the laplace transform

23
THE LAPLACE TRANSFORM LEARNING GOALS Definition The transform maps a function of time into a function of a comple variable Two important singularity functions The unit step and the unit impulse Transform pairs Basic table with commonly used transforms Properties of the transform Theorem describing properties. Many of them are useful as computational tools Performing the inverse transformation By restricting attention to rational functions one can simplify the inversion process Convolution integral Basic results in system analysis Initial and Final value theorems Useful result relating time and s-domain behavior

Upload: chuck

Post on 05-Jan-2016

28 views

Category:

Documents


0 download

DESCRIPTION

THE LAPLACE TRANSFORM. LEARNING GOALS. Definition The transform maps a function of time into a function of a complex variable. Two important singularity functions The unit step and the unit impulse. Transform pairs Basic table with commonly used transforms. Properties of the transform - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: THE LAPLACE TRANSFORM

THE LAPLACE TRANSFORM

LEARNING GOALS

DefinitionThe transform maps a function of time into a function of a complexvariable

Two important singularity functionsThe unit step and the unit impulse

Transform pairsBasic table with commonly used transforms

Properties of the transformTheorem describing properties. Many of them are useful as computational tools

Performing the inverse transformationBy restricting attention to rational functions one can simplifythe inversion process

Convolution integralBasic results in system analysis

Initial and Final value theoremsUseful result relating time and s-domain behavior

Page 2: THE LAPLACE TRANSFORM

RoCs

s

defined well is integral the

ONE-SIDED LAPLACE TRANSFORM

limitlower the as consider tonecessary be willIt 0t

A SUFFICIENT CONDITION FOR EXISTENCE OF LAPLACE TRANSFORM

js

00)( ttf for assumes one transform the of uniqueness insure To

THE INVERSE TRANSFORM

Contour integralin the complex plane

Evaluating the integrals can be quite time-consuming. For this reason wedevelop better procedures that apply only to certain useful classes of function

Transform exists for

Re{ }s

Page 3: THE LAPLACE TRANSFORM

TWO SINGULARITY FUNCTIONS

Using the unit step to build functions

Unit step (Important “test” functionin system analysis)

)()()( tutftf functions time positiveFor

This function has derivative that is zeroeverywhere except at the origin.We will “define” a derivative for it

Using square pulses to approximatean arbitrary function

The narrower the pulse the betterthe approximation

Page 4: THE LAPLACE TRANSFORM

Computing the transform of the unit step

T

sxT

sx dxedxesU0

0lim1)(

Tsx

T es

sU0

1lim)(

)(lim1

)( jss

e

ssU

sT

T

0}Re{;1

)( sss

sURoC

j

ee

ssU

TjT

T

lim1

)(

An example of Region of Convergence (RoC)

)Re(s

)Im(s

0}Re{ s

Complex Plane

Page 5: THE LAPLACE TRANSFORM

THE IMPULSE FUNCTION

Sifting or samplingproperty of the impulse

Representation of the impulse

Height is proportionalto area

Laplace transform

0ste

defined NOT is integral the or For 1020 tttt

0

)(

t

t

assumed islimit lower

the for transform valida have toorder In

Approximationsto the impulse

These two conditions are notfeasible for “normal” functions

(Good model for impact, lightning, and other well known phenomena)

Page 6: THE LAPLACE TRANSFORM

LEARNING BY DOING

20 0 t

cos

2100 t

0

We will develop properties that willpermit the determination of a largenumber of transforms from a smalltable of transform pairs

Page 7: THE LAPLACE TRANSFORM

Linearity

Multiplication by exponential

Multiplication by time

Time shifting

Time truncation

Some properties willbe proved and used asefficient tools in thecomputation of Laplacetransforms

Page 8: THE LAPLACE TRANSFORM

LEARNING EXAMPLE

atetf )(for transform the Find

dtedteesF tasstat

0

)(

0

)(

( )

0

1 1( ) s a tF s e

s a s a

Basic Table of Laplace Transforms

We develop properties that expand thetable and allow computation of transformswithout using the definition

LINEARITY PROPERTY

Homogeneity

Additivity

Follow immediately from the linearityproperties of the integral

APPLICATION

0 21 1

[ ] [ ]2 2

j t j tst

j t j t

e ee dt

L e L e

ja ja

jsjssF

1

2

11

2

1)(

))((

)()(

2

1

jsjs

jsjs

22 s

s

Page 9: THE LAPLACE TRANSFORM

With a similar use of linearity one shows

22][sin

s

tL

Additional entries for the table

LEARNING EXAMPLE

)3/3cos()( ttx

for transform Laplace the Find

tttx 3sin3/sin3cos3/cos)(

9

33/sin

93/cos)( 22

ss

ssX

4( ) 3 ( ) 3 tx t t e LEARNING EXAMPLE

1 1( ) 3 1 3

4X s

s s

Application of Linearity

Notice that the unit step is not shown explicitly. Hence

equivalent are

and )(33 tu

Page 10: THE LAPLACE TRANSFORM

MULTIPLICATION BY EXPONENTIAL

( )

0 0

[ ( )] ( ) ( )at at st s a tL e f t e f t e dt f t e dt

( )F s a

LEARNING EXAMPLE

3( ) cos(10 )ty t e t

2( ) cos10 ( ) (From table)

100

sf t t F s

s

3

2

3( ) ( ) ( ) ( 3)

( 3) 100t s

y t e f t Y s F ss

LEARNING EXAMPLE

ttetx t 4sin3/sin4cos3/cos)( 2

16)2(

43/sin

16)2(

23/cos)( 22

ss

ssX

4,2 ba

New entries for the table of transform pairs

Page 11: THE LAPLACE TRANSFORM

MULTIPLICATION BY TIME

Differentiation under an integral1

( ) ( )

1( )

u t U ss

dtu t

ds s

2

1

s

LEARNING EXAMPLE stepunit the be Let )(tu

)()( ttutr

function ramp the of transform the Find

1

!))(( n

n

s

ntut

shows oneproperty the of

napplicatio succesiveBy

2

2 1)(

sds

dtut 3

2

s

This result, plus linearity, allowscomputation of the transform of anypolynomial

3621)( tttx

LEARNING BY DOING

2 4

1 1 3!( ) 2 6X s

s s s )()()( tutxtx

Hence 0.tfor zero be to

functions theconsider wethat Remember

Page 12: THE LAPLACE TRANSFORM

TIME SHIFTING PROPERTY

)()()()()()( 000 sFettuttfsFtutf st

LEARNING EXAMPLE

elsewhere0

311)(

ttf

)(tf

t1 3

1 )1( tu

)3( tu

)3()1()( tututf

ssss eess

es

esF 33 111)(

Page 13: THE LAPLACE TRANSFORM

LEARNING EXTENSION

)1()1()( )1()1( tuetutetf tt

FOR TRANSFORM THE FIND

One can apply the time shifting propertyif the time variable always appears as itappears in the argument of the step. Inthis case as t-1

)1()1()11()( )1()1( tuetuettf tt

)1()1(

)1(

)1()1()1()(

)1(

)1(

)1()1(

tuet

tue

tuetuettf

t

t

tt

2

2

)1(

1)(

1)(

stute

sttu

t

( 1)2

( 1) ( 1)( 1)

st e

t e u ts

)1()1()( tuetetf t

write also could One

property

truncation time theapply And

)(tg

)]1([)()1()()( tgesFtutgtf sL

2

)1(

)1(

1)]1([

)1(

stg

teetetg tt

L

The two properties are only differentrepresentations of the same result

Page 14: THE LAPLACE TRANSFORM

PERFORMING THE INVERSE TRANSFORM

FACT: Most of the Laplace transforms that we encounter are proper rational functions of the form

Zeros = roots of numeratorPoles = roots of denominator

nm

KNOWN: PARTIAL FRACTION EXPANSION

ii

iii

nPsQ

sP

sQ

sPKsF

nnnQ

sQsQsQ

)deg(;

)(

)(

)(

)()(

,)()deg(

)()()(

2

2

1

10

21

then

withr denominato the of

ionfactorizat COPRIME a is If

If m<n and the poles are simple

Simple, complex conjugate poles

Pole with multiplicity r

THE INVERSE TRANSFORM OF EACHPARTIAL FRACTION IS IMMEDIATE. WE ONLY NEED TO COMPUTE THE VARIOUS CONSTANTS

...)()(

)(22

222

1

s

C

s

sC

Page 15: THE LAPLACE TRANSFORM

SIMPLE POLES

)/( ips

LEARNING EXAMPLE

)5)(4)(2(

)3)(1(12)(

ssss

sssF

Write the partial fraction expansion

542)( 4321

s

K

s

K

s

K

s

KsF

Determine the coefficients (residues)

10

9

542

3112)(

01

sssFK

1)3)(2)(2(

)1)(1(12)()2(

22

ssFsK

8

36

)1)(2)(4(

)1)(3(12)()4(

43

ssFsK

5

32

)1)(3)(5(

)2)(4(12)()5(

54 ssFsK

Get the inverse of each term and writethe final answer

)(5

32

8

36

10

9)( 542 tueeetf ttt

The step function is necessary to make the function zero for t<0

“FORM” of the inverse transform

)()( 54

43

221 tueKeKeKKtf ttt

Page 16: THE LAPLACE TRANSFORM

COMPLEX CONJUGATE POLES

1 1| | | | jK K e

2cos

jj ee

Identity sEuler'

...)cos(||2)( 1 teKtf t

USING QUADRATIC FACTORS

...)()(

)(

)()(

)(22

222

122

1

1

s

C

s

sC

ssQ

sP

...sincos)( 21 teCteCtf tt Avoids using complex algebra. Must determine the coefficients in different way

The two forms are equivalent !

Page 17: THE LAPLACE TRANSFORM

LEARNING EXAMPLE)54(

)2(10)( 2

sss

ssY

1)2(

)12)(12(542

2

s

jsjsss

1212)12)(12(

)2(10)(

*110

js

K

js

K

s

K

jsjss

ssY

45

20

)12)(12(

)2(10)(

00

jjssYKs

43.1535

5

)2)(12(

)1(10)()12(

121 jj

jsYjsK

js 43.153236.2 678.2236.2 je

2( ) 4 2 2.236 cos( 2.678) ( )ty t e t u t Using quadratic factors

1)2(1)2(

)2(

)54(

)2(10)( 2

22

102

s

C

s

sC

s

C

sss

ssY

)54(

)2()1)2((2

212

0

sss

sCssCsC

sCssCsCs 212

0 )2()1)2(()2(10

0520:0 Cs For

00

210

102

520:

2410:

0:

Cs

CCCs

CCs

40 C

401 CC

22 C 20 20:2 CCs For

210210:1 CCCs For

Alternative way to determine coefficients

2 20 1 2( ) ( cos sin ) ( )t ty t C C e t C e t u t

...)cos(||2)( 1 teKtf t

MUST use radians inexponent

Page 18: THE LAPLACE TRANSFORM

MULTIPLE POLES ptnn et

nps

1

)!1(

1

)(

11-L

The method of identification of coefficients, or even the method of selectingvalues of s, may provide a convenient alternative for the determination of theresidues

rps )/( 1

Page 19: THE LAPLACE TRANSFORM

LEARNING EXAMPLE

10)1(

)1(10)()2( 322

ssFsK

20)1(

)2(10)()1(

1

313

ssFsK

1

1

312 2

)3(10)()1(

s

s s

s

ds

dsFs

ds

dK

2 21 1

10( 2) 10( 3) 1010

( 2) ( 2)s s

s s

s s

21

32

2

11)2(

10

!2

1)()1(

!2

1

sds

dsFs

ds

dK

s

10

)2(

10

)2(

)2(210

2

1

13

1411

ss ss

sK

)(2

1)( 2

22

131211 tueKetKteKeKtf tttt

2113 0: KKs

212112 340: KKKs

21312111 33510: KKKKs

21312110 22230: KKKKs

)2(

)1()2()2)(1()2()1(

)2(

)3(10)()1(

321312

211

3

s

sKsKssKssK

s

ssFs

Using identification of coefficients

Page 20: THE LAPLACE TRANSFORM

CONVOLUTION INTEGRAL

1

1 0 01

0

CLAIM: Given an ODE

... ...

there exists a function, ( ), 0, such that

( ) ( ) ( ) ( ) ( )

is a particular solution of the equation for 0

(Actually, the

n n m

n mn n m

t

d y d y d xa a y b b x

dt dt dth t t

y t h t x d h t x t

t

zero state response)

PROOF

Shifting

0;)()(

)(

0

)( ttdxxyety

sYt

xt

FINDEXAMPLE

ttyety t )()(2

1)(

2

1)(

ssY

ssY

2

1)(

2

11

ssY

s

)3(

2)( 2

ss

ssY

functions time positive are , ,If :RESULT 21 ff

)()()( 21 sFsFsF

Page 21: THE LAPLACE TRANSFORM

LEARNING EXAMPLEUsing convolution to determine a network response

5

10

)(

)()( 0

ssV

sVsH

S

function Network

ssVS

1)(

Input

)(sH)(sVS )(0 sV

)()()(0 sVsHsV Sss

sV1

5

10)(0

)(1

)(105

10 5

tus

tues

t

)()()( 50 tutuetv t functions time positive are , ,If :RESULT 21 ff

)()()( 21 sFsFsF

t

t detv )(50 10)(

tt dee

0

5510 5 5

0

110

5

tte e

5 50 ( ) 2 1t tv t e e 0;12 5 te t

0tFor

In general convolution is not an efficient approach to determine theoutput of a system. But it can be a very useful tool in special cases

Page 22: THE LAPLACE TRANSFORM

INITIAL AND FINAL VALUE THEOREMS

These results relate behavior of a function in the time domain with the behaviorof the Laplace transform in the s-domain

INITIAL VALUE THEOREM

)(lim)(lim

,),(

0 ssFtf

dtdftf

st Then transform.

Laplace have boththat Assume

0][lim

)0()(][

dt

df

fssFdt

df

s L

L

then bletransforma is derivative the if And

FINAL VALUE THEOREM

)(lim)(lim

)(lim

,),(

0 ssFtf

tfdt

dftf

st

t

Then exists. that and transform

Laplace have boththat Assume

00

0

)0()(lim)(

0

)0()()(

fssFdttdt

df

s

fssFdtetdt

df

s

st

as limits Taking

0

)()(lim

s

sFtft

at pole

single amost at andpart real negative with

poles has ifexist will :NOTE

Page 23: THE LAPLACE TRANSFORM

LEARNING EXAMPLE

)(

.)22(

)1(10)( 2

tf

sss

ssF

for valuesfinal and initial the Determine

Given

)(lim)0( ssFf s

22

)1(10lim)0( 2

ss

sf s 0

)(lim)(lim 0 ssFtf st

F(s) has one pole at s=0 and the others have negative real part. The final valuetheorem can be applied.

22

)1(10lim)(lim 20

ss

stf st 5

)4

3cos(255)(

tetf t

gets one inverse the Computing :NOTE

Clearly, f(t) has Laplace transform. And sF(s) -f(0) is also defined.

LEARNING EXTENSION

)(

.)22)(2(

)1()( 2

2

tf

ssss

ssF

for valuesfinal and initial the Determine

Given

)22)(2(

)1(lim)0( 2

2

sss

sf s 0

)22)(2(

)1(lim)(lim 2

2

0

sss

stf st

4

1

Laplace