the separation and detection of over 100 pesticides in ... poster - edinburgh 2007_0.pdfanalysis (eu...

1
Prepared by SASA Photography Unit. All photographs and text © Crown Copyright except where otherwise indicated. Routine quantitation is performed using a 4 point matrix matched calibration with internal standardisation (methomyl-D3, carbendazim-D4, pendimethalin-D5) Linearity has been demonstrated from 0.01 to 0.2mg/kg in each matrix for all compounds. Recovery data for 5 representative matrices is presented. (n=4, spiked at 0.04mg/kg) Data for 50 compounds representative of the wide range of pesticides analysed by UPLC-ESI-MS/MS are presented. The method has been validated in accordance with the EU Quality Control Procedures for Pesticide Residue Analysis (EU Document No. SANCO/10232/2006, 24/March/2006) giving good recovery and repeatability for over 200 pesticides and metabolites analysed by GC-MS/MS and LC-MS/MS in a range of fruit and vegetables. Results for Rapid Analysis of Pesticides in Cabbage The reporting limit for the majority of pesticides is 0.02mg/kg. A limit of quantitation of at least 0.01mg/kg must be achieved. Sample Extraction Procedure Samples of fruit and vegetables are frozen and cryo-milled on receipt prior to extraction by homogenisation with ethyl acetate. An aliquot of this crude extract is solvent exchanged into methanol, filtered and presented for LC-MS/MS analysis (103 analytes sought). The remainder is passed through a clean-up stage using gel permeation chromatography prior to analysis by GC-MS/ MS (97 analytes sought). ACQUITY Ultra Performance LC™ (UPLC) Small stationary phase particle technology (1.7µm) and the ability to operate at high back pressures (15,000psi) allow this system to achieve higher sensitivity and peak capacity at optimum flow rates. The separation and detection of over 100 pesticides in complex matrices in less than 4 minutes using UPLC-MS/MS George A Keenan, Kirsty Reid and Michael J Taylor Chemistry Scottish Agricultural Science Agency, 1 Roddinglaw Road, Edinburgh EH12 9FJ Email: George.Keenan@sasa.gsi.gov.uk Abstract Ultra Performance Liquid Chromatography (UPLC) with electrospray tandem mass spectrometry (ESI-MS/MS) has become an established front-line technique used by the Scottish Agricultural Science Agency (SASA) for the quantitative determination of over 100 pesticides sought in a variety of complex matrices. The method is applied routinely to support the annual UK and EU pesticide residues in food monitoring programs. Analytical methodologies employed in the determination of pesticide residues in foodstuffs must be capable not only of quantifying very low levels of incurred residues but also of confirming the identity and magnitude of these residues. The requirement to provide unambiguous evidence becomes increasingly challenging as reporting limits and maximum residue levels are decreased and the number of target pesticides and metabolites is increased (from 125 in 2006 to over 200 in the 2007 UK surveillance programme). A group of 50 compounds from the suite of 103 pesticides routinely sought using LC methods has been chosen to illustrate the power of fast analytical techniques using UPLC-ESI-MS/MS. These representative compounds cover a wide range of chemical functionality and pesticide class. Performance data for various commodities and results from cabbage samples screened as part of the 2007 surveillance program are presented. Methodology PESTICIDE CLASS SWEET POTATO CABBAGE KIWI FRUIT PEACH STRAWBERRY Mean % REC % RSD Mean % REC % RSD Mean % REC % RSD Mean % REC % RSD Mean % REC % RSD acetamiprid neonicotinoid insecticide 89 8.6 86 8.7 89 4.3 94 6.7 105 15.1 atrazine triazine herbicide 86 2.9 93 14.0 94 10.1 95 4.3 98 19.1 azoxystrobin strobilurin fungicide 88 7.2 92 13.8 89 7.3 94 6.3 102 21.7 bendiocarb carbamate insecticide 88 5.6 93 14.0 95 11.0 96 8.1 103 20.5 bitertanol azole fungicide 81 14.5 85 16.3 89 18.4 88 10.5 95 11.1 boscalid carboxamide fungicide 86 5.4 90 8.0 96 20.2 98 10.6 83 15.8 carbosulfan carbamate insecticide 88 11.3 82 13.9 74 10.5 86 13.7 75 9.9 chlorotoluron urea herbicide 90 7.2 97 14.3 92 9.2 93 9.9 87 21.9 cymoxanil cyanoacetamide fungicide 93 9.7 98 12.3 89 8.9 96 5.7 91 14.8 cyprodinil anilinopyrimidine fungicide 83 9.5 92 11.5 113 10.1 85 5.9 106 15.9 diethofencarb phenyl carbamate fungicide 86 9.3 92 8.9 92 9.0 94 9.3 98 20.6 difenconazole azole fungicide 86 4.2 85 19.9 83 15.0 90 15.1 82 10.8 diflubenzuron benzoylurea insecticide 82 15.9 88 14.5 99 33.1 80 7.8 97 21.9 dimethomorph cinnamic acid amide fungicide 91 8.4 95 8.1 92 12.1 94 7.5 99 13.9 disulfoton organophosphorus insecticide 72 17.0 84 10.5 85 29.0 91 25.7 96 19.3 ethiofencarb carbamate insecticide 80 8.9 78 5.4 74 26.8 80 21.8 91 13.4 fenarimol pyrimidine fungicide 91 15.4 79 18.9 126 18.4 93 22.0 76 11.8 fenazaquin quinazoline acaricide 90 6.1 82 8.3 88 4.4 103 20.9 89 12.3 fenbuconazole azole fungicide 83 6.0 86 7.2 100 10.7 95 16.3 85 10.0 fenhexamid hydroxyanilide fungicide 88 4.6 91 7.8 94 8.6 91 4.2 100 16.0 fenpropimorph morpholine fungicide 90 7.5 80 15.6 82 8.4 86 21.8 82 17.5 fenpyroximate pyrazole acaricide 86 7.3 83 14.3 81 5.0 94 11.6 89 13.4 flufenacet oxyacetamide herbicide 91 11.8 90 12.2 92 11.3 96 11.9 99 17.3 flusilazole azole fungicide 85 8.9 92 16.7 90 9.7 93 7.9 88 8.9 hexythiazox carboxamide acaricide 87 6.9 83 15.2 87 3.3 90 16.0 87 12.8 imidacloprid neonicotinoid insecticide 100 8.7 90 9.8 103 13.3 100 15.0 99 27.6 indoxacarb oxadiazine insecticide 95 12.0 85 11.8 91 15.7 90 18.7 84 8.9 malathion organophosphorus insecticide 85 9.8 94 7.7 93 13.2 94 13.3 102 19.7 mepanipyrim pyrimidine fungicide 86 11.6 91 15.8 92 13.4 91 12.5 85 4.4 methomyl carbamate insecticide 107 11.7 95 7.7 90 5.9 97 6.2 86 10.9 monocrotophos organophosphorus insecticide 93 5.9 74 10.5 87 3.6 97 7.9 84 10.1 myclobutanil azole fungicide 87 8.5 91 11.4 92 6.6 94 8.5 107 18.8 pendimethalin dinitroaniline herbicide 92 18.3 82 5.3 87 21.4 98 17.1 85 16.7 picoxystrobin strobilurin fungicide 91 9.9 90 8.2 92 7.9 94 10.4 96 14.7 pirimicarb carbamate insecticide 89 8.3 93 9.5 93 7.0 94 7.8 91 23.2 prochloraz azole fungicide 97 10.8 85 12.6 94 6.8 86 11.0 102 21.3 pymetrozine azomethine insecticide 82 3.2 66 8.5 75 6.4 92 8.7 63 7.5 pyrethrins pyrethroid insecticide 85 8.4 79 5.9 88 22.4 92 10.2 88 16.5 pyridaben pyridazinone insecticide 90 11.4 82 11.6 85 5.2 96 11.5 87 9.2 pyrimethanil pyrimidine fungicide 87 9.1 91 11.4 89 11.3 97 15.2 91 12.7 quinoxyfen phenoxyquinoline fungicide 84 17.9 82 13.3 81 8.8 88 11.1 84 17.3 spinosad macrocyclic lactone insecticide 94 11.1 81 7.5 85 7.2 91 11.9 88 7.0 spiroxamine morpholine fungicide 86 7.9 84 10.3 77 4.9 92 12.0 82 9.6 tebufenozide diacylhydrazine insecticide 92 9.4 89 8.7 92 8.9 94 8.3 82 12.3 tebufenpyrad pyrazole acaricide 86 9.5 83 10.6 82 3.6 92 16.0 85 8.8 tetraconazole azole fungicide 95 8.9 94 20.1 106 22.4 84 10.8 86 18.0 thiamethoxam neonicotinoid insecticide 86 4.9 90 8.3 93 5.9 113 8.5 93 7.0 thiodicarb carbamate insecticide 62 16.0 70 14.9 86 11.2 96 9.6 96 12.2 trifloxystrobin strobilurin fungicide 89 7.7 84 9.8 83 13.4 94 15.0 86 15.0 zoxamide benzamide fungicide 86 7.4 90 18.7 93 10.7 93 8.1 85 11.2 UPLC Experimental Parameters Instrument: Waters ACQUITY UPLC system Column: ACQUITY UPLC BEH C18 1.7µm (2.1mm i.d. x 50mm) ACQUITY LC Pump Initial Conditions A: H2O/MeOH 95/5 v/v, 5mM ammonium acetate solution B: MeOH, 5mM ammonium acetate solution Solvents (gradient elution), Flow 0.48 ml/min Mins A% B% 0.00 70 30 0.52 70 30 0.66 40 60 1.05 40 60 3.31 15 85 4.90 15 85 4.91 0 100 5.5 0 100 5.51 70 30 6.5 70 30 Stop Time (mins) 6.5 Max Pressure (psi) 15000 Oven Temperature (°C) 35.0 Injection Volume (µl) 3.0µl Mass Spectrometry Experimental Parameters ● To utilise chromatographic performance common in UPLC (narrow peaks 1-3s FWHM) the mass spectrometer must be capable of acquiring MRM data at a sufficiently high rate (short dwell times ≈10ms). ● The present method comprises 7 consecutive acquisition functions covering the time from 0.1 – 4.0 minutes. Each function contains MRM acquisition parameters for between 6 to 27 compounds. This single experimental method acquires data for 103 pesticides plus internal standards in less than 4 minutes. Instrument: Waters Quattro Premier-XE Data System MassLynx 4.1 Acqusition Electrospray ± ionisation Multiple Reaction Monitoring (MRM) Dwell Times10-20ms Collision Gas Argon Retention Time (mins) 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 0 100 % 18.36 27.32 25.82 20.35 24.28 3.91 2.89 fenpropimorph azoxystrobin fenpropimorph azoxystrobin HPLC UPLC Expanded view of UPLC chromatogram 3.91 3.39 3.13 2.89 UPLC vs HPLC Multi-Residue Analysis Performance Data for Selected Pesticides Time 1.00 2.00 3.00 4.00 5.00 % 0 Time 1.40 1.60 1.80 2.00 2.20 % 0 1.40 1.60 1.80 2.00 2.20 % 0 1.55 1.55 Residue 0.38mg/kg azoxystrobin m/z 404<372 Screen MRM Residue 0.38mg/kg azoxystrobin m/z 404<344 Confirmation MRM Sum of MRM Transitions for Acquisition Functions 1-7 for a Calibration Standard Mix azoxystrobin Cabbage Sample Extract Compound name: Azoxystrobin Correlation coefficient: r = 0.995811, r^2 = 0.991640 Calibration curve: 22.0975 * x + -0.00294919 Response type: Internal Std ( Ref 22 ), Area * ( IS Conc. / IS Area ) Curve type: Linear, Origin: Exclude, Weighting: Null, Axis trans: None mg/kg 0.000 0.020 0.040 0.060 0.080 Response 0.00 1.00 2.00 UPLC-ESI-MS/MS Ion Chromatograms of an Azoxystrobin Residue in Cabbage Extract UPLC-ESI-MS/MS Calibration Curve for the Quantitation of Azoxystrobin SASA Sample No. Residue Found Conc. mg/kg Reporting Limit (RL) mg/kg Maximum Residue Level (MRL) mg/kg CAB 001 boscalid 0.32 0.02 1 CAB 001 pyraclostrobin 0.02 0.02 0.2 CAB 001 difenoconazole 0.03 0.02 No MRL set CAB 002 tebuconazole 0.07 0.02 0.8 CAB 007 tebuconazole 0.04 0.02 0.8 CAB 014 indoxacarb 0.06 0.02 No MRL set CAB 017 boscalid 0.06 0.02 1 CAB 017 tebuconazole 0.05 0.02 0.8 CAB 041 indoxacarb 0.06 0.02 No MRL set CAB 041 tebufenozide 0.04 0.02 5 *CAB 047 azoxystrobin 0.38 0.02 0.3 CAB 047 difenoconazole 0.14 0.02 No MRL set * The residue level of azoxystrobin identified in cabbage sample CAB 047 exceeded the MRL. Under these circumstances the sample is re-extracted and the residue re-quantified before informing the Pesticide Residue Committee. · A risk assessment is undertaken to determine whether consumers would be at risk from residues present · The supplier is notified and asked to investigate the cause · If residues found are a health concern other member states are informed (EU rapid alerts) · Enforcement monitoring may be initiated Summary It is highly likely that the upward trend in pesticide numbers sought in all commodities will continue. This will place greater demands on the capabilities of analytical instrumentation and methods. We believe that the development and validation of fast, efficient methods such as that described will be a cornerstone in meeting this challenge. Advantages of Rapid Analysis by UPLC-ESI-MS/MS Reduces instrument time and increases efficiency Sample-batch run times of ca. 2.5 hours are typical with no observed adverse effects on system stability or chromatographic integrity during or between batch analyses. Sample-batch run times of ca. 20 hours are common in conventional HPLC. A typical batch comprises ca. 26 samples and includes sample extracts, matrix matched standards, AQC checks and blanks. Allows a greater throughput of samples Reduces solvent usage Allows rapid confirmation of identity and quantity as required by the Pesticide Residues Committee Allows faster response to identified pesticides Minimises possible analyte loss in sample extracts over time

Upload: others

Post on 04-Apr-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The separation and detection of over 100 pesticides in ... poster - Edinburgh 2007_0.pdfAnalysis (EU Document No. SANCO/10232/2006, 24/March/2006) giving good recovery and repeatability

Prepared by SASA Photography Unit. All photographs and text © Crown Copyright except where otherwise indicated.

● Routine quantitation is performed using a 4 pointmatrixmatched calibration with internal standardisation(methomyl-D3,carbendazim-D4,pendimethalin-D5)

● Linearityhasbeendemonstratedfrom0.01to0.2mg/kgineachmatrixforallcompounds.

● Recoverydatafor5representativematricesispresented.(n=4,spikedat0.04mg/kg)

● Data for 50 compounds representative of thewide range of pesticides analysed byUPLC-ESI-MS/MS arepresented.

● ThemethodhasbeenvalidatedinaccordancewiththeEUQualityControlProceduresforPesticideResidueAnalysis (EUDocumentNo. SANCO/10232/2006, 24/March/2006) giving good recovery and repeatabilityfor over 200 pesticides and metabolites analysed by GC-MS/MS and LC-MS/MS in a range of fruit andvegetables.

Results for Rapid Analysis of Pesticides in Cabbage

Thereportinglimitforthemajorityofpesticidesis0.02mg/kg.Alimitofquantitationofatleast0.01mg/kgmustbeachieved.

Sample Extraction Procedure

Samplesoffruitandvegetablesarefrozenandcryo-milledonreceiptpriortoextractionbyhomogenisationwithethylacetate.Analiquotofthiscrudeextractissolventexchangedintomethanol,filteredandpresentedforLC-MS/MSanalysis(103analytessought).Theremainderispassedthroughaclean-upstageusinggelpermeationchromatographypriortoanalysisbyGC-MS/MS(97analytessought).

ACQUITY Ultra Performance LC™ (UPLC)

Smallstationaryphaseparticletechnology(1.7µm)andtheabilitytooperateathighbackpressures(15,000psi)allowthissystemtoachievehighersensitivityandpeakcapacityatoptimumflowrates.

The separation and detection of over 100pesticides in complex matrices in less than 4

minutes using UPLC-MS/MSGeorgeAKeenan,KirstyReidandMichaelJTaylorChemistry

ScottishAgriculturalScienceAgency,1RoddinglawRoad,EdinburghEH129FJEmail: [email protected]

Abstract

Ultra Performance Liquid Chromatography (UPLC) with electrospray tandemmass spectrometry (ESI-MS/MS)hasbecomeanestablishedfront-linetechniqueusedbytheScottishAgriculturalScienceAgency(SASA)for thequantitativedeterminationofover100pesticidessoughtinavarietyofcomplexmatrices.ThemethodisappliedroutinelytosupporttheannualUKandEUpesticideresiduesinfoodmonitoringprograms.

Analyticalmethodologies employed in thedeterminationofpesticide residues in foodstuffsmust be capablenotonlyofquantifyingverylowlevelsofincurredresiduesbutalsoofconfirmingtheidentityandmagnitudeoftheseresidues.

Therequirementtoprovideunambiguousevidencebecomesincreasinglychallengingasreportinglimitsandmaximumresiduelevelsaredecreasedandthenumberoftargetpesticidesandmetabolitesisincreased(from125in2006toover200inthe2007UKsurveillanceprogramme).

Agroupof50compoundsfromthesuiteof103pesticidesroutinelysoughtusingLCmethodshasbeenchosentoillustratethepoweroffastanalyticaltechniquesusingUPLC-ESI-MS/MS.Theserepresentativecompoundscoverawiderangeofchemicalfunctionalityandpesticideclass.

Performancedataforvariouscommoditiesandresultsfromcabbagesamplesscreenedaspartofthe2007surveillanceprogramarepresented.

Methodology

PESTICIDE

CLASS

SWEETPOTATO CABBAGE KIWIFRUIT PEACH STRAWBERRYMean

%REC

%RSD

Mean%REC

%RSD

Mean%REC

%RSD

Mean%REC

%RSD

Mean%REC

%RSD

acetamiprid neonicotinoid insecticide 89 8.6 86 8.7 89 4.3 94 6.7 105 15.1atrazine triazine herbicide 86 2.9 93 14.0 94 10.1 95 4.3 98 19.1azoxystrobin strobilurin fungicide 88 7.2 92 13.8 89 7.3 94 6.3 102 21.7bendiocarb carbamate insecticide 88 5.6 93 14.0 95 11.0 96 8.1 103 20.5bitertanol azole fungicide 81 14.5 85 16.3 89 18.4 88 10.5 95 11.1boscalid carboxamide fungicide 86 5.4 90 8.0 96 20.2 98 10.6 83 15.8carbosulfan carbamate insecticide 88 11.3 82 13.9 74 10.5 86 13.7 75 9.9chlorotoluron urea herbicide 90 7.2 97 14.3 92 9.2 93 9.9 87 21.9cymoxanil cyanoacetamide fungicide 93 9.7 98 12.3 89 8.9 96 5.7 91 14.8cyprodinil anilinopyrimidine fungicide 83 9.5 92 11.5 113 10.1 85 5.9 106 15.9diethofencarb phenylcarbamate fungicide 86 9.3 92 8.9 92 9.0 94 9.3 98 20.6difenconazole azole fungicide 86 4.2 85 19.9 83 15.0 90 15.1 82 10.8diflubenzuron benzoylurea insecticide 82 15.9 88 14.5 99 33.1 80 7.8 97 21.9dimethomorph cinnamicacidamide fungicide 91 8.4 95 8.1 92 12.1 94 7.5 99 13.9disulfoton organophosphorus insecticide 72 17.0 84 10.5 85 29.0 91 25.7 96 19.3ethiofencarb carbamate insecticide 80 8.9 78 5.4 74 26.8 80 21.8 91 13.4fenarimol pyrimidine fungicide 91 15.4 79 18.9 126 18.4 93 22.0 76 11.8fenazaquin quinazoline acaricide 90 6.1 82 8.3 88 4.4 103 20.9 89 12.3fenbuconazole azole fungicide 83 6.0 86 7.2 100 10.7 95 16.3 85 10.0fenhexamid hydroxyanilide fungicide 88 4.6 91 7.8 94 8.6 91 4.2 100 16.0fenpropimorph morpholine fungicide 90 7.5 80 15.6 82 8.4 86 21.8 82 17.5fenpyroximate pyrazole acaricide 86 7.3 83 14.3 81 5.0 94 11.6 89 13.4flufenacet oxyacetamide herbicide 91 11.8 90 12.2 92 11.3 96 11.9 99 17.3flusilazole azole fungicide 85 8.9 92 16.7 90 9.7 93 7.9 88 8.9hexythiazox carboxamide acaricide 87 6.9 83 15.2 87 3.3 90 16.0 87 12.8imidacloprid neonicotinoid insecticide 100 8.7 90 9.8 103 13.3 100 15.0 99 27.6indoxacarb oxadiazine insecticide 95 12.0 85 11.8 91 15.7 90 18.7 84 8.9malathion organophosphorus insecticide 85 9.8 94 7.7 93 13.2 94 13.3 102 19.7mepanipyrim pyrimidine fungicide 86 11.6 91 15.8 92 13.4 91 12.5 85 4.4methomyl carbamate insecticide 107 11.7 95 7.7 90 5.9 97 6.2 86 10.9monocrotophos organophosphorus insecticide 93 5.9 74 10.5 87 3.6 97 7.9 84 10.1myclobutanil azole fungicide 87 8.5 91 11.4 92 6.6 94 8.5 107 18.8pendimethalin dinitroaniline herbicide 92 18.3 82 5.3 87 21.4 98 17.1 85 16.7picoxystrobin strobilurin fungicide 91 9.9 90 8.2 92 7.9 94 10.4 96 14.7pirimicarb carbamate insecticide 89 8.3 93 9.5 93 7.0 94 7.8 91 23.2prochloraz azole fungicide 97 10.8 85 12.6 94 6.8 86 11.0 102 21.3pymetrozine azomethine insecticide 82 3.2 66 8.5 75 6.4 92 8.7 63 7.5pyrethrins pyrethroid insecticide 85 8.4 79 5.9 88 22.4 92 10.2 88 16.5pyridaben pyridazinone insecticide 90 11.4 82 11.6 85 5.2 96 11.5 87 9.2pyrimethanil pyrimidine fungicide 87 9.1 91 11.4 89 11.3 97 15.2 91 12.7quinoxyfen phenoxyquinoline fungicide 84 17.9 82 13.3 81 8.8 88 11.1 84 17.3spinosad macrocycliclactone insecticide 94 11.1 81 7.5 85 7.2 91 11.9 88 7.0spiroxamine morpholine fungicide 86 7.9 84 10.3 77 4.9 92 12.0 82 9.6tebufenozide diacylhydrazine insecticide 92 9.4 89 8.7 92 8.9 94 8.3 82 12.3tebufenpyrad pyrazole acaricide 86 9.5 83 10.6 82 3.6 92 16.0 85 8.8tetraconazole azole fungicide 95 8.9 94 20.1 106 22.4 84 10.8 86 18.0thiamethoxam neonicotinoid insecticide 86 4.9 90 8.3 93 5.9 113 8.5 93 7.0thiodicarb carbamate insecticide 62 16.0 70 14.9 86 11.2 96 9.6 96 12.2trifloxystrobin strobilurin fungicide 89 7.7 84 9.8 83 13.4 94 15.0 86 15.0zoxamide benzamide fungicide 86 7.4 90 18.7 93 10.7 93 8.1 85 11.2

UPLC Experimental Parameters

Instrument: Waters ACQUITY UPLC systemColumn: ACQUITYUPLCBEHC181.7µm

(2.1mmi.d.x50mm)

ACQUITYLCPumpInitialConditions

A:H2O/MeOH95/5v/v,5mMammonium acetatesolution

B:MeOH,5mMammoniumacetatesolution

Solvents(gradientelution),Flow0.48ml/min

Mins A% B%0.00 70 300.52 70 300.66 40 601.05 40 603.31 15 854.90 15 854.91 0 1005.5 0 1005.51 70 306.5 70 30

StopTime(mins) 6.5MaxPressure(psi) 15000OvenTemperature(°C) 35.0InjectionVolume(µl) 3.0µl

Mass Spectrometry Experimental Parameters

● To utilise chromatographic performancecommoninUPLC(narrowpeaks1-3sFWHM)the mass spectrometer must be capable ofacquiringMRMdataatasufficientlyhighrate(shortdwelltimes≈10ms).

● The present method comprises 7 consecutiveacquisition functions covering the time from0.1–4.0minutes.EachfunctioncontainsMRMacquisition parameters for between 6 to 27compounds. This single experimentalmethodacquires data for 103 pesticides plus internalstandardsinlessthan4minutes.

Instrument: Waters Quattro Premier-XE

DataSystem MassLynx4.1Acqusition Electrospray±ionisation

MultipleReactionMonitoring(MRM)DwellTimes10-20msCollisionGas Argon

Retention Time (mins)2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00

0

100

%

18.36

27.3225.8220.3524.28

3.912.89

fenpropimorph

azoxystrobin

fenpropimorph

azoxystrobin

HPLC

UPLC

Expanded view of UPLC chromatogram

3.913.393.132.89

UPLCvsHPLCMulti-ResidueAnalysis

Performance Data for Selected Pesticides

Time1.00 2.00 3.00 4.00 5.00

%

0 Time1.40 1.60 1.80 2.00 2.20

%

0

1.40 1.60 1.80 2.00 2.20

%

0

1.55

1.55

Residue 0.38mg/kgazoxystrobinm/z 404<372Screen MRM

Residue 0.38mg/kgazoxystrobinm/z 404<344Confirmation MRM

Sum of MRM Transitions forAcquisition Functions 1-7 for a Calibration Standard Mix

azoxystrobin

Cabbage Sample Extract

Compound name: AzoxystrobinCorrelation coefficient: r = 0.995811, r^2 = 0.991640Calibration curve: 22.0975 * x + -0.00294919Response type: Internal Std ( Ref 22 ), Area * ( IS Conc. / IS Area )Curve type: Linear, Origin: Exclude, Weighting: Null, Axis trans: None

mg/kg0.000 0.020 0.040 0.060 0.080

Res

pons

e

0.00

1.00

2.00

UPLC-ESI-MS/MS Ion Chromatograms of an Azoxystrobin Residue in Cabbage Extract

UPLC-ESI-MS/MS Calibration Curve for the Quantitation of Azoxystrobin

SASASampleNo. ResidueFound

Conc.mg/kg

ReportingLimit(RL)mg/kg

MaximumResidueLevel(MRL)mg/kg

CAB001 boscalid 0.32 0.02 1CAB001 pyraclostrobin 0.02 0.02 0.2CAB001 difenoconazole 0.03 0.02 NoMRLsetCAB002 tebuconazole 0.07 0.02 0.8CAB007 tebuconazole 0.04 0.02 0.8CAB014 indoxacarb 0.06 0.02 NoMRLsetCAB017 boscalid 0.06 0.02 1CAB017 tebuconazole 0.05 0.02 0.8CAB041 indoxacarb 0.06 0.02 NoMRLsetCAB041 tebufenozide 0.04 0.02 5*CAB047 azoxystrobin 0.38 0.02 0.3CAB047 difenoconazole 0.14 0.02 NoMRLset

* Theresidue levelofazoxystrobin identified incabbagesampleCAB047exceeded theMRL.

Underthesecircumstancesthesampleisre-extractedandtheresiduere-quantifiedbefore

informingthePesticideResidueCommittee. ·Ariskassessmentisundertakentodeterminewhetherconsumerswouldbeatriskfrom

residuespresent ·Thesupplierisnotifiedandaskedtoinvestigatethecause ·Ifresiduesfoundareahealthconcernothermemberstatesareinformed(EUrapid

alerts) ·Enforcementmonitoringmaybeinitiated

Summary

Itishighlylikelythattheupwardtrendinpesticidenumberssoughtinallcommoditieswillcontinue.Thiswillplacegreaterdemandsonthecapabilitiesofanalyticalinstrumentationandmethods.Webelievethatthedevelopmentandvalidationoffast,efficientmethodssuchasthatdescribedwillbeacornerstoneinmeetingthischallenge.

Advantages of Rapid Analysis by UPLC-ESI-MS/MS

● Reduces instrument time and increases efficiency Sample-batch run timesofca.2.5hoursare typicalwithnoobservedadverseeffectson systemstabilityor

chromatographicintegrityduringorbetweenbatchanalyses.Sample-batchruntimesofca.20hoursarecommoninconventionalHPLC.Atypicalbatchcomprisesca.26samplesandincludessampleextracts,matrixmatchedstandards,AQCchecksandblanks.

● Allows a greater throughput of samples

● Reduces solvent usage

● Allows rapid confirmation of identity and quantity as required by the Pesticide Residues Committee

● Allows faster response to identified pesticides

● Minimises possible analyte loss in sample extracts over time