the polarization tensor of the massless mode in …hofmann/icnaam_schwarz...the polarization tensor...

47
The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute of Technology (KIT) 1st Symposium on Analysis of Quantum Field Theory 9th International Conference of Numerical Analysis and Applied Mathematics Haldiki, Greece, 19-25 September 2011 21 September 2011

Upload: others

Post on 22-Jan-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

The Polarization Tensor of the Massless Mode inYang-Mills Thermodynamics

Markus Schwarz

Karlsruhe Institute of Technology (KIT)

1st Symposium on Analysis of Quantum Field Theory9th International Conference of Numerical Analysis and Applied Mathematics

Haldiki, Greece, 19-25 September 2011

21 September 2011

Page 2: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Table of Contents

Review of YMT

Polarization Tensor and Momentum Constraints

Approximate Calculation

Selfconsistent CalculationTransverse Dispersion RelationLongitudinal Dispersion Relation

Monopole Properties from a 2-Loop Correction to the Pressure

Summary and Outlook

Page 3: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Table of Contents

Review of YMT

Polarization Tensor and Momentum Constraints

Approximate Calculation

Selfconsistent CalculationTransverse Dispersion RelationLongitudinal Dispersion Relation

Monopole Properties from a 2-Loop Correction to the Pressure

Summary and Outlook

Page 4: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Review of Ralf’s talk

I After coarse-graining, nonperturbative YMT ground statedescribed by scalar field φ(T )[Herbst,Hofmann ’04, Hofmann ’05, Giacoa,Hofmann ’05]

I Effective action for top. trivial sector

SE [aµ] =

∫ 1T

0dx4

∫dx3Tr

(1

2GµνGµν + DµφDµφ+ Λ6φ−2

)I In deconfining phase (T > Λ): SU(2)→ U(1)

I Two tree-level massive modes (TLH) with massm2(T ) = 4e2(T )|φ(T )|2 = 4e2Λ3/2πT ,one tree-level massless mode (TLM)

I Eff. coupling e(T ) has plateau value eplateau ∼√

8π ≈ 8.8,no PT but loop expansion

I |φ| yields max. resolution

Page 5: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Table of Contents

Review of YMT

Polarization Tensor and Momentum Constraints

Approximate Calculation

Selfconsistent CalculationTransverse Dispersion RelationLongitudinal Dispersion Relation

Monopole Properties from a 2-Loop Correction to the Pressure

Summary and Outlook

Page 6: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Polarization Tensor, Motivation

I Effect TLH modes on propagation of TLM modes describedby polarization tensor Σµν .

I On one-loop level: Σµν = p p

k

p−k

A

+p p

kB

(one-loop sufficient, cmp. talk by Dariush)

I simplest radiative correction

I generic radiative correction

I interesting consequences for physics

Page 7: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Polarization Tensor, Decomposition

U(1) gauge symmetry unbroken, ⇒ Σµν 4D transverse: pµΣµν = 0Decomposition into spatially transverse and longitudinal part:

Σµν = G (p4,p)PµνT + F (p4,p)PµνL

with

PµνL ≡ δµν − pµpν

p2− PµνT ,

projecting also onto p.

Page 8: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Free Propagators

Free propagator for TLH and TLM modes in

I unitary gauge (particle content manifest)

I Coulomb gauge (∇A = 0)

DTLH,0µν,ab (k) = −δabD̃µν

1

k2 + m2, {a, b} ∈ {1, 2}

DTLM,0µν,ab (p) = −δa3δb3

(PTµν

1

p2+

uµuνp2

)uµ = δ4µ four-velocity of head bath.D̃µν projects out the component transverse to kPµνT projects out the component transverse to p.Gauge fixed completely ⇒ no ghost fields needed.

Page 9: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Dressed Propagator

Propagator for interacting TLM mode (imaginary time)

DTLMµν,ab(p) = −δa3δb3

(PTµν

1

p2 + G+

p2

p2uµuνp2 + F

)

F (p4,p) =(

1− p24p2

)−1Σ44 describes propagation of longitudinal

mode A4

For p ‖ e3, G (p4,p) = Σ11 = Σ22 describes propagation oftransverse mode Ai

Page 10: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Vertices and Momentum constraints

Γµνρ[3]abcΓµνρσ[4]abcd

I Momentum conservation at each vertex.I Effective vertex contains modes with

∣∣p2∣∣ > |φ|2:

p2 > |φ|2

I Exclude these modes in effective theory to avoid ”doublecounting” (already included in ag.s.µ ; cmp. talk by Ralf)

Page 11: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Momentum constraints

|φ| yields maximum resolution in effective theory ⇒ constraints onmomentum transfer in vertex

p1

p2

p3

p1

p2

p34

p = + −

s-channel:∣∣(p1 + p2)2

∣∣ ≤ |φ|2t-channel:

∣∣(p1 − p3)2∣∣ ≤ |φ|2

u-channel:∣∣(p2 − p3)2

∣∣ ≤ |φ|2

RecallFinite temperature QFT defined in imaginary time x4 with fieldsbeing periodic in x4. Only discrete p4 momenta allowed(Matsubara sums).

ProblemMomentum constraints formulated in terms of physical, continuousfour momenta.

Page 12: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Real time propagators

SolutionExpress Matsubara sums as integrals over continuous real time t.[Kapusta, LeBellac]

Free propagator for TLH and TLM modes in unitary Coulombgauge and real-time formalism

DTLM,0µν,ab (p) = δa3δb3

{PTµν

[−i

p2 + iε− 2πδ(p2) nB(|p0|/T )

]+ i

uµuνp2

}DTLH,0µν,ab (k) = −2πδabD̃µνδ(k2 −m2) nB(|k0|/T ) , a, b ∈ {1, 2}

No vacuum propagator for TLH modes (cmp. talk by Ralf):

+ +

(a)

+ +

p p p p p p

p p

p1

p2p p

p1

p2

p

(b)

Page 13: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Modified dispersion relation of TLM

Dressed propagator of transverse and longitudinal TLM mode (realtime)

DTLMµν,ab(pt) = −δa3δb3PT

µν

[i

p2t − G+ 2πδ(p2t − G ) nB(|p0,t |/T )

]DTLMµν,ab(pl) = δa3δb3uµuν

[p2lp2l

i

p2l − F− 2πδ(p2l − F ) nB(|p0,l |/T )

]Poles yield dispersion relations (p0 = ω + iγ, assume γ � ω):

ω2t (pt) = p2t + ReG (ω(pt),pt)

γ(pt) = −ImG (ω(pt),pt)/2ω

ω2l (pl) = p2l + ReF (ωL(pl),pl)

γl(pl) = −ImF (ωl(pl),pl)/2ωl

Page 14: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Diagrams for G and F

Chosing p ‖ e3:

G (p0,p) = Σ11 = Σ22

F (p0,p) =

(1− p20

p2

)−1Σ00

Σµν sum of two diagrams:

p p

k

p−k

A

Purely imaginary: ⇒ yields γ

p p

kB

Purely real: ⇒ yields dispersionrelation

One-loop level sufficient (see talk by Dariush)!

Page 15: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Table of Contents

Review of YMT

Polarization Tensor and Momentum Constraints

Approximate Calculation

Selfconsistent CalculationTransverse Dispersion RelationLongitudinal Dispersion Relation

Monopole Properties from a 2-Loop Correction to the Pressure

Summary and Outlook

Page 16: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Approximation p2 = 0

Applying Feynman rules to ReG = ReΣ11 =p p

kB

yields gap equation:

ReG (p0,p) = Σ11B (p) = 8πe2

∫|(p+k)2|≤|φ|2

[−(

3− k2

m2

)+

k1k1

m2

]×nB (|k0| /T )δ

(k2 −m2

) d4k(2π)4

∣∣∣∣p2=G

(1)

4 vertex imposes constraint∣∣(p + k)2

∣∣ ≤ |φ|2Difficulty

Equation (1) is a transzendental equation for G .

Approximation

Use p2 = 0 in constraint [Schwarz,Giacosa,Hofmann ’06].Valid if G � p2. Check later!

Page 17: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Consequences of p2 = 0

1. For finite Σ00, F (p0,p) =(

1− p20p2

)−1Σ00 vanishes.

Hence, no propagation of longitudinal modes.

2. Diagram A vanishes:

p p

k

p−k

A

Momentum conservation at vertex vorbids TLM mode withp2 = 0 to split into two on-shell particles with mass m.

3. Diagram A = 0, hence no imaginary part of G , hence γ = 0and assumption γ � ω satisfied trivially.

Page 18: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Calculation of diagram B, p2 = 0

With p2 = 0:

G (|p|,p) = 8πe2∫|2pk+k2|≤|φ|2

[g11

(3− k2

m2

)+

k1k1

m2

]× nB (|k0| /T ) δ

(k2 −m2

) d4k

(2π)4

Via δ-function, integration over k0 yields k0 → ±√k2 + m2.

Using p0 ≥ 0, p2 = 0, k2 = m2 = 4e2|φ|2, θ ≡ ∠(p, k), and

k0 = ±√

k2 + m2 constraint reads:∣∣∣∣2|p|(±√k2 + 4e2|φ|2 − |k| cos θ

)+ 4e2|φ|2

∣∣∣∣ ≤ |φ|2Integrand symmetric under k0 → −k0, but constraint is not!

Page 19: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Dealing with constraints, + sign

Consider + sign and observe:∣∣∣∣2|p|(+

√k2 + 4e2|φ|2 − |k| cos θ

)+ 4e2|φ|2

∣∣∣∣ ≤ |φ|21. Term in parentheses always positive.

2. e &√

8π ∼ 8.8

Hence, constraint never satisfied.

Page 20: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Dealing with constraints, – sign

Using X ≡ |p|/T , y ≡ k/|φ|, |φ|/T = 2πλ−3/2, and λ ≡ 2πT/Λconstraint reads

−1 ≤ −λ3/2Xπ

(√y2 + 4e2 + y3

)+ 4e2 ≤ 1

Convenient to use polar coordinates y1 = ρ cosϕ, y2 = ρ sinϕ.Constraint then reads

4e2 − 1

λ3/2π

X≤√ρ2 + y23 + 4e2 + y3 ≤

4e2 + 1

λ3/2π

X

Integration over ϕ not constraint!

Page 21: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Dealing with constraints, – sign

4e2 − 1

λ3/2π

X≤√ρ2 + y23 + 4e2 + y3 ≤

4e2 + 1

λ3/2π

X

1. y3, ρ plane

2. y3 < ymax ≡ 4e2+1λ3/2

πX

3. ρ ≤ ρmax(y3) ≡√(πX

)2 (4e2+1)2

λ3− 2π

X4e2+1

λ3/2y3−4e2fory3 ≤ yM3 ≡ π

2X4e2+1λ3/2

− 2λ3/2Xπ

e2

4e2+1

4. ρ ≥ ρmin(y3) ≡√(πX

)2 (4e2−1)2λ3

− 2πX

4e2−1λ3/2y3−4e2

fory3 ≤ ym3 ≡ π

2X4e2−1λ3/2

− 2λ3/2Xπ

e2

4e2−1

0 20 40 60 80y3

20

40

60

80

Ρ

Page 22: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Dealing with constraints, – sign

4e2 − 1

λ3/2π

X≤√ρ2 + y23 + 4e2 + y3 ≤

4e2 + 1

λ3/2π

X

1. y3, ρ plane

2. y3 < ymax ≡ 4e2+1λ3/2

πX

3. ρ ≤ ρmax(y3) ≡√(πX

)2 (4e2+1)2

λ3− 2π

X4e2+1

λ3/2y3−4e2fory3 ≤ yM3 ≡ π

2X4e2+1λ3/2

− 2λ3/2Xπ

e2

4e2+1

4. ρ ≥ ρmin(y3) ≡√(πX

)2 (4e2−1)2λ3

− 2πX

4e2−1λ3/2y3−4e2

fory3 ≤ ym3 ≡ π

2X4e2−1λ3/2

− 2λ3/2Xπ

e2

4e2−1

0 20 40 60 80y3

20

40

60

80

Ρ

Page 23: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Dealing with constraints, – sign

4e2 − 1

λ3/2π

X≤√ρ2 + y23 + 4e2 + y3 ≤

4e2 + 1

λ3/2π

X

1. y3, ρ plane

2. y3 < ymax ≡ 4e2+1λ3/2

πX

3. ρ ≤ ρmax(y3) ≡√(πX

)2 (4e2+1)2

λ3− 2π

X4e2+1

λ3/2y3−4e2fory3 ≤ yM3 ≡ π

2X4e2+1λ3/2

− 2λ3/2Xπ

e2

4e2+1

4. ρ ≥ ρmin(y3) ≡√(πX

)2 (4e2−1)2λ3

− 2πX

4e2−1λ3/2y3−4e2

fory3 ≤ ym3 ≡ π

2X4e2−1λ3/2

− 2λ3/2Xπ

e2

4e2−1

0 20 40 60 80y3

20

40

60

80

Ρ

Page 24: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Dealing with constraints, – sign

4e2 − 1

λ3/2π

X≤√ρ2 + y23 + 4e2 + y3 ≤

4e2 + 1

λ3/2π

X

1. y3, ρ plane

2. y3 < ymax ≡ 4e2+1λ3/2

πX

3. ρ ≤ ρmax(y3) ≡√(πX

)2 (4e2+1)2

λ3− 2π

X4e2+1

λ3/2y3−4e2fory3 ≤ yM3 ≡ π

2X4e2+1λ3/2

− 2λ3/2Xπ

e2

4e2+1

4. ρ ≥ ρmin(y3) ≡√(πX

)2 (4e2−1)2λ3

− 2πX

4e2−1λ3/2y3−4e2

fory3 ≤ ym3 ≡ π

2X4e2−1λ3/2

− 2λ3/2Xπ

e2

4e2−1

24.2 24.4 24.6 24.8 25.0 25.2 25.4y3

2

4

6

8

10

12

14

Ρ

Page 25: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Expression for G , p2 = 0

Constraint in terms of boundaries for (y3, ρ) integration:

G (X ,T )

T 2=

[∫ ym3

−∞dy3

∫ ρmax

ρmin

dρ+

∫ yM3

ym3

dy3

∫ ρmax

0dρ

]

e2ρ

λ3

(ρ2

4e2− 4

) nB

(2πλ−3/2

√ρ2 + y23 + 4e2

)√ρ2 + y23 + 4e2

X = |p|/T momentum of external TLM mode in units oftemperature,λ ≡ 2πT/Λ temperature in units of YM scale Λ.Integration performed numerically via Gaussian quadrature (unlikeMonte-Carlo for 3-loop, comp. talk by Dariush).

Page 26: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Result for G , p2 = 0

0.0 0.2 0.4 0.6 0.8 1.0X

10-3

10-2

10-1

ÈG�T2È

2Tc 3Tc 4Tc X2

Page 27: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Result for G , p2 = 0

All results based on∣∣G/T 2

∣∣� X 2!

0.0 0.2 0.4 0.6 0.8 1.0X

10-3

10-2

10-1

ÈG�T2È

2Tc 3Tc 4Tc X2

I X & 0.2: G < 0(anti-screening)

I Dip: G = 0

I X . 0.2: G > 0(screening)

I G � p2 for X & 0.2

I G = 0 at X ∼ 0.2, dispersion relation solved selfconsistently

I G ≥ p2 for X . 0.1, approximation breaks down

Page 28: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Table of Contents

Review of YMT

Polarization Tensor and Momentum Constraints

Approximate Calculation

Selfconsistent CalculationTransverse Dispersion RelationLongitudinal Dispersion Relation

Monopole Properties from a 2-Loop Correction to the Pressure

Summary and Outlook

Page 29: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Table of Contents

Review of YMT

Polarization Tensor and Momentum Constraints

Approximate Calculation

Selfconsistent CalculationTransverse Dispersion RelationLongitudinal Dispersion Relation

Monopole Properties from a 2-Loop Correction to the Pressure

Summary and Outlook

Page 30: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Full calculation of G

Gap equation:

ReG (p0,p) = 8πe2∫|(p+k)2|≤|φ|2

[−(

3− k2

m2

)+

k1k1

m2

]× nB (|k0| /T ) δ

(k2 −m2

) d4k

(2π)4

∣∣∣∣p2=G

≡ H(T ,p,G )

Via δ-function, integration over k0 yields k0 → ±√k2 + m2.

With p0 = ±√

p2 + G (p0,p) and p ‖ e3 constraint reads∣∣∣G + 2(±√p2 + G

√k2 + m2 − pk3

)+ m2

∣∣∣ ≤ |φ|2

Page 31: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Full calculation of G

Strategy to solve ReG (p0,p) = H [T ,p,G (p0,p)][Ludescher,Hofmann ’08]:

1. fix T and p (integrand in H independent of p0 ⇒ G = G (p))

2. prescribe any value of G1

3. calculate H(T ,p,G1) using Monte-Carlo integration

4. repeat steps 2 and 3 to obtain H(T ,p,G )

5. solve G = H(T ,p,G ) numerically using Newton’s method

Page 32: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Selfconsistent result for G , real part

æ æ æ æ æ æ æ æ ææ

ææ

æ

æ

æ

æ

æ

ææ

ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

ææ

à à à à à à à àà

àà

à

à

à

à

àà

àà à à à à à à à à à à à à à à à à à à à à à

ììììììììì

ì

ì

ìì

ì

ìì

ìììììììììììììììììììììììì

0.0 0.1 0.2 0.3 0.4 0.5 0.6X

10-3

10-2

10-1

ÈG�T 2È2Tc 3Tc 4Tc

Page 33: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Selfconsistent result for G , real part

æ æ æ æ æ æ æ æ ææ

ææ

æ

æ

æ

æ

æ

ææ

ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

ææ

à à à à à à à àà

àà

à

à

à

à

àà

àà à à à à à à à à à à à à à à à à à à à à à

ììììììììì

ì

ì

ìì

ì

ìì

ìììììììììììììììììììììììì

0.0 0.1 0.2 0.3 0.4 0.5 0.6X

10-3

10-2

10-1

ÈG�T 2È2Tc 3Tc 4Tc

I X & 0.2: G < 0(anti-screening)

I Dip: G = 0

I X . 0.2: G > 0(screening)

Comparison with approximate result:

I Zeros of G agree (must be)

I For X & 0.2, approximate agrees with selfconsistent result(expected)

I Results different when G & X 2 (not suprising)

Page 34: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Selfconsistent result for G , imaginary part

Imaginary part: ImG ∝ p p

k

p−k

A

At left vertex: particle with mass√G decaying into two on-shell

particles with mass m only possible if

G

T 2≥ 4

m2

T 2= 64π2

e2

λ3(2)

I G ≤ 0: condition (2) never satisfied

I G > 0:

G (X = 0,T )

T 2∝ 1

λ3� 64π2

e2

λ3∼ 5× 104/λ3

condition (2) never satisfied

Diagram A = 0, hence no imaginary part of G , hence γ = 0 andassumption γ � ω satisfied trivially.

Page 35: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Table of Contents

Review of YMT

Polarization Tensor and Momentum Constraints

Approximate Calculation

Selfconsistent CalculationTransverse Dispersion RelationLongitudinal Dispersion Relation

Monopole Properties from a 2-Loop Correction to the Pressure

Summary and Outlook

Page 36: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Full Calculation of F

Assume F ∈ R (turns out to be selfconsistent)

Apply Feynman rules to p2 = ReΣ00 =p p

kB

yields gap equation:

p2 = Σ00B (p) = 8πe2

∫|(p+k)2|≤|φ|2

[(3− k2

m2

)+

k0k0

m2

]× nB (|k0| /T ) δ

(k2 −m2

) d4k

(2π)4

∣∣∣∣p2=F

(3)

Strategy to find F similar to that of finding G[Falquez,Hofmann,Baumbach ’11].

Page 37: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Selfconsitent Result for F

Yl ≡ ωl (pl ,T )T =

√F (p2l ,T )

T 2 +p2lT 2 , X ≡ |pl |/T

0.05 0.10 0.15 0.20 0.25 0.30X

0.25

0.50

0.75

1.00

1.25

1.50

YL

2Tc 3Tc 4Tc

Page 38: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Selfconsitent Result for F

Yl ≡ ωl (pl ,T )T =

√F (p2l ,T )

T 2 +p2lT 2 , X ≡ |pl |/T

0.05 0.10 0.15 0.20 0.25 0.30X

0.25

0.50

0.75

1.00

1.25

1.50

YL

2Tc 3Tc 4Tc

I 3 branches

I YL defined only forX . 0.34

I superluminal groupvelocity

Page 39: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Selfconsistent Result for F , Interpretation

Interpretation in terms of magnetic monopoles[Falquez,Hofmann,Baumbach ’11]

I longitudinal modes due to charge density wavesI light like propagation:

I stable (yet unresolved) monopoles released by large holonomycaloron dissociation [Diakonov et al. ’04]

I density disturbance can only be propagated by radiation field,which propagates at the speed of light

M M

I superluminal propagation:I unstable monopoles contained in small holonomy caloronI extended calorons provide instantaneous correlation between

monopoles, leading to superluminal propagation

MM

caloron

Page 40: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Table of Contents

Review of YMT

Polarization Tensor and Momentum Constraints

Approximate Calculation

Selfconsistent CalculationTransverse Dispersion RelationLongitudinal Dispersion Relation

Monopole Properties from a 2-Loop Correction to the Pressure

Summary and Outlook

Page 41: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

2-Loop Corrections

I “Bubble diagrams” yield pressure (cmp. talk by Dariush)

I For T � Tc only relevant diagram:

50 100 150 200Λ

-0.0004

-0.0003

-0.0002

-0.0001

0.0000

0.0001

0.0002

DPHM�P1-LoopI ∆P ∝ −4× 10−4T 4

I Temperature of TLMgas reduced!

Page 42: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Monopole Properties

Explanation

Energy used to break up calorons, creating monopoleanti-monopole pairs [Schwarz,Giacosa,Hofmann ’06].

Detailed analysis shows [Ludescher,Keller,Giacosa,Hofmann ’08]:

I average monopole-antimonopole distance d̄ < |φ|−1⇒ monopoles unresolved in effective theory

I screening length ls due to small-holonomy calorons: ls = 3.3d̄⇒ magnetic flux of monopole and antimonopole cancel (noarea law for spatial Wilson loop)

Page 43: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Table of Contents

Review of YMT

Polarization Tensor and Momentum Constraints

Approximate Calculation

Selfconsistent CalculationTransverse Dispersion RelationLongitudinal Dispersion Relation

Monopole Properties from a 2-Loop Correction to the Pressure

Summary and Outlook

Page 44: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

Summary and Outlook

I Coarsegrained YMT ground state described by scalar field φ(T ),

SU(2)φ→ U(1)

I |φ| constrains loop momentaI Calculated polarization tensor Σµν for TLM mode on 1-loop levelI Approximation p2 = 0 in constraint

I Constraint solvable analyticallyI Dispersion relation for transverse mode;

no propagating longitudinal mode

I Selfconsistent calculationI Constraint implemented numericallyI Dispersion relation for transverse- and longitudinal mode

I In YMT monopoles are unresolvable and screened

QuestionIs 1-loop calculation sufficient?

AnswerSee talk by Dariush!

Thank you.

Page 45: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

References I

U. Herbst, R. Hofmann,Asymptotic freedom and compositeness[hep-th/0411214].

R. Hofmann“Nonperturbative approach to Yang-Mills thermodynamics”Int. J. Mod. Phys. A20, 4123-4216 (2005) [hep-th/0504064].

F. Giacosa, R. Hofmann,“Thermal ground state in deconfining Yang-Millsthermodynamics”Prog. Theor. Phys. 118, 759-767 (2007) [hep-th/0609172].

J. Kapusta, G. Charles“Finite-temperature field theory : principles and applications”Cambridge Univ. Press, 2.ed., 2006.

Page 46: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

References II

M. Le Bellac“Thermal field theory”Cambridge Univ. Press, 1996.

M. Schwarz, R. Hofmann, F. Giacosa,“Radiative corrections to the pressure and the one-looppolarization tensor of massless modes in SU(2) Yang-Millsthermodynamics”Int. J. Mod. Phys. A22, 1213-1238 (2007) [hep-th/0603078].

J. Ludescher, R. Hofmann,“Thermal photon dispersion law and modified black-bodyspectra”Annalen Phys. 18, 271-280 (2009) [arXiv:0806.0972 [hep-th]].

Page 47: The Polarization Tensor of the Massless Mode in …hofmann/ICNAAM_Schwarz...The Polarization Tensor of the Massless Mode in Yang-Mills Thermodynamics Markus Schwarz Karlsruhe Institute

References III

D. Diakonov, N. Gromov, V. Petrov, S. Slizovskiy,“Quantum weights of dyons and of instantons with nontrivialholonomy”Phys. Rev. D70, 036003 (2004) [hep-th/0404042].

C. Falquez, R. Hofmann, T. Baumbach,“Charge-density waves in deconfining SU(2) Yang-Millsthermodynamics”[arXiv:1106.1353 [hep-th]].

J. Ludescher, J. Keller, F. Giacosa, R. Hofmann,“Spatial Wilson loop in continuum, deconfining SU(2)Yang-Mills thermodynamics”Annalen Phys. 19, 102-120 (2010) [arXiv:0812.1858 [hep-th]].