the passage of ultrarelativistic neutralinos through matter...the passage of ultrarelativistic...

15
The Passage of Ultrarelativistic Neutralinos through Matter Sascha Bornhauser Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn SUSY08, Seoul in collaboration with M. Drees based on hep-ph/0603162 and 0704.3934 S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 1 / 15

Upload: others

Post on 29-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Passage of Ultrarelativistic Neutralinos through Matter...The Passage of Ultrarelativistic Neutralinos through Matter Sascha Bornhauser Physikalisches Institut der Rheinischen

The Passage of Ultrarelativistic Neutralinos throughMatter

Sascha Bornhauser

Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn

SUSY08, Seoul

in collaboration with M. Drees

based on hep-ph/0603162 and 0704.3934

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 1 / 15

Page 2: The Passage of Ultrarelativistic Neutralinos through Matter...The Passage of Ultrarelativistic Neutralinos through Matter Sascha Bornhauser Physikalisches Institut der Rheinischen

Outline

1 Introduction/Motivation

2 Transport equations

3 Event rates

4 Summary

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 2 / 15

Page 3: The Passage of Ultrarelativistic Neutralinos through Matter...The Passage of Ultrarelativistic Neutralinos through Matter Sascha Bornhauser Physikalisches Institut der Rheinischen

Experiments...have shown the existence of ultra high energy (UHE) cosmic rayswith E >

∼ 1011 GeV

indicate that most UHE events are caused by protons

Protons with E >∼ 5 ·1010 GeV lose energy through inelastic scattering:

p + γ2.7K → n + π+

→ p + π◦ =⇒proton energy losslength ∼ 50 Mpc =⇒ local sources

Questions:B.-U. models: are there objects which have sufficiently large B · L?

are the arrival directions of UHE events homogeneouslydistributed? ⇒ exclusion of one or a few local point sources

are there local sources? AUGER indicates correlation betweennearby AGNs and the origin of UHE events ( arXiv: 0712.2843)

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 3 / 15

Page 4: The Passage of Ultrarelativistic Neutralinos through Matter...The Passage of Ultrarelativistic Neutralinos through Matter Sascha Bornhauser Physikalisches Institut der Rheinischen

One possible source: Top-Down Models (TDMs)existence and decay of very massive, long-lived X-particles(MX > 1012GeV ) ⇒ UHE events

X-particles could be associated with a Grand Unified Theory

Signature for Top-Down ModelsDecay chain in the framework of R-parity conserving SUSY:

(M.Drees and C.Barbot)

Stable particles:photons

neutrinos ν

electrons

protons

neutralinos χ̃01(LSPs)

⇒“smoking gun” for TDMs:Detection of χ̃0

1

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 4 / 15

Page 5: The Passage of Ultrarelativistic Neutralinos through Matter...The Passage of Ultrarelativistic Neutralinos through Matter Sascha Bornhauser Physikalisches Institut der Rheinischen

Discrimination between ν and χ̃01?⇒

Possible measurement method for χ̃01:

Cross section for χ̃01

interactions with matter issmaller than that of ν

⇒ Using the Earth as a filterDetector

Neutrinos

Neutralinos

Necessary tools:calculation of total & differential cross section (⇒ hep-ph/0603162)

solution of the transport equations

calculation of event ratesS. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 5 / 15

Page 6: The Passage of Ultrarelativistic Neutralinos through Matter...The Passage of Ultrarelativistic Neutralinos through Matter Sascha Bornhauser Physikalisches Institut der Rheinischen

Transport equation for s−channelscattering (bino-dominated χ̃

01)

∂Fχ̃

01(E , X )

∂X= −

Fχ̃

01(E , X )

λχ̃

01(E)

︸ ︷︷ ︸

decrease

+1

λχ̃

01(E)

∫ ymax

0

dy1 − y

Ks(E , y)Fχ̃

01(Ey , X )

︸ ︷︷ ︸

increase due to χ̃01+qi→χ̃

01+qi

,

Fχ̃

01(E , X ): differential χ̃0

1 flux where

E : χ̃01 energy and

X : matter depth.λ

χ̃01(E)−1 = NAσtot

χ̃01N

(E): interaction length

Ks(E , y) = σtots (E)−1dσs(Ey )/dy : kernel

Ey : E/(1 − y)

mSUGRA scenariowith mg̃ > mq̃ =⇒

σtots (χ̃0

1 + qi → X ) ≈σtot

s (χ̃01 + qi → χ̃0

1 + qi)

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 6 / 15

Page 7: The Passage of Ultrarelativistic Neutralinos through Matter...The Passage of Ultrarelativistic Neutralinos through Matter Sascha Bornhauser Physikalisches Institut der Rheinischen

Solution method...based on the first order Taylor expansion:

Fχ̃

01(E , X + dX ) = F

χ̃01(E , X ) + dX

∂Fχ̃

01(E , X )

∂X+ · · · where

the boundary condition Fχ̃

01(E , 0) is given by the incident χ̃0

1 flux(e.g. SHdecay: hep-ph/0211406).

Check of the results:

For s- and t-channel: χ̃01 + qi → · · · → χ̃0

1 + X

=⇒ Φχ̃

01=

∫ Emax

mχ̃

01

Fχ̃

01(E , X )dE = const.

Fχ̃

01(E , 0) = 0 for E > Emax

independent of X

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 7 / 15

Page 8: The Passage of Ultrarelativistic Neutralinos through Matter...The Passage of Ultrarelativistic Neutralinos through Matter Sascha Bornhauser Physikalisches Institut der Rheinischen

Transport equation for s−channel scattering (bino-dominated χ̃01)

1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12E χ ~1

0[GeV]

1e-73

1e-72

1e-71

1e-70

1e-69

E χ ~

1 0. F

χ ~1 0(E

χ ~1 0)[

GeV

3 ]

initial spectrum0.09.X

max0.45.X

max1.00.X

max

xmax : maximalcolumn depth ofthe Earth

XXmax

Φχ̃

01(X)

Φχ̃

01(0)

0.09 1.0000.45 1.0001.00 1.001

(integrated from103 to 1012 GeV)

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 8 / 15

Page 9: The Passage of Ultrarelativistic Neutralinos through Matter...The Passage of Ultrarelativistic Neutralinos through Matter Sascha Bornhauser Physikalisches Institut der Rheinischen

Transport equation fort−channel scattering(higgsino-dominated χ̃

01)

1e+05 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12E χ ~1

0[GeV]

1e-73

1e-72

1e-71

1e-70

1e-69

E χ ~

1 0. F

χ ~1 0(E

χ ~1 0)[

GeV

3 ]

initial spectrum0.09.X

max0.45.X

max1.00.X

max

xmax : maximalcolumn depth ofthe Earth

XXmax

Φχ̃

01(X)

Φχ̃

01(0)

0.09 1.0020.45 1.0021.00 1.004

(integrated from105 to 1012 GeV)

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 9 / 15

Page 10: The Passage of Ultrarelativistic Neutralinos through Matter...The Passage of Ultrarelativistic Neutralinos through Matter Sascha Bornhauser Physikalisches Institut der Rheinischen

Event rates...can be calculated with the help of F

χ̃01(E , X ). For example, the

neutralino event rates for the s-channel are given by:

N =

∫ Emax

Emin

dEvis

∫ Xmax

Xmin

dX∫ ymax

0

dyy

dσs(Evisy )

dyF

χ̃01(Evis

y, X )V

V ∝ Veffǫdc t , whereVeff: w.e. effective volume,ǫdc : duty cycle,t : measurement period.However: One will need at least teraton scale targets to detectneutralinos...

Future satellite experiments

EUSO: stay on the ISS; monitors a surface area of O(105) km2 ⇒

target volume of ≈ 2.4 teratons

OWL: two satellites; monitors a surface area of O(106) km2 ⇒

target volume of ≈ 10.0 teratonsS. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 10 / 15

Page 11: The Passage of Ultrarelativistic Neutralinos through Matter...The Passage of Ultrarelativistic Neutralinos through Matter Sascha Bornhauser Physikalisches Institut der Rheinischen

Event rates for higgsino–like χ̃01

Evis ≥ 106 GeV, MX = 1012 GeV Nχ̃

01

Nντ

qq̄ 0.19 3.87qq̃ 0.58 7.04l l̃ 7.37 14.17

5 × qq̃ 4.97 45.00

Evis ≥ 109 GeV, MX = 1012 GeV Nχ̃

01

Nντ

qq̄ 0.0089 0.0001qq̃ 0.0608 0.0001l l̃ 2.5121 0.0003

5 × qq̃ 0.2624 0.0006

Evis ≥ 106 GeV, MX = 1016 GeV Nχ̃

01

Nντ

qq̄ 0.0105 0.4448qq̃ 0.0078 0.3079l l̃ 0.0063 0.2917

5 × qq̃ 0.0124 0.4940

Evis ≥ 109 GeV, MX = 1016 GeV Nχ̃

01

Nντ

qq̄ 0.000927 0.000007qq̃ 0.001258 0.000005l l̃ 0.001735 0.000005

5 × qq̃ 0.001807 0.000005

Parameters of thegiven results:

target volume:10Tt

m. period: 1y

duty cycle: 10%

Detectable if:

mass of Xparticle close toits lower bound

large ratio ofneutralino andproton fluxes

experimentmust be able todetectCerenkov light

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 11 / 15

Page 12: The Passage of Ultrarelativistic Neutralinos through Matter...The Passage of Ultrarelativistic Neutralinos through Matter Sascha Bornhauser Physikalisches Institut der Rheinischen

1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12E ν [GeV]

1e-72

1e-71

1e-70

1e-69

1e-68

E ν . F

ν (E

ν )[G

eV3 ]

initial spectrum0.09.X

max0.45.X

max1.00.X

max

Event rates for higgsino–like χ̃01

Evis ≥ 2 · 107 GeV, MX = 1012 GeV Nχ̃

01

Nντ

qq̄ 0.10 0.18qq̃ 0.35 0.03l l̃ 5.41 0.67

5 × qq̃ 2.78 1.80

Higher lower bound for Evis

leads to higher reduction ofχ̃0

1 fluxes compared to νfluxes due to the softerneutrino spectra.

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 12 / 15

Page 13: The Passage of Ultrarelativistic Neutralinos through Matter...The Passage of Ultrarelativistic Neutralinos through Matter Sascha Bornhauser Physikalisches Institut der Rheinischen

Event rates for bino–like χ̃01

Evis ≥ 106 GeV, MX = 1012 GeV ND1 ND2 ND3

qq̄ 0.055 0.039 0.017qq̃ 0.130 0.099 0.051l l̃ 0.805 0.796 0.586

5 × qq̃ 1.294 0.944 0.434

Evis ≥ 109 GeV, MX = 1012 GeV ND1 ND2 ND3

qq̄ 0.0005 0.0034 0.0055qq̃ 0.0021 0.0142 0.0234l l̃ 0.0381 0.2551 0.4321

5 × qq̃ 0.0145 0.0992 0.1571

Evis ≥ 106 GeV, MX = 1016 GeV ND1 ND2 ND3

qq̄ 0.0026 0.0020 0.0010qq̃ 0.0020 0.0015 0.0007l l̃ 0.0018 0.0018 0.0007

5 × qq̃ 0.0032 0.0024 0.0012

Squark masses:

D1: 370 GeV

D2: 580 GeV

D3: 1000 GeV

Bino–like neutralino fluxes of many X decay scenarios remain invisible;even monitoring of the whole Earth’s surface “only” leads to Veff of5000 teratons

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 13 / 15

Page 14: The Passage of Ultrarelativistic Neutralinos through Matter...The Passage of Ultrarelativistic Neutralinos through Matter Sascha Bornhauser Physikalisches Institut der Rheinischen

Use of the Moon as a detectorMoon’s surface covered by regolith(homogeneous dielectric medium) upto a height of 10m

UHE particles produce radio waves viaAskarayan effect and the emission ofCerenkov light, respectively(Dagkesamanskii and Zheleznyk)

Event rates for ν and χ̃01

Evis ≥ 1010 GeV, MX = 1012 GeV Nν

total Nχ̃

01

qq̄ 2.46 0.10qq̃ 4.25 1.10l l̃ 65.04 60.10

5 × qq̃ 11.29 1.22

Evis ≥ 1010 GeV, MX = 1016 GeV Nν

total Nχ̃

01

qq̄ 8.38 0.04qq̃ 5.52 0.05l l̃ 6.09 0.19

5 × qq̃ 4.97 0.07

Parameters of the givenresults:

target volume: 320 Tt

E threshold: 1010 GeV

duty cycle: 40%

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 14 / 15

Page 15: The Passage of Ultrarelativistic Neutralinos through Matter...The Passage of Ultrarelativistic Neutralinos through Matter Sascha Bornhauser Physikalisches Institut der Rheinischen

Summary:

there are cosmic rays with E >∼ 1011 GeV

possible explanation within the scope of TDMs

detection of χ̃01’s would be a “smoking gun” for TDMs

detection of UHE χ̃01’s might be possible with aid of future satellite

experiments like EUSO or OWL if:neutralinos are higgsino–likeexperiments can detect Cerenkov lightmass of X particle is near its lower boundlarge ratio of neutralino and proton fluxes

detection of UHE ν ’s and χ̃01’s might be possible through

measurement of radio waves which are produced in the Moon’smatter via the Askarayan effect

S. Bornhauser (University of Bonn) Cosmic neutralinos SUSY08 15 / 15