t+1∑i=1

|xi | = 1

}

f : S t −→ Rt

x1...

xt+1

7−→

t+1∑i=1

sgn(xi)

∫ Xi

Xi−1

f1(u)du)

...t+1∑i=1

sgn(xi)

∫ Xi

Xi−1

ft (u)du

Borsuk-Ulam: there exists a splitting x0 such that f (x0) = 0

Page 13: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

From continuous to discrete

Alice AliceBob Bob

Alice AliceBob Bob

Alice Bob Alice Alice Bob Alice

Page 14: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Elementary proofs and algorithms?

All known proofs rely on the Borsuk-Ulam theorem

Is there a direct/elementary proof?

Open question (Papadimitriou 1994)Is there a polynomial algorithm computing a fair splitting of thenecklace with at most t cuts?

• Naive O(nt ); less naive O(nt−1) (proof usingHam-sandwhich and moment curve)

• Minimizing the number of cuts: NP-hard.

Page 15: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Generalizations

Page 16: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

q thieves and a necklace

n beads, t types of beads, aj (multiple of q) beads of each type.q thieves: Alice, Bob, Charlie,...

Page 17: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

A generalization

Fair splitting = each thief gets aj/q beads of type j

Theorem (Alon 1987)There is a fair splitting of the necklace with at most (q − 1)tcuts.

CharlieAlice Bob CharlieBob Alice

Page 18: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

(q − 1)t is tight

(q − 1)t cuts are sometimes necessary:

... ...... ...

.......

Page 19: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

An easy case: two types of beads (again!)

.....

... and induction on the number of thieves.

Page 20: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Outline of the proof

Main tool: Dold’s theorem

Continuous necklace theorem for q thieves• Prove for q prime• Prove that, if true for q′ and q′′, then true for q = q′q′′

Rounding technique

Page 21: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Continuous necklace theorem for q thievesProof for any t via...

TheoremLet f1, . . . , ft be piecewise continuous maps [0,1]→ R+. Then[0,1] can be partitioned into (q − 1)t + 1 intervalsI1, . . . , I(q−1)t+1 and [(q − 1)t + 1] can be partitioned intoA1, . . . ,Aq such that for every j ∈ {1, . . . , t}∑

i∈A1

∫Ii

fj(u)du = · · · =∑i∈Aq

∫Ii

fj(u)du.

∫U fj(u)du = amount of type j beads in U ⊆ [0,1] when

fj(u) =

{1 if type j present at position u0 otherwise

Page 22: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Encoding of a splitting

Zq = qth roots of unity.

Σ(q−1)t =

(ωi , yi)i∈[(q−1)t+1] ∈ (Zq × R+)(q−1)t+1 :

(q−1)t+1∑i=1

yi = 1

where (ω,0) = (ω′,0).

Encoding of a splitting into (q − 1)t + 1 parts: x ∈ Σ(q−1)t

yi = length of i th part and ωi = thief who get i th part

Yi =∑i

`=1 y`

0 1

...

y1 y2 yt(q−1)+1

Y1 Y2 Y(q−1)t

Page 23: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Repartition of the beads

Σ(q−1)t =

(ωi , yi)i∈[(q−1)t+1] ∈ (Zq × R+)(q−1)t+1 :

(q−1)t+1∑i=1

yi = 1

f : Σ(q−1)t −→ ∏

ω∈ZqRt

x 7−→

∑i : ωi=ω

∫ Yi

Yi−1

fj(u)du

j,ω

ω · (ω′, y) = (ωω′, y) and ω · (z1, z2, . . . , zq) = (z2, . . . , zq, z1)

• f is equivariant f (ωx) = ω · f (x)

• f is continuous• q prime• Dold theorem: ∃x0, ∀ω ∈ Zq, f (x0) = ω · f (x0)

Page 24: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Continuous necklace theorem: nonprime case

PropositionIf the continuous necklace theorem is true for q′ and q′′

(whatever are the other parameters), then it is true for q = q′q′′.

Proof. A super-thief = q′′ thieves.

Make a first splitting among q′ super-thieves: (q′ − 1)t cuts.

For each super-thief: (q′′ − 1)t cuts.

In total: q′(q′′ − 1)t + (q′ − 1)t = (q′q′′ − 1)t cuts.

Page 25: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Results

• Complexity of finding a fair splitting of at most (q − 1)t cuts:unknown.

• Optimization version: NP-hard.

• No known algorithmic proof.

Page 26: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Yet another generalization for q thieves

n beads, t types of beads, aj beads of each type, q thieves.

Fair splitting = each thief gets baj/qc or daj/qe beads of type j ,for all j .

Theorem (Alon, Moshkovitz, Safra 2006)There is a fair splitting of the necklace with at most (q − 1)tcuts.

Direct proofs• for t = 2• 1 ≤ aj ≤ q for all j .

Page 27: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Rounding via flowContinuous necklace theorem: fair splitting with at most(q − 1)t cuts, but may be non-integralFor each type j , build a directed graph Dj

......

beads of type j

thieves

baj/qc ≤ · ≤ daj/qe

0 ≤ · ≤ 1· = 1

flow of value aj

Existence of a flow⇒ existence of an integral flow.

Page 28: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Yet another generalization for q thieves?

Conjecture (M. 2008, Palvolgyi 2009)There is a fair splitting of the necklace with at most (q − 1)t cutssuch that for each type j , we can decide which thieves receivebaj/qc and which receive daj/qe.

Proved for the following cases• remainder of aj/q is 0, 1, or q − 1 for all j• t = 2• 1 ≤ aj ≤ q for all i

Page 29: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Multidimensional continuous necklaces

Theorem (de Longueville, Zivaljevic 2008)Let µ1, . . . , µt be continuous probability measures on [0,1]d .Let m1, . . . ,md be positive integers such thatm1 + · · ·+ md = (q − 1)t . Then there exists a fair division of[0,1]d determined by mi hyperplanes parallel to the ithcoordinate hyperplane.

The discrete version is not true (Lason 2015).

Page 30: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Open questions (summary)

Page 31: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Open questions

• Complexity of computing a fair splitting with at most t cutswhen there are two thieves.

• Complexity of computing a fair splitting with at most(q − 1)t cuts when there are q thieves.

• Existence of a fair splitting with choice of the advantagedthieves.

• Elementary proof of the splitting necklace theorem (anyversion).

Page 32: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

ReferencesC. H. Goldberg and D. B. West, Bisection of circle colorings, SIAM J. Algebraic Discrete Methods (1985).

N. Alon and D. B. West, The Borsuk-Ulam Theorem and bisection of necklaces, Proc. Amer. Math. Soc. (1986).

N. Alon, Splitting necklaces, Adv. in Math. (1987).

C. Papadimitriou, On the complexity of the parity argument and other inefficient proofs of existence, J. ComputSystem Sci. (1994).

J. Matousek, Using the Borsuk-Ulam theorem, Springer (2003).

Th. Epping, W. Hochstttler, P. Oertel, Complexity result on a paint shop problem, Discrete Appl. Math., (2004).

N. Alon, D. Moshkovitz, and S. Safra, Algorithmic construction of sets for k-restrictions, ACM Trans. Algorithms(2006).

G. Simonyi, Necklace bisection with one cut less than needed, The Electronic Journal of Combinatorics (2008).

M. de Longueville, R. Zivaljevic, Splitting multidimensional necklaces, Adv. in Math. (2008).

FM, Discrete splittings of the necklace, Math. of OR (2008).

D. Palvolgyi, Combinatorial necklace splitting, The Electronic Journal of Combinatorics (2009).

M. De Longueville, A course in topological combinatorics, Springer (2012).

FM, Simplotopal maps and necklace splitting, Discrete Mathematics (2014).

FM, Le probleme du collier, Image des Mathematiques, 2016.

M. Alishahi and FM, Fair splitting of colored paths, preprint.

Page 33: The splitting necklace problem - CERMICSmeuniefr/Necklace_TFJM_2017.pdf · 2017-05-30 · FM, Discrete splittings of the necklace, Math. of OR (2008). D. Palv´ ¨olgyi, Combinatorial

Thank you