the operational amplifierxuanqi-net.com/circuit/chapter5.pdfthe operational amplifier qi xuan...

30
1 Electric Circuits The Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015

Upload: others

Post on 15-Mar-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

1 Electric Circuits

The Operational Amplifier

Qi Xuan Zhejiang University of Technology

October 2015

Page 2: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Structure

•  Opera&onal  Amplifier  Terminals  •  Terminal  Voltages  and  Currents  •  The  Inver&ng-­‐Amplifier  Circuit  •  The  Summing-­‐Amplifier  Circuit  •  The  Noninver&ng-­‐Amplifier  Circuit    •  The  Difference-­‐Amplifier  Circuit  •  A  More  Realis&c  Model  for  the  Opera&onal  Amplifier  

2 Electric Circuits

Page 3: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Strain  Gages

Electric Circuits 3

A  strain  gage  is  a  grid  of  thin  wires  whose  resistance  changes  when  the  wires  are  lengthened  or  shortened.

R:  the  resistance  of  the  gage  at  rest;  ΔL/L:  is  the  frac&onal  lengthening  of  the  gage  (which  is  the  defini&on  of  "strain”);    2:  is  typical  of  the  manufacturer's  gage  factor;  ΔR:    the  change  in  resistance  due  to  the  bending  of  the  bar.  

The change in resistance experienced by the strain gage is typically much smaller than could be accurately measured by an ohmmeter.

In  order  to  make  an  accurate  measurement  of  the  voltage  difference,  we  use  an  opera&onal  amplifier  circuit  to  amplify,  or  increase,  the  voltage  difference.  

Page 4: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Opera&onal  Amplifier  Terminals  

Electric Circuits 4

A  simplified  circuit  symbol  for  an  op  amp

Page 5: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Terminal  Voltages

Electric Circuits 5

Saturate

Saturate

Linear region

Page 6: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Ideal  Op  Amp

Electric Circuits 6

A = +∞

VCC ≤ 20 V vp = vn Virtual  short  condi&on

Linear  region

Maintain  the  virtual  short  condi&on  to  ensure  linear  opera&on:

Negative feedback

Page 7: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Puzzle

•  Even  if  the  circuit  provides  a  nega&ve  feedback  path  for   the  op   amp,   linear   opera&on   is   not   ensured.   So  how  do  we  know  whether  the  op  amp  is  opera:ng  in  its  linear  region?    

•  The  answer  is:  we  don’t  know!  

•  We   first   assuming   linear   opera&on,   performing   the  circuit   analysis,   and   then   checking   our   results   for  contradic&ons,   if   we   have   -VCC≤vo≤VCC,   it’s   in   the  linear  region,  if  not,  it’s  saturate!    

Electric Circuits 7

Page 8: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Terminal  Currents

Electric Circuits 8

Ideally,   the   equivalent   input  resistance  is  infinite,  resul&ng  in  the  current  constraint:

Note  that  the  current  constraint  is  not  based  on  assuming  the  op  amp  is  confined  to  its  linear  opera&ng  region  as  was  the  voltage  constraint.

Kirchhoff's  current  law:  

Page 9: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Notes

•  The  posi&ve  and  nega&ve  power  supply  voltages  do  not   have   to   be   equal   in   magnitude.   In   the   linear  opera&ng  region,  vo must  lie  between  the  two  supply  voltages.    

•  Be   aware   also   that   the   value   of   A   is   not   constant  under   all   opera&ng   condi&ons.   For   now,   however,  we  assume  that  it  is.    

Electric Circuits 9

Page 10: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Example  #1

The  op  amp  in  the  circuit  is  ideal.    a)  Calculate  vo,  if  va = 1 V and  vb= 0 V.    b)  If  va = 1.5 V,  specify  the  range  of  vb  that  avoids  

amplifier  satura&on.    

Electric Circuits 10

Page 11: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Solu:on  for  Example  #1

Electric Circuits 11

vn = vp = vb = 0

i25 + i100 = in = 0

vo = -4 V

a) vn

vp

Page 12: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

The  Inver&ng-­‐Amplifier  Circuit  

Electric Circuits 12

vn = vp = 0 is + if = in = 0

Page 13: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Open-­‐loop  Gain

Electric Circuits 13

vo = -Avn = -Avs

A: open-loop gain

|vs| ≤ VCC / A

Page 14: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Example  #2

a)  Design  an  inver&ng  amplifier  with  a  gain  of  12.  Use  ±15  V  power  supplies  and  an  ideal  op  amp.    

b)  What  range  of  input  voltages,  vs,  allows  the  op  amp  in   this   design   to   remain   in   its   linear   opera&ng  region?    

Electric Circuits 14

Page 15: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Solu:on  for  Example  #2 a)  We   need   to   find   two   resistors   whose   ra'o   is   12   from   the  

realis&c  resistor  values  listed  in  Appendix  H.    

Electric Circuits 15

Rs = 1 kΩ Rf = 12 kΩ verify

b)  Solve two different versions of the inverting-amplifier equation for vs: first using vo = +15 V and then using vo = -15 V:

Page 16: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

The  Summing-­‐Amplifier  Circuit

Electric Circuits 16

Page 17: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

The  Noninver&ng-­‐Amplifier  Circuit  

Electric Circuits 17

Opera&on  in  the  linear  region  requires  that

Page 18: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Example  #3 a)  Design  a  noninver&ng  amplifier  with  a  gain  of  6.  Assume  the  

op  amp  is  ideal.    b)  Suppose  we  wish  to  amplify  a  voltage  vg,  such  that -1.5 V ≤ vg ≤ 1.5 V.  What  are  the  smallest  power  supply  voltages  that  could  be  used  with  the  resistors  selected  in  part  (a)  and  s&ll  have  the  op  amp  in  this  design  remain  in  its  linear  opera&ng  region?    

Electric Circuits 18

Page 19: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Solu:on  for  Example  #3 a)  Using  the  noninver&ng  amplifier  equa&on  

 

Electric Circuits 19

Therefore,  we  have  

We   want   two   resistors   whose   ra&o   is   5.   Look   at   the  realis&c  resistor  values  listed  in  Appendix  H.  Let's  choose  Rf = 10 kΩ,  so  Rs = 2 kΩ.  But  there  is  not  a  2 kΩ  resistor  in  Appendix  H.  We  can  create  an  equivalent  2 kΩ resistor  by  combining  two  1 kΩ resistors   in  series.  We  can  use  a  third  1 kΩ resistor  as  the  value  of  the  resistor  Rg.

Page 20: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Electric Circuits 20

b)  Solve  two  different  versions  of  the  noninver&ng  amplifier  equa&on  for  vo—first  using  vg = +1.5 V and  then  using  vg = -1.5V:

 

Thus,  if  we  use  ±9 V power  supplies  for  the  noninver&ng  amplifier  designed  in  part  (a)  and  -1.5 V ≤ vg ≤ +1.5 V,  the  op  amp  will  remain  in  its  linear  opera&ng  region.

Page 21: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

The  Difference-­‐Amplifier  Circuit

Electric Circuits 21

Page 22: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

The  Difference  Amplifier—Another  Perspec:ve  

Electric Circuits 22

Page 23: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Insights

•  In  many  applica&ons  it  is  the  differen:al  mode  signal  that   contains   the   informa:on   of   interest,   whereas  the   common   mode   signal   is   the   noise   found   in   all  electric  signals.    

•  Thus,  we  hope     RaRd = RbRc

Electric Circuits 23

Page 24: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Common  Mode  Rejec:on  Ra:o •  An  ideal  difference  amplifier  has  zero  common  mode  gain  and  

nonzero  (and  usually  large)  differen&al  mode  gain.    •  Two   factors   have   an   influence   on   the   ideal   common   mode  

gain—resistance  mismatches  or  a  nonideal  op  amp.  

Electric Circuits 24

or

Page 25: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Electric Circuits 25

The   common   mode   rejec'on   ra'o   (CMRR)   can   be   used   to   measure  how  nearly  ideal  a  difference  amplifier  is.  It  is  defined  as  the  ra&o  of  the  differen&al  mode  gain  to  the  common  mode  gain

Page 26: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

A  More  Realis&c  Model  for  the  Opera&onal  Amplifier

A  realis&c  model  includes  three  modifica&ons  to  the  ideal  op  amp:  (1)  a  finite   input  resistance,  Ri;   (2)  a  finite  open-­‐loop  gain,  A;  and  (3)  a  nonzero  output  resistance,  Ro.    

Electric Circuits 26

For  the  juA741  op  amp,  the  typical  values  of  Ri, A,  and  Ro  are  2 MΩ,  105,  and  75  Ω,  respec&vely.

vn = vp

in = ip = 0

Page 27: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Analysis  of  the  More  Realis&c  Op  Amp  Model  

•  Take  the  Inver&ng-­‐Amplifier  Circuit  for  example:

Electric Circuits 27

RL

Page 28: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Strain  Gages

Electric Circuits 28

The  pair  of  strain  gages  that  are  lengthened  once  the  bar  is  bent   have   the   values  R + ΔR in   the   bridge   feeding   the   difference  amplifier,  whereas   the  pair  of  strain  gages   that  are  shortened  have  the  values  R - ΔR.    

Page 29: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Electric Circuits 29

Page 30: The Operational Amplifierxuanqi-net.com/Circuit/Chapter5.pdfThe Operational Amplifier Qi Xuan Zhejiang University of Technology October 2015 Structure • Operaonal*Amplifier*Terminals*

Summary

•  Ideal  op  amp,  linear  region,  saturate    •  Voltage  constraint,  current  constraint  •  Inver&ng  amplifier,  summing  amplifier,  noninver&ng  amplifier,  difference  amplifier  

•  Common  mode  and  difference  mode    •  Difference-­‐amplifier,  common  mode  rejec&on  ra&o  (CMRR)  

•  More  realis&c  Op  Amp  model  

Electric Circuits 30