the qcd static potential at nnnllbibliography (1) n. brambilla, x. garcia i tormo, j. soto and a....

30
The QCD static potential at NNNLL Antonio Vairo University of Milano and INFN In collaboration with N. Brambilla, X. Garcia i Tormo and J. Soto

Upload: others

Post on 18-Jul-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

The QCD static potential at NNNLLAntonio Vairo

University of Milano and INFN

In collaboration with N. Brambilla, X. Garcia i Tormo and J. Soto

Page 2: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

Summary

1. Potential: definition

1.1 pNRQCD

2. Potential: calculation in PT

2.1 Static potential

3. Conclusions

Page 3: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

Bibliography

(1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairoin preparation

(2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. VairoThe logarithmic contribution to the QCD static energy at N4LO

Phys. Lett. B 647 (2007) 185 arXiv:hep-ph/0610143 .

(3) A. Pineda and J. SotoThe Renormalization group improvement of the QCD static potentials

Phys. Lett. B 495 (2000) 323. arXiv:hep-ph/0007197 .

(4) N. Brambilla, A. Pineda, J. Soto and A. VairoPotential NRQCD: an effective theory for heavy quarkonium

Nucl. Phys. B 566 (2000) 275 arXiv:hep-ph/9907240 .

(5) N. Brambilla, A. Pineda, J. Soto and A. VairoThe infrared behaviour of the static potential in perturbative QCD

Phys. Rev. D 60 (1999) 091502 arXiv:hep-ph/9903355 .

Page 4: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

1. Definition

Page 5: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

The potential is what to write in a Schrödinger equation

E φ =

„p2

m+ V (r)

«

φ

In a full theory, V must come from a double expansion:

• a non-relativistic expansion ∼ p/m, rm: V → V (0) + V (1)/m + · · · ;

• an expansion in E r, since V is a function of r (or p at h.o. in the non-relativisticexpansion): V → V + energy-dependent effects (e.g. Lamb-shift).

A potential V describes the interaction of a non-relativistic bound state, p ∼ mv, E ∼ mv2, v ≪ 1,

once the expansions in mv/m and mv2/mv have been exploited.

Page 6: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

Non-relativistic scales in QCD

Near threshold:

E ≈ 2m +p2

m+ . . . with v =

p

m≪ 1

• The perturbative expansion breaks down when αs ∼ v:

+ + ... ≈1

E −“

p2

m+ V

αs

1 +αs

v+ . . .

• The system is non-relativistic : p ∼ mv and E =p2

m+ V ∼ mv2.

Page 7: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

Non-relativistic scales in QCD

Scales get entangled.

... ... ...

∼ mv

p ∼ m

E ∼ mv2

Page 8: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

EFTs for systems made of two heavy quarks

mv2

µ

perturbative matching(short−range quarkonium)

nonperturbative matching(long−range quarkonium)

mv

m

µ

perturbative matching perturbative matching

QCD

NRQCD

pNRQCD

... ... ...

��������

��������

...

+ ...+

∼ mv

p ∼ m

E ∼ mv2

• They exploit the expansion in v/ factorization of low and high energy contributions.• They are renormalizable order by order in v.• In perturbation theory (PT), RG techniques provide resummation of large logs.

Page 9: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

pNRQCD

pNRQCD is obtained by integrating out modes associated with the scale1

r∼ mv

+ + ...... ... ...

+ ...++ ...

NRQCD pNRQCD

1

E − p2/m − V (r)

• The Lagrangian is organized as an expansion in 1/m , r, and αs(m):

LpNRQCD =X

k

X

n

1

mk× ck(αs(m/µ)) × V (rµ′, rµ) × On(µ′, λ) rn

Page 10: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

pNRQCD formαs ≫ ΛQCD

L = −1

4F a

µνF µν a + Tr

S†

i∂0 −p2

m− Vs

«

S

+ O†

iD0 −p2

m− Vo

«

O

ff

LO in r

θ(T ) e−iTHs θ(T ) e−iTHo

e−iR

dt Aadj”

Page 11: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

pNRQCD formαs ≫ ΛQCD

L = −1

4F a

µνF µν a + Tr

S†

i∂0 −p2

m− Vs

«

S

+ O†

iD0 −p2

m− Vo

«

O

ff

+VATrn

O†r · gES + S†r · gEOo

+VB

2Tr

n

O†r · gEO + O†Or · gEo

+ · · ·

LO in r

NLO in r

Page 12: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

pNRQCD formαs ≫ ΛQCD

O†r · gES O†{r · gE, O}

+VATrn

O†r · gES + S†r · gEOo

+VB

2Tr

n

O†r · gEO + O†Or · gEo

NLO in r

Page 13: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

The potential is a Wilson coefficient of an EFT. In general, it undergoes renormalization,

develops scale dependence and satisfies renormalization group equations, which allow

to resum large logarithms.

Page 14: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

2. Calculation

Page 15: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

The Static Potential

=

NRQCD

+

pNRQCD

+ ...eig

HdzµAµ

Page 16: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

The Static Potential

=

NRQCD

+

pNRQCD

+ ...eig

HdzµAµ

limT→∞

i

Tln = Vs(r, µ) − i

g2

Nc

V 2A

Z ∞

0dt e−it(Vo−Vs) 〈Tr(r · E(t) r · E(0))〉(µ) + . . .

ultrasoft contribution

Page 17: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

The Static Potential

=

NRQCD

+

pNRQCD

+ ...eig

HdzµAµ

limT→∞

i

Tln = Vs(r, µ) − i

g2

Nc

V 2A

Z ∞

0dt e−it(Vo−Vs) 〈Tr(r · E(t) r · E(0))〉(µ) + . . .

ultrasoft contribution

* The µ dependence cancels between the two terms in the right-hand side:

Vs ∼ ln rµ, ln2 rµ, ...

ultrasoft contribution ∼ ln(Vo − Vs)/µ, ln2(Vo − Vs)/µ, ... ln rµ, ln2 rµ, ...

Page 18: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

Static Wilson loop

limT→∞

i

Tln = −CF

αs(1/r)

r

"

1 + a1αs(1/r)

4π+ a2

„αs(1/r)

«2

+ . . .

#

is known at two loops:

a1 =31

9CA −

10

9nf + 2γEβ0,

Billoire 80

a2 =

„4343

162+ 4π2 −

π4

4+

22

3ζ(3)

«

C2A −

„899

81+

28

3ζ(3)

«

CAnf

„55

6− 8ζ(3)

«

CF nf +100

81n2

f + 4γEβ0a1 +

„π2

3− 4γ2

E

«

β20 + 2γEβ1

Schr oder 99, Peter 97

Page 19: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

Appelquist–Dine–Muzinich diagrams

...... ... = −CF C3

A

12

αs

r

α3s

πln

»CAαs

2r× r

| {z }

∼ exp(−i(Vo − Vs) T )

Appelquist Dine Muzinich 78, Brambilla Pineda Soto Vairo 99

Page 20: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

Static octet potential

limT→∞

i

Tln

����

����

〈φadjab

=1

2Nc

αs(1/r)

r

"

1 + b1αs(1/r)

4π+ b2

„αs(1/r)

«2

+ . . .

#

Is known at two loops.

b1 = a1

b2 = a2 + C2A(π4 − 12π2)

Kniehl et al 04

Page 21: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

VA

The first contributing diagrams are of the type:

�Therefore

VA(r, µ) = 1 + O(α2s )

Page 22: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

Chromoelectric field correlator:〈E(t)E(0)〉

Is known at NLO.

�× ×

LO

�× × �× ×

(a) (b)

�× × �× ×

(c) (d)

�× × �× ×

(e) (f)

�× × �× ×

(g) (h)

NLOEidem uller Jamin 97

Page 23: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

Static singlet potential at N4LO

Vs(r, µ) = −CFαs(1/r)

r

"

1 + a1αs(1/r)

4π+ a2

„αs(1/r)

«2

+

„16 π2

3C3

A ln rµ + a3

« „αs(1/r)

«3

+

aL24 ln2 rµ +

aL4 +

16

9π2 C3

Aβ0(−5 + 6 ln 2)

«

ln rµ + a4

« „αs(1/r)

«4#

aL24 = −

16π2

3C3

A β0

aL4 = 16π2C3

A

»

a1 + 2γEβ0 + nf

−20

27+

4

9ln 2

«

+CA

„149

27−

22

9ln 2 +

4

9π2

«–

Brambilla et al 99, 06

Page 24: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

Static singlet potential at N4LO

Vs(r, µ) = −CFαs(1/r)

r

"

1 + a1αs(1/r)

4π+ a2

„αs(1/r)

«2

+

„16 π2

3C3

A ln rµ + a3

« „αs(1/r)

«3

+

aL24 ln2 rµ +

aL4 +

16

9π2 C3

Aβ0(−5 + 6 ln 2)

«

ln rµ + a4

« „αs(1/r)

«4#

• The logarithmic contribution at N3LO may be extracted from the one-loopcalculation of the ultrasoft contribution;

• the single logarithmic contribution at N4LO may be extracted from the two-loopcalculation of the ultrasoft contribution.

Page 25: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

Static energy at N4LO

E0(r) = −CF αs(1/r)

r

(

1 +αs(1/r)

4π[a1 + 2γEβ0]

+

„αs(1/r)

«2 »

a2 +

„π2

3+ 4γ2

E

«

β20 + γE (4a1β0 + 2β1)

+

„αs(1/r)

«3 »16π2

3C3

A lnCAαs(1/r)

2+ a3

+

„αs(1/r)

«4 »

aL24 ln2 CAαs(1/r)

2+ aL

4 lnCAαs(1/r)

2+ a4

+ · · ·

)

Page 26: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

Renormalization group equations

8>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

µd

dµαVs

=2

3

αs

πV 2

A

»αVo

6+

4

3αVs

–3 “

1 +αs

πc”

µd

dµαVo

=2

3

αs

πV 2

A

»αVo

6+

4

3αVs

–3 “

1 +αs

πc”

µd

dµαs = αsβ(αs)

µd

dµVA = 0

µd

dµVB = 0

Vs = −CFαVs

r, Vo =

1

2Nc

αVo

r, c =

−5nf + CA(6π2 + 47)

108.

Pineda Soto 00, Brambilla Garcia Soto Vairo 07

Page 27: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

Static singlet potential at NNNLL

αVs(µ) = αVs

(1/r) +C3

A

6β0α3

s (1/r)

1 +3

4

αs(1/r)

πa1

«

lnαs(1/r)

αs(µ)„

β1

4β0− 6c

« »αs(µ)

π−

αs(1/r)

π

–ff

Vs = −CFαVs

r, a1 =

31

9CA −

10

9nf + 2γEβ0, c =

−5nf + CA(6π2 + 47)

108.

Brambilla Garcia Soto Vairo 07

Page 28: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

Static singlet potential at NNNLL

1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.6

0.8

1

1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.6

0.8

1

αVs

r−1 in GeV

(µ = αs(r)/r; nf = 4)

−−− 2-loop−−− NNLL−−− NNNLL [a3 = (4.32 ± 25%) 104]

[preliminary]

Page 29: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

Static singlet potential at NNNLL

1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.6

0.8

1

αVs

r−1 in GeV

(µ = αs(r)/r; nf = 4)

−−− N4LO [a3 = 4.32 104]

−−− NNNLL [a3 = 4.32 104]

[preliminary]

Page 30: The QCD static potential at NNNLLBibliography (1) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo in preparation (2) N. Brambilla, X. Garcia i Tormo, J. Soto and A. Vairo The

Conclusions

Non-relativistic EFTs provide a rigorous definition of the potential between two heavyquarks.

• In the perturbative regime, we have calculated the NNNLL expression of the staticpotential (up to the three-loop non-logarithmic piece) .

• This may become a key ingredient for the precision calculation of several thresholdobservables, e.g. quarkonium masses and top-quark pair production cross sectionnear threshold.