the plasma physics of quark-gluon plasma (a theorist's perspective)

52
The Plasma Physics of Quark-Gluon Plasmas (A Theorist's Perspective) q q _ g g q Peter Arnold, University of Virginia

Upload: others

Post on 09-Feb-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

The Plasma Physics of Quark­Gluon Plasmas

(A Theorist's Perspective)

q q_

gg

q

Peter Arnold, University of Virginia

Page 2: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

A brief summary of the field ofplasma physics

(A particle theorist's perspective)

First...

Page 3: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Plasma physics is complicated

Image of solar coronal filament from NASA’s TRACE satellite

Page 4: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

plasma = gas of charged particles

quark­gluon plasma:electromagnetism color force

Page 5: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Similarity:

Minor difference: 1 photon 8 colors of gluon

Major difference:

scattering

Page 6: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Familiar difference in T=0 physics:No free quarks!   (confinement into color­neutral objects)

Note for later: lots of partons in hadrons if you resolve small distances     (probe with high energies)

Page 7: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)
Page 8: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

blackbody radiation

Page 9: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

kBT ~ 0.5 MeV

Page 10: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

kBT ~ 50 MeV

Higher T higher density

Page 11: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

kBT ~ 200 MeV

Higher T higher density

Page 12: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

kBT >> 200 MeV

Higher T higher density

Page 13: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Also: Asymptotic Freedom

Higher temperature smaller coupling αs

Page 14: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Ideal gas

Lattice data(courtesy F. Karsch)

= 2 2

30T 4photons:

2 polarizations

massless pions: = 3 2

30T 4≃T 4

π0 , π+ , π- (spin 0)

quark­gluon plasma with u,d,s: = 47.5 2

30T 4≃16T 4

(u,d,s) (3 colors) (2 spins)+ anti­quarks + gluons (8 colors) (2 polarizations)

units:

Page 15: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Where to find a QGP?

The Early Universe

Heavy Ion Collisions

E ~ 100 GeV per nucleonv = 0.99995 cAu:

RHIC

t10−6 sec

Page 16: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Deconfinement as Debye Screening

Potential energy between 2 charges in vacuum

QED QCD

Page 17: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Deconfinement as Debye Screening

In a medium with free charges:

QED

Debye screening length: D~ Te2 n

1/2

ultra­relativistic: n~T 3 D~1

eT

Higher temperature smaller Debye radius

re−r /D

r

Page 18: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

QED QCD

Deconfinement as Debye Screening

In a medium with free charges:

Higher temperature smaller Debye radius

Page 19: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

The Debye effect screens electric fields.  In contrast:

So

QED: magnetic forces are still long range

QCD: could there be confinement of colored currents?

Magnetic fields are not screened in a plasma.

no long range colored B fields?

Version for particle theorists: Do spatialWilson loops still have area­law behavior?

Page 20: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

YES, and at very short distances too!

nBose=1

eE−1

TE

as E 0

For massless bosons,

E~ p~T nBose~1

Photons don't directly interact with each other, but gluons do.

Result: Perturbation theory breaks down for gluons with p ~ α T .

nBose~1

∣e∣2~costs for extra interaction

for density of extra gluons

1 total

Page 21: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Summary

electric screening at D~1

eTno charge confinement

no traditional magnetic screening current confinement at 1e2 T

1e2 T

1eT

1T

1 fm1e4 T

Long distance physics is hydrodynamics,not colored MHD.

Note: “e” means “gs” here

Page 22: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)
Page 23: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Is there no “interesting” plasma physics in aquark­gluon plasma?

Page 24: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

QGP hydrodynamicsIndependent collisions:    mean free path >> anything

Hydrodynamics:              mean free path << whatever

elliptic flow

Page 25: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Hydrodynamics usually associated with fluids in local equilibrium.

Distributions are isotropic in local fluid rest frames.

Page 26: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

How well does hydrodynamics do?

Phenomenological question:    Is t = 0.6 fm/c reasonable?

Can a quark­gluon plasma reach local equilibrium in a time of order 0.6 fm/c?

Groups studying flow successfully model  many aspectsof heavy­ion collisions withideal hydrodynamics.

But it requires hydrodynamical behavior to set in fairly early.Some like like to quote: t  = 0.6 fm/c

Pasi Huovinen

Page 27: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

ThermalizationQuestion:     What is the (local) thermalization time for QGPs in heavy ion     collisions?

A simpler question:     What is it for arbitrarily high energy collisions, where αs < < 1?

A much simpler question:     How does that time depend on αs?

Page 28: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

ThermalizationQuestion:     What is the (local) thermalization time for QGPs in heavy ion     collisions?

A simpler question:     What is it for arbitrarily high energy collisions, where αs < < 1?

A much simpler question:     How does that time depend on αs?

“Bottom­up thermalization” predicted ?? = 13/5 (Baier, Mueller, Schiff, and Son)

Page 29: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Bottom­Up Thermalization(Baier, Mueller, Schiff, Son '00)

Starting point

System expandsdensity decreasesmore perturbative

Page 30: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Bottom­Up Thermalization(Baier, Mueller, Schiff, Son '00)

Later, if interactions ignored

∆ z » vz t

Page 31: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

pz

Later, if interactions ignored

Bottom­Up Thermalization(Baier, Mueller, Schiff, Son '00)

Page 32: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

thermalized

equilibrium

Bottom­Up Thermalization(Baier, Mueller, Schiff, Son '00)

Page 33: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

So what's the problem?

Page 34: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Plasma physics is complicated

Image of solar coronal filament from NASA’s TRACE satellite

Page 35: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

1e2 T

1eT

1T

1e4 T

typical p

articlesep

aration

Big enough for collective effects.Small enough for magnetic effects.

A Window for Interesting Collective Effects

Page 36: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

The Weibel (or filamentation) instability

Parallel currentsattract

Opposite currentsrepel

Page 37: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Parallel currentsattract

Opposite currentsrepel

The Weibel (or filamentation) instability

Page 38: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

o

o

o

o

o

o

o

o

o

o

o

o

B

The Weibel (or filamentation) instability

Parallel currentsattract

Opposite currentsrepel

Page 39: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Weibel instability occurs when velocity distribution is anisotropic.

Example: T−1

eT −1

In relativistic QED, would grow until

1e2 T

1eT

1T

1e4 T

typical p

articlesep

aration

Weib

elin

stability

rand

om

ization

via ind

ividu

al2 ­­>

 2 collisio

ns

Instabilitiesfast randomization

Except ...

Page 40: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Colored magnetic fields can interact with each other!

Can this stop instability growth before ?

or

T 4

e2 T 4

T 4

B2

growth until

growth limited by ?

(log

axis)

Page 41: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

The Vlasov Equations

Traditional QED Plasmas

Describe particles by classical phase space density f(p,x,t).Describe EM fields by classical gauge fields Aµ(x,t).

Collisionless Boltzmann eq.∂t f v⋅∇ x f eEv×B⋅∇ p f =0

∂ F= j=∫p e v f Maxwell's eqs.

QCD Plasmas

∂t ∂t−i e A0 and ∇ x ∇ x−i e A above.

f(p,x,t) becomes a color density matrix.

Page 42: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

vs.

T 4

e2 T 4

T 4

B2

Can cleanly study shaded region of

by writing  f = fo + δf  and linearizing in δf :

e2 T 4 e2 T 4vs.

Numerical Simulations:

Treat x as a lattice (lattice gauge theory).Discretize p.Evolve classical QCD Vlasov equations in time.

Page 43: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)
Page 44: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Rebhan, Romatschke, Stickland  '04

Page 45: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Arnold, Moore, Yaffe  '05

Page 46: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)
Page 47: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Coulomb gauge spectra

Arnold & Moore

Page 48: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)
Page 49: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)
Page 50: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Examples of energy cascadesTurbulence in hydrodynamics

Big whirls make little whirlswhich feed on their velocity;

Little whirls make lesser whirls,and so on to viscosity.

L.F.G. Richardson

Applications in Particle Physics

Kolmogorov spectrum: (energy)k ~ k­5/3

Thermalization after inflation in the early Universe.

Page 51: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

So what's the answer?

Problem:

So far, only understood the case of moderate anisotropy,

But early stages of super­high­energy heavy ion collisionswould initially generate parametrically extremeanisotropy, e.g.

Page 52: The Plasma Physics of Quark-Gluon Plasma (a theorist's perspective)

Summary

➢ There is interesting plasma physics in quark­gluon plasmas,but it behaves differently than in traditional plasmas.

➢ Because of this interesting plasma physics, theorists havemore work to do to understand quark­gluon plasmaequilibration even at the weak couplings of arbitrarilyhigh energy collisions.

Guy Moore Jonathan Lenaghan Larry Yaffe

My collaborators:

(McGill) (Physical Review) (U. Washington)Po­shan Leang

(UVa)Caglar Dogan

(UVa)