the integrated carbon solutions index library...

128
THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY AND TECHNOLOGY MARKET ASSESSMENT REPORT JULY 2012 DRAFT

Upload: vantram

Post on 04-Apr-2018

230 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY AND TECHNOLOGY MARKET ASSESSMENT REPORT

JU

LY 2

012

DR

AF

T

Page 2: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

 

 

 

 

 

 

 

 

THE  INTEGRATED  CARBON  SOLUTIONS  INDEX  LIBRARY  AND  TECHNOLOGY  MARKET  ASSESSMENT  REPORT  

 

 

 

 

 

 

 

 

 

 

 

 

Key  Contributors:  

 

 

July  2012  

Page 3: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

 

 

 

Page 4: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

iii  

TABLE  OF  CONTENTS  

LIST  OF  FIGURES   V    LIST  OF  TABLES   VI    DOCUMENT  PURPOSE   VII    EXECUTIVE  SUMMARY   1  

Introduction   1  Mitigation  Strategies  Summary   3  

Technology  Overview:  Carbon  Capture   4  Technology  Overview:  Carbon  Storage  and  Sequestration   8  Technology  Overview:  Carbon  Reutilization   9  Policy  Overview:  Carbon  Management   10  

Conclusions:  Summary  of  Major  Barriers   11  Conclusions:  Additional  San  Antonio  Considerations   14  

 

SECTION  1:  ANALYSIS  OF  MITIGATION  STRATEGIES   17  Overview   18  Analysis  of  Carbon  Capture  Technologies   19  

Detailed  Analysis  of  Pre-­‐Combustion  Carbon  Capture  Technology   20  Detailed  Analysis  of  Post-­‐Combustion  Carbon  Capture  Technology   23  Detailed  Analysis  of  Oxy-­‐Combustion  Carbon  Capture  Technology   25  Research  and  Development  Trends  for  Carbon  Capture  Technologies   27  

Analysis  of  Carbon  Storage  Technologies   29  Carbon  Storage:  Geological   29  Carbon  Storage:  Aquifer   30  Carbon  Storage:  Oceanic   31  

Analysis  of  Carbon  Sequestration  Technologies   33  Analysis  of  Carbon  Reutilization   34  Analysis  of  Carbon  Management   37  

 

SECTION  2:    COMPANY  PROFILES   41  Air  Products  and  Chemicals   43  Alstom  Power   45  Aker  Clean  Carbon   48  BASF   50  Calera   52  Cansolv  Technologies   54  Codexis   56  ConocoPhillips   58  Dakota  Gasification  Company   60  Dow  Oil  &  Gas   62  Fluor  Power   65  Hitachi   67  The  Linde  Group   69  Mitsubishi  Heavy  Industries   71  Membrane  Technology  and  Research   73  Novomer   75  Powerspan   76  

Page 5: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

iv  

Siemens   78  Skyonic   80  Southern  Company   82  UOP   84  

 

APPENDIX  A:    ADDITIONAL  RESOURCES   85  APPENDIX  B:    LITERATURE  REVIEWED   87  APPENDIX  C:    SELECTED  LITERATURE  ABSTRACTS/SUMMARIES   97  APPENDIX  D:    EXAMPLE  PROJECTS   103  

Examples  of  Pre-­‐Combustion  Carbon  Capture  Projects   104  Examples  of  Post-­‐Combustion  Carbon  Capture  Projects   106  Examples  of  Oxy-­‐Combustion  Carbon  Capture  Projects   108  

APPENDIX  E:    LISTING  OF  POWER  PLANT  CCS  PROJECTS  WORLDWIDE   109  APPENDIX  F:    ADDITIONAL  SUPPORTING  INFORMATION   113      

Page 6: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

v  

LIST  OF  FIGURES    FIGURE  ES-­‐1.  Representation  of  Common  Carbon  Capture  and  Storage/Sequestration  Processes       3  FIGURE  ES-­‐2.  Three  Types  of  Carbon  Capture  Processes             4  FIGURE  ES-­‐3.  Potential  Research  and  Development  Paths  for  Carbon  Capture  Technologies     8  

FIGURE  ES-­‐4.  Potential  Carbon  Reutilization  Paths               10  FIGURE  1-­‐1.  Representations  of  Common  Carbon  Mitigation  Processes           17  FIGURE  1-­‐2.  Representation  of  Three  Common  Carbon  Capture  Processes         18  FIGURE  1-­‐3.  Block  Diagram  Illustrating  Power  Plant  with  Pre-­‐Combustion  CO2  Capture       19  FIGURE  1-­‐4.  Block  Diagram  Illustrating  Power  Plant  with  Post-­‐Combustion  CO2  Capture       22  

FIGURE  1-­‐5.  Block  Diagram  Illustrating  Power  Plant  with  Oxy-­‐Combustion  CO2  Capture       25  FIGURE  1-­‐6.  Potential  Research  and  Development  Paths  for  Carbon  Capture  Technologies     27  FIGURE  1-­‐7.  Distribution  of  brackish  groundwater  resources  in  Texas           30  

FIGURE  1-­‐8.  Schematic  Illustrating  the  Many  Uses  of  CO2.             33  FIGURE  1-­‐9.  Regional  Energy  Use  and  CO2  Emissions.               38  FIGURE  2-­‐1:  Air  Products’  Oxy-­‐Combustion  Technology  Process           43  

FIGURE  2-­‐2:  Air  Products’  Pre-­‐Combustion  Technology  Process             43  FIGURE  2-­‐3:  Alstom  Power’s  Post-­‐Combustion  Chilled  Ammonia  Process           45  

FIGURE  2-­‐4:  Alstom  Power’s  Oxy-­‐Combustion  Technology  Process             46  FIGURE  2-­‐5:  Aker  Clean  Carbon’s  Post-­‐Combustion  Technology  Process           48  

FIGURE  2-­‐6:  BASF/JGC  HiPACT  Process                 50  FIGURE  2-­‐7:  Calera’s  Mineralization  via  Aqueous  Precipitation  (MAP)  Process         52  FIGURE  2-­‐8:  Calera’s  Alkalinity  Based  on  Low  Energy  (ABLE)  Process           52  FIGURE  2-­‐9:  Cansolv’s  Post-­‐Combustion  Technology  Process             54  FIGURE  2-­‐10:  Codexis  Technology  Process                 56  

FIGURE  2-­‐11:  ConocoPhillips’  IGCC  Plant  Process  Flow             58  FIGURE  2-­‐12:  Simplified  Plant  Process  at  the  Great  Plains  Synfuels  Plant         60  FIGURE  2-­‐13:  Simplified  Selexol  Flow  Diagram               62  

FIGURE  2-­‐14:  Dow/Alstom’s  Post-­‐Combustion  Advanced  Amine  Design  in  South  Charleston,  WV     62  FIGURE  2-­‐15:  Fluor  Econamine  FG  Plus  Process  Flow                 65  FIGURE  2-­‐16:  Typical  Fluor  Econamine  FG  Plus  Process             65  FIGURE  2-­‐17:  Process  Diagram  of  the  Hitachi  CO₂  Capture  System           67  FIGURE  2-­‐18:  Linde  Pre-­‐Combustion  Process                 69  FIGURE  2-­‐19:  Linde  Post-­‐Combustion  Process               69  FIGURE  2-­‐20:  Linde  Oxy-­‐Combustion  Process               69  FIGURE  2-­‐21:  Flow  of  the  KM  CDR  Process                 71  FIGURE  2-­‐22:  Gas  Boiler  CO2  Capture  Plant  for  3,000  metric  T/D  (300MW)           71  FIGURE  2-­‐23:  CO2  Removal  from  Syngas  Using  Polaris  Membrane           73  FIGURE  2-­‐24:  Novomer  Technology  Process                 74  FIGURE  2-­‐25:  Power  Plant  with  ECO-­‐SO2  and  ECO2  Systems  Installed           76  FIGURE  2-­‐26:  Siemens  Gasification  Process  Flow               78  FIGURE  2-­‐27:  Flow  Diagram  of  the  SkyMine  Process               80  FIGURE  2-­‐28:  Proposed  Kemper  IGCC  Process  Flow               82  FIGURE  2-­‐29:  UOP  Syngas  Purification  Complex  Optimization             83  FIGURE  F-­‐1.  Estimated  Levelized  Cost  of  Energy  for  Various  Types  of  Power  Plants       110  FIGURE  F-­‐2.  Estimates  of  the  Cost  of  CO2  Capture  from  Coal-­‐Fired  Power  Plants  and  Sequestration  in                      

Geologic  Formations                   111  FIGURE  F-­‐3.  Total  Plant  Costs  for  Various  IGCC  and  PC  Scenarios           112  FIGURE  F-­‐4.  Calculated  LCOE  for  Various  IGCC  and  PC  Scenarios             113  

Page 7: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

vi  

LIST  OF  TABLES    TABLE  ES-­‐1.  Technology  Readiness  of  Carbon  Capture  Technologies           5  TABLE  1-­‐1.  Advantages  and  Challenges  of  Pre-­‐Combustion  Capture  Technologies       20  TABLE  1-­‐2.  Advantages  and  Challenges  of  Post-­‐Combustion  Capture  Technologies       24  TABLE  1-­‐3.  Advantages  and  Challenges  of  Oxy-­‐Combustion  Capture  Technologies       26  TABLE  F-­‐1.  Summary  of  Results  from  Recent  CCS  Studies             114    

Page 8: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

vii  

DOCUMENT  PURPOSE  As  part  of  a  strategic  plan  to  move  the  City  of  San  Antonio  towards  a  more  sustainable  future,  CPS  Energy  commissioned  research  at  the  Texas  Sustainable  Energy  Research  Institute  (the  Institute)  to  explore  methods  that  economically  reduce  and  manage  carbon  dioxide  (CO2)  emissions  from  coal  and  natural  gas  power  plants.    Specifically,  the  Institute  was  asked  to  complete  a  literature  review  of  peer-­‐reviewed  journal  articles  and  reports  pertaining  to  carbon  mitigation  technologies,  analyze  the  various  technologies  and  processes  in  this  market,  and  create  profiles  of  companies  and  products  available  in  the  market  for  future  reference.    Consequently,  this  document  includes  an  analysis  of  the  current  carbon  mitigation  technology  market  and  profiles  of  companies  with  technologies  in  the  market.    It  also  includes  appendices  with  a  list  of  worldwide  carbon  capture  and  sequestration  (CCS)  projects,  instructive  cost  and  efficiency  reports,  a  list  of  literature  reviewed,  and  some  selected  article  abstracts.    It  is  not  a  document  that  explains  “why”  CPS  Energy  should  be  interested  in  carbon  mitigation,  but  rather  a  document  that  provides  some  insights  into  “how”  CPS  Energy  could  employ  technologies  to  reduce  and  manage  CO2  from  their  coal  and  natural  gas  power  plants.    As  this  market  is  rapidly  evolving,  the  Institute  does  not  expect  the  report  to  remain  accurate  for  a  protracted  period,  given  the  nature  of  the  changing  industry  landscape  and  the  likelihood  for  market  disruption  by  companies  currently  in  the  development  or  demonstration  phase;  however,  this  report  represents  a  fairly  comprehensive  analysis  of  the  market  at  this  time.    Potential  next  steps  for  CPS  Energy  and  the  Institute  could  be  to  focus  on  particular  carbon  mitigation  technologies,  assess  their  applicability  to  CPS  Energy’s  generation  assets,  and  quantify  their  impacts  for  implementation  by  CPS  Energy.    

Page 9: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

viii  

 

       

Page 10: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

1  

EXECUTIVE  SUMMARY  

Introduction  From  the  Institute’s  review  of  peer-­‐reviewed  literature  and  other  related  documents,  it  is  apparent  that:    1)  cost-­‐effective  carbon  mitigation  technologies  are  still  in  the  research  and  development  stage,  2)  the  industry  is  diverse,  3)  the  industry  is  evolving  rapidly,  and  4)  San  Antonio  entities  can  play  a  key  role  in  the  industry’s  development.    Certain  CO2  capture  technologies  have  been  commercially  available  and  successfully  used  for  many  years,  albeit  on  a  much  smaller  scale,  in  various  industrial  applications  (examples:  natural  gas  processing,  fertilizer  production).    Some  technologies  have  shown  promise  in  limited  demonstration  and  pilot  projects.    However,  significant  research,  development,  and  demonstration  efforts  are  still  required  before  cost-­‐effective  solutions  that  economically  reduce  and  manage  CO2  emissions  from  coal  and  natural  gas  power  plants  become  widely  commercially  available.      Some  analysts  question  whether  carbon  capture  and  storage  technologies  will  ever  be  cost-­‐effective,  and  even  if  the  technology’s  costs  can  be  reduced,  some  question  whether  the  increased  power,  fuel,  and  water  requirements  of  CCS  plants  will  actually  help  mitigate  the  effects  of  carbon  globally.        However,  given  the  prevalence  of  coal  and  natural  gas  in  the  world’s  power  generation  fleet  and  future  projections  of  their  continued  use,  the  U.S.  Department  of  Energy  (DOE)  and  other  government  entities,  both  domestically  and  internationally,  have  been  investing  heavily  in  carbon  mitigation  technologies  and  projects  in  an  attempt  to  find  solutions  and  lower  their  costs.    These  efforts  have  attracted  an  impressive  list  of  corporate  partners  and  start-­‐up  companies,  but  have  not  yet  resulted  in  the  breakthroughs  to  commercially  produce  widespread,  cost-­‐effective  solutions.        Major  companies  such  as  Air  Products,  Alstom  Power,  BASF,  Dow,  Fluor,  Hitachi,  Linde  Group,  Mitsubishi,  and  Siemens  have  been  actively  researching  and  developing  solutions  in  this  industry  and  could  be  natural  partners  for  CPS  Energy  and  UTSA  on  future  efforts.    There  are  also  many  smaller  companies  with  limited  focus,  such  as  Skyonic,  Calera,  Novomer,  and  MTR,  with  promising  products  and  processes  that  could  be  key  drivers  of  the  next  generation  of  carbon  mitigation  technologies.      Much  of  the  peer-­‐reviewed  literature  addressed  the  technical  feasibility  of  specific  technologies  and/or  the  technical  performance  of  demonstrated  solutions,  rather  than  assessments  of  the  cost-­‐effectiveness  of  the  solutions  at  scale.    Given  the  lack  of  large-­‐scale  demonstrations,  this  lack  of  reliable,  peer-­‐reviewed  cost  data  is  understandable.    Some  instructive  analyses  from  DOE  and  others  have  been  included  in  the  appendices  for  reference.    Additional  analysis  will  be  required  to  determine  the  financial  implications  and  feasibility  of  deploying  particular  carbon  mitigation  solutions  at  CPS  Energy  facilities.      CPS  Energy  is  playing  a  key  role  in  the  continued  development  of  pre-­‐combustion  carbon  capture  technology  with  its  involvement  in  Summit  Power’s  Texas  Clean  Energy  Project  (TCEP)  Integrated  

Significant  research,  development,  and  demonstration  efforts  are  stil l  required  

before  cost-­‐effective  solutions  that  economically  reduce  and  manage  CO2  

emissions  from  coal  and  natural  gas  power  plants  become  widely  commercially  

available.  Major  companies,   innovative  start-­‐ups,  as  well  as  research  institutes  are  

all  active  in  these  efforts.  

 

Page 11: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

2  

Gasification  Combined  Cycle  (IGCC)  plant  and  should  be  commended  for  its  leadership  in  this  area.    The  data  gathered  and  lessons  learned  from  that  plant  will  provide  information  on  the  cutting  edge  of  pre-­‐combustion  capture  research  and  could  help  usher  in  an  era  of  new  clean  coal  plants.    However,  since  IGCC  pre-­‐combustion  technologies  are  not  typically  suitable  for  retrofit  to  existing  plants,  the  industry  will  continue  to  search  for  carbon  mitigation  technologies  that  can  be  applied  to  the  world’s  existing  fleet  of  coal  and  natural  gas  plants.    There  are  opportunities  for  CPS  Energy  and  other  San  Antonio  entities  to  help  lead  in  this  area  as  well.    Specifically,  energy  producers  and  utilities  like  Vattenfall  in  Europe,  SaskPower  in  Canada,  as  well  as  Chinese  and  Japanese  power  companies  have  been  working  with  a  variety  of  carbon  capture  industry  leaders  to  develop  and  test  advanced  chemical  solvents,  solid  sorbents,  membranes,  and  other  technologies  for  post-­‐combustion  capture.    CPS  Energy,  with  the  help  of  other  partners,  could  play  a  similar  role  in  testing  and  advancing  post-­‐combustion  technologies  that  would  result  in  increased  efficacy,  less  parasitic  energy  loss,  and/or  less  water  usage.        CPS  Energy  could  also  determine  if  its  facilities  are  suitable  for  promising  oxy-­‐combustion  technologies,  or  if  there  is  a  role  for  the  utility  to  help  advance  emerging  “chemical  looping”  technologies  that  act  in  a  similar  fashion.        In  addition  to  opportunities  to  help  advance  specific  carbon  capture  technologies,  San  Antonio  could  also  be  a  leader  in  process  improvements  for  carbon  capture,  such  as  designs  for  “flexible  operation”  of  plant  facilities  in  which  utilities  can  store  quantities  of  solvents  for  regeneration  at  off-­‐peak  times,  where  the  parasitic  energy  loss  of  carbon  capture  operation  would  be  less  noticeable.      In  addition  to  carbon  capture  innovation,  Texas  has  also  been  on  the  forefront  of  carbon  storage  and  sequestration  research  and  development,  with  impressive  activities  involving  storage  of  CO2  in  the  Gulf  of  Mexico,  shale  formations,  aquifers,  and  other  applicable  sites.    Given  the  proximity  of  San  Antonio  to  the  vast  Eagle  Ford  shale  and  abandoned  wells,  specific  opportunities  for  storage  should  be  investigated.        

Texas  has  also  helped  demonstrate  the  potential  of  carbon  reutilization  techniques  by  showing  the  value  of  carbon  reuse  in  enhanced  oil  recovery  (EOR),  cement/aggregate  production,  fertilizer  production,  conversion  to  plastics,  conversion  to  other  solids,  and  carbonation  in  the  beverage  industry.      It  is  important  to  note  that  CO2  does  not  need  to  be  captured  in  gaseous  form,  then  stored  or  sequestered,  to  be  successfully  and  economically  mitigated.      

 One  such  example  is  a  major  demonstration  project  of  Skyonic’s  carbon  “mineralization”  technology,  which  is  active  in  San  Antonio  at  a  Capitol  Aggregates  facility.    Skyonic’s  “SkyMine”  combines  salt  water  with  carbon  dioxide  to  produce  crystalline  baking  soda,  hydrogen  gas,  and  chlorine  gas.    San  Antonio  could  be  a  leader  in  successfully  reutilizing  CO2  in  green  building  materials,  plastics,  and  other  solids.    In  all,  there  appears  to  be  a  lot  of  opportunity  in  a  market  that  is  not  yet  well-­‐defined.    A  summary  of  the  mitigation  strategies  analyzed  as  well  as  additional  major  conclusions  follows.  

In  addition  to  opportunities  to  help  

advance  specific  carbon  capture  technologies,  San  Antonio  could  also  be  a  

leader  in  carbon  capture  process  improvements,  such  as  “flexible  operation”  

of  plants,  as  well  as  in  carbon  reutil ization  in  related  local  industries.  

 

Page 12: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

3  

Mitigation  Strategies  Summary  Throughout  the  literature  reviewed,  strategies  and  methods  for  reducing  CO2  emissions  were  interchangeably  named  and  categorized.    For  the  purpose  of  this  report,  carbon  mitigation  strategies  and  technologies  have  been  grouped  and  analyzed  in  the  following  categories:    

• Carbon  Capture:  The  process  of  separating  and  capturing  carbon  dioxide  at  a  power  plant  before  it  enters  the  atmosphere.  

o These  technologies  were  further  categorized  into  pre-­‐combustion,  post-­‐combustion,  and  oxy-­‐combustion  technologies  based  on  accepted  industry  nomenclature.  

o Some  carbon  “mineralization”  technologies  have  been  included  as  capture  technologies,  even  though  they  do  not  result  in  a  useable  gaseous  stream  of  CO2.    

• Carbon  Storage:  The  process  of  trapping  captured  CO2  in  a  geological  formation,  aquatic  feature,  or  other  appropriate  abiotic  (non-­‐living)  storage  site  to  prevent  release  into  the  atmosphere  (examples  include:  salt  domes,  depleted  oil  and  gas  fields,  oceans,  aquifers).    

• Carbon  Sequestration:  The  process  of  trapping  captured  carbon  dioxide  in  a  biotic  (living)  organism,  such  as  algae,  trees,  and  vegetation.    

• Carbon  Reutilization:  The  re-­‐use  of  captured  CO2  as  a  raw  material  or  critical  component  of  another  product  or  process  (examples:  enhanced  oil  recovery  for  the  oil  &  gas  industry,  urea  for  the  fertilizer/agricultural  industry,  carbonation  for  the  beverage  industry,  carbonate/cement  products  for  the  concrete  industry).    

• Carbon  Management:  The  combination  of  technical  solutions  with  socio-­‐economic  factors  such  as  policy,  regulatory  framework,  social  structure,  cultural  values,  education  levels  and  economic  implications  to  develop  a  comprehensive  solution  for  a  technical  and  scientific  challenge.  

A  schematic  diagram  depicting  common  carbon  mitigation  processes  is  presented  below.    

 FIGURE  ES-­‐1.  Representation  of  Common  Carbon  Capture  and  Storage/Sequestration  Processes    

SOURCE:  Intergovernmental  Panel  on  Climate  Change,  2005    

Page 13: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

4  

A  summary  of  our  technology  analyses  follows.    Detailed  analyses  can  be  found  in  Section  1  and  overviews  of  specific  companies  can  be  found  in  Section  2.  

Technology  Overview:  Carbon  Capture  Three  general  categories  of  carbon  capture  technologies  applicable  to  coal  and  natural  gas  power  plants  are  pre-­‐combustion,  post-­‐combustion,  and  oxy-­‐combustion  technologies  (DOE/NETL,  2010;  David  and  Thrombeau,  2001).    Pre-­‐combustion  refers  to  the  separation  of  CO2  from  a  fuel  source  prior  to  igniting  it,  while  post-­‐combustion  refers  to  CO2  separation  after  the  burning  of  fuel,  typically  from  flue  gas.    Oxy-­‐combustion  refers  to  burning  a  fuel  source  in  oxygen  (and  possibly  re-­‐circulated  flue  gases),  rather  than  in  air,  making  it  much  easier  and  economical  to  recover  CO2.        

Captured  CO2  can  be  transported  via  pipeline  or  tanker  truck  for  storage  and/or  sequestration  after  compression  and  dehydration  (DOE/NETL,  2010).        

A  summary  of  these  processes  in  a  coal  plant  is  depicted  in  the  diagram  from  EPRI  below.      

 

 FIGURE  ES-­‐2.  Three  Types  of  Carbon  Capture  Processes  

SOURCE:  EPRI,  2011    

CO2  capture  technologies  have  been  commercially  available  and  successfully  used  for  many  years,  albeit  on  a  much  smaller  scale,  in  various  industrial  applications.    Examples  include  natural  gas  processing  as  well  as  in  the  fertilizer  and  beverage  industries.    However,  cost-­‐effective,  carbon  capture  technologies  are  still  not  commercially  available  for  large-­‐scale  implementation  on  power  plants.    Three  primary  reasons  are  often  cited  for  the  lack  of  available  technologies:    

1)  They  have  not  been  successfully  demonstrated  at  the  scale  necessary  for  power  plants;    2)  The  parasitic  loads  (both  steam  and  power)  required  to  support  CO2  capture  significantly  decrease  power  generating  capacity  and  require  more  fuel  input  to  produce  the  same  power  output;  and  3)  They  are  not  cost-­‐effective  (DOE/NETL,  2010).  

 

Demonstration  projects  under  the  DOE’s  Clean  Coal  Power  Initiative  (CCPI)  have  been  successful,  but  literature  reviewed  indicated  that  current  electricity  markets  do  not  support  CCS  project  costs  and  risks,  even  where  climate  policies  and  carbon  pricing  are  already  enacted  (Global  CCS  Institute,  2011).    Heavy  

Pre-­‐combustion  capture  is  mainly  applicable  to  integrated  gasification  combined  cycle  (IGCC)  

power  plants,  while  post-­‐combustion  and  oxy-­‐combustion  technologies  could  be  applied,  or  

retrofitted,  to  conventional  power  plants.        

 

Page 14: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

5  

subsidies  and  incentives  are  making  particular  demonstration  projects  economical.    However,  significant  research,  development,  and  demonstration  efforts  are  still  required  before  cost-­‐effective  solutions  that  economically  reduce  and  manage  CO2  emissions  from  power  plants  become  widely  available.  Based  on  the  Institute’s  research  and  analysis,  the  technology  readiness  of  the  various  methods  of  carbon  capture  has  been  summarized  below.      

 TABLE  ES-­‐1.  Technology  Readiness  of  Carbon  Capture  Technologies  

 Priority   Technology   Example  

Pre-­Combustion:  Physical  solvents  in  IGCC  plants  with  water-­‐gas  shift  systems  

Examples:  Linde  Rectisol,  Dow  Selexol  

Post-­Combustion:  Amine-­‐based  chemical  solvents  

Examples:  Fluor  Econamine  FG  Plus,  Hitachi  H3,  Mitsubishi  Heavy  Industries  KS-­‐1    

Post-­Combustion:  Ammonia-­‐based  chemical  solvents  

Example:  Alstom’s  Chilled  Ammonia  Process,  Powerspan  ECO2  

Oxy-­Combustion    

Examples:  Air  Products,  Alstom      

“Tier  1”  Technologies  (“Proven”  Technologies)  

Carbon  Mineralization    

Examples:  Skyonic,  Calera  

Post-­Combustion:  Other/advanced  amine  solvents  

Examples:  Aker  Clean  Carbon,  Cansolv,  Dow/Alstom  UCARSOL,  Siemens  PostCap  

Pre-­  and  Post-­Combustion:  Solid  sorbents    

Examples:  RTI  International’s  Dry  Carbonate,  ADA-­‐ES    

Pre-­  and  Post-­Combustion:  Membranes  

Example:  MTR  Polaris  

Pre-­Combustion:  IGCC  with  pressure  swing  adsorption  systems  

Example:  Air  Products  H2PSA  from  Sour  Syngas  Technology  

Chemical  Looping   Examples:  Alstom  Limestone,  Ohio  State  Metal  Oxide  

“Tier  2”  Technologies  (“Promising  Unproven”  Technologies)  

Advanced  Oxy-­Combustion    

Examples:  Air  Products,  Alstom      

Pre-­  and  Post-­Combustion:  Advanced  membranes  

 

Advanced  Chemical  Looping    

 

Post-­Combustion:  Metal  Organic  Frameworks  

 

Post-­Combustion:  Ionic  liquids  

 

Post-­Combustion:  Enzymes    

Example:  Codexis  

“Tier  3”  Technologies  (“Conceptual”  Technologies  with  Significant  RD&D  Needed)  

Post-­Combustion:  Other  biological  processes  

 

 

The  Institute  presented  these  tiers  in  terms  of  technology  readiness,  rather  than  in  terms  of  cost-­‐effectiveness  or  applicability  to  specific  CPS  Energy  sites,  because  information  for  implementation  of  a  given  technology  at  a  specific  power  plant  is  highly  dependent  on  the  design  and  unique  characteristics  of  the  power  plant.    Consequently,  it  is  very  difficult  to  provide  meaningful  cost  information  (construction,  capital,  and  annual  operation  and  maintenance)  or  feasibility  estimates  for  any  technology  without  design  specifications  of  individual  plants.  

Page 15: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

6  

Additionally,  electric  utilities  may  have  different  views  on  the  effects  of  the  loss  of  steam  and/or  energy  output  at  a  power  plant  as  a  result  of  the  CCS  processes  (i.e.,  it  is  not  just  simply  increased  capital  costs),  which  affects  cost-­‐effectiveness.    Some  representative  cost  information  is  presented  in  the  appendices,  but  specific  cost  figures  for  CPS  Energy  will  have  to  be  determined  based  on  the  characteristics  of  individual  plants,  current  energy  prices,  and  the  items  CPS  Energy  would  like  to  include  in  the  cost  model.    Specific  examples  of  deployment  and  demonstration  of  carbon  capture  technologies  follow.  

Specific  Examples:  Carbon  Capture  Technology  Deployments     Technology   Pre-­‐Combustion  Physical  Solvent:  Linde  Rectisol  

Proposed  at  Summit  Power’s  IGCC  Texas  Clean  Energy  Project  (TCEP)  Proposed  at  SCS  Energy’s  Hydrogen  Energy  California  (HECA)  project  

Physical  Solvent:  Selexol  

Demonstrated  at  Wabash  River    Proposed  at  Southern  Company’s  Kemper  County  IGCC  

 Technology   Post-­‐Combustion  

Amine-­‐based:  Fluor  Econamine  FG+  

Licensed  at  commercial  scale  in  26  industrial  plants  worldwide,  including  three  in  the  United  States    Demonstrated  at  NRG’s  Washington  Parish  Plant    Proposed  at  Tenaska’s  Trailblazer  Energy  Center  in  TX  

Amine-­‐based:  Mitsubishi  Heavy  Industries  KS-­‐1  

Deployed  at  Southern  Energy’s  Plant  Barry  Power  Station  and  a  plant  in  Nagasaki,  Japan  

Amine-­‐based:  CanSolv  

Proposed  at  SaskPower’s  Boundary  Dam  project  

Amine-­‐based:  Aker  Clean  Carbon  

Being  tested  at  Technology  Centre  Mongstad  in  Norway  

Amine-­‐Based:  Hitachi  

Will  be  the  first  technology  tested  at  the  testing  facility  at  SaskPower’s  Shand  Power  Station  

Chilled  Ammonia  Process:  Alstom  

Demonstrated  at  AEP’s  Mountaineer  Project    Demonstrated  at  We  Energies  Pleasant  Prairie  Plant  Being  tested  at  Technology  Centre  Mongstad  in  Norway  

Mineralization:  Skyonic  

Demonstrated  at  Luminant’s  Big  Brown  Steam  Electric  Station  Demonstrated  at  Capitol  Aggregates  cement  plant  in  San  Antonio  

 Technology   Oxy-­‐Combustion  

Oxy-­‐Combustion:    Air  Products    

Demonstrated  at  Vattenfall’s  Schwarze  Pumpe  plant  in  Germany  Demonstrated  at  Doosan  Babcock’s  Clean  Combustion  Test  Facility  in  Scotland  Piloted  at  a  boiler  simulation  facility  in  Windsor,  CT  

 Additional  Summary  Analysis:  Carbon  Capture  Technologies  Most  pre-­‐combustion  carbon  capture  technologies  demonstrated  to  date  have  used  gasifiers  and  other  systems  to  produce  a  CO2  stream,  then  employed  physical  solvents  (examples:  Linde  Rectisol,  Selexol)  to  treat  the  gas  before  igniting  it.    Research  and  development  efforts  for  pre-­‐combustion  technologies  include  the  use  of  advanced  physical  solvents  and  membranes  as  well  as  the  use  of  chemical  looping  and  pressure  swing  adsorption  (PSA)  systems  in  IGCC  designs  to  reduce  costs  and  improve  efficiency.    CPS  Energy  is  playing  a  key  role  in  the  continued  development  of  pre-­‐combustion  capture  technologies  with  its  involvement  in  Summit  Power’s  Texas  Clean  Energy  Project  (TCEP)  IGCC  plant.    The  data  gathered  and  lessons  learned  from  that  plant  will  provide  information  on  the  cutting  edge  of  pre-­‐combustion  capture  development.    However  while  IGCC  with  capture  is  a  technically  viable  and  proven  method,  it  can  only  be  retrofitted  to  plants  in  limited  circumstances  (Gutierrez,  2006),  therefore  

Page 16: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

7  

additional  methods  of  capture  that  can  be  applied  to  the  world’s  existing  coal  and  natural  gas  fleets  continue  to  garner  significant  interest  as  well.    Research  on  post-­‐combustion  carbon  capture  is  attracting  much  attention  due  to  the  fact  that  it  can  be  retrofitted  on  existing  coal  power  plants  (Darde  et  al.,  2012).    Post-­‐combustion  carbon  capture  technologies  successfully  demonstrated  to  treat  flue  gases  include  amine-­‐based  chemical  solvents  (examples:  Fluor  Econamine  FG  Plus,  Mitsubishi  Heavy  Industries’  KS-­‐1),  ammonia-­‐based  chemical  solvents  (examples:  Alstom  CAP,  Powerspan  ECO2),  and  carbon  mineralization  technologies  (examples:  Skyonic,  Calera).        Existing  amine-­‐based  systems  can  be  commercially  utilized;  however,  they  have  a  number  of  major  disadvantages,  including  high  parasitic  steam  loss  due  to  the  needs  of  the  solvent  regeneration  process,  sensitivity  to  other  gases/pollutants  (e.g.,  SOx  and  O2),  solvent  loss  due  to  vaporization,  and  higher  capital  and  operating  costs  than  common  physical  solvents  (Nelson,  2008).    Current  post-­‐combustion  amine  processes  are  more  expensive,  from  an  electrical  utility’s  perspective,  than  current  physical  solvent  pre-­‐combustion  options  (Southern  Energy  presentation,  2011).    Research  and  development  for  post-­‐combustion  technologies  include  the  use  of  advanced  amine  solvents,  other  chemical  solvents,  solid  sorbents,  membrane  systems,  metal  organic  frameworks,  ionic  liquids,  enzymes,  and  other  biological  processes.    Research  is  also  being  conducted  into  “flexible”  operation  of  coal  fired  power  plants  with  post-­‐combustion  capture  technologies,  including  the  use  of  solvent  storage  as  a  method  to  increase  plant  efficiency  at  times  of  peak  need  (Chalmers  et  al.,  2009).    By  storing  used  solvent,  rather  than  immediately  subjecting  it  to  the  regeneration  process,  parasitic  power  losses  can  be  reduced.    Plant  operators  could  also  choose  to  selectively  bypass  the  capture  

technologies  at  times  of  peak  need,  assuming  plant  design  accommodates  it,  which  could  be  environmentally  preferable  to  running  inefficient  gas  peaking  plants  or  other  generation  sources  (Chalmers  et  al.,  2009).    Much  research  and  development  attention  is  also  given  to  oxy-­‐combustion  technologies  since  they  could  be  particularly  cost-­‐effective  and  efficient  retrofit  technologies.    Oxy-­‐combustion  

has  a  lower  relative  cost  on  both  levelized  cost  of  electricity  as  well  as  avoided  CO2  costs  when  compared  with  other  CCS  technologies  (Global  CCS  Institute,  2011).      

Other  benefits  of  oxy-­‐combustion  are  that  it  can  utilize  a  wide  variety  of  coals  including  lignite,  sub-­‐bituminous  and  bituminous  fuels  and  that  retrofitting/repowering  requires  less  complex  integration  into  the  existing  plant  energy  balance  than  post-­‐combustion  carbon  capture  (Vitalis,  2007).    Additionally,  no  new  chemicals  or  waste  streams  are  introduced  into  the  plant  process.    The  bottom  ash,  fly  ash,  and  flue  gas  desulfurization  waste  streams  remain  unchanged,  and  there  is  no  major  change  to  the  plant  water  balance.    In  fact,  for  low  rank  fuels,  there  may  be  a  positive  water  balance  from  condensation  of  water  from  the  flue  gas  stream  (Vitalis,  2007).    At  the  same  time,  these  technologies  are  the  least  mature  technologies  and  have  a  higher  level  of  uncertainty  (Global  CCS  Institute,  2011).    They  also  have  some  increased  capital  costs.    To  drastically  reduce  the  cost  of  oxy-­‐combustion,  systems  and  process  improvements  will  need  to  be  developed  to  

Research  on  post-­‐combustion  carbon  capture  is  

attracting  much  attention  due  to  the  fact  that  it  can  be  retrofitted  on  existing  coal  power  plants.    

Much  attention  is  also  given  to  oxy-­‐combustion  technologies  since  they  could  be  particularly  

cost-­‐effective  and  efficient  retrofit  technologies.  

Page 17: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

8  

reduce  the  cost  of  oxygen  production.    Current  oxy-­‐combustion  technologies,  such  as  systems  from  Air  Products,  typically  use  expensive  cryogenic  oxygen  systems  to  provide  the  oxygen.    New  technologies  or  processes  to  produce  oxygen,  such  as  chemical  looping,  could  reduce  costs  significantly.  A  summary  of  potential  R&D  paths  as  a  function  of  both  cost  reduction  benefits  and  time  to  commercialization  is  shown  below  (Figueroa,  2007).    

 FIGURE  ES-­‐3.  Potential  Research  and  Development  Paths  for  Carbon  Capture  Technologies  

SOURCE:  Figueroa,  2007    

Additional  details  and  analysis  on  the  relative  advantages  and  disadvantages  of  the  carbon  capture  

technologies  can  be  found  in  Section  1  (Technology  Analysis).    Company  profiles  can  be  found  in  Section  2  (Company  Profiles).  

Technology  Overview:  Carbon  Storage  and  Sequestration  The  terms  “storage”  and  “sequestration”  are  used  synonymously  throughout  industry  literature;  however,  for  the  purposes  of  this  document,  storage  and  sequestration  have  been  divided  into  two  distinct  groups  based  on  whether  the  carbon  is  stored  in  a  biotic  location  (i.e.,  a  living  organism)  or  an  abiotic  environment.          

Internationally,  there  have  been  demonstrations  of  carbon  storage,  reuse,  and  sequestration  in  multiple  locations,  including  in  geologic  formations,  aquifers,  and  oil  fields.    In  Texas  there  has  been  a  pilot  carbon  storage  project  in  the  Frio  Formation,  and  there  have  been  additional  activities  in  the  Permian  

“Carbon  storage”  will  refer  to  the  process  of  trapping  captured  carbon  dioxide  in  a  geological  formation,  aquatic  feature  or  other  appropriate  abiotic  storage  site  to  prevent  release  into  the  atmosphere  (examples:  depleted  oil  and  gas  fields,  salt  domes,  oceans,  aquifers),  while  “carbon  sequestration”  will  refer  to  the  process  of  trapping  captured  carbon  dioxide  in  living  organisms,  such  as  algae,  trees,  and  vegetation.        

Page 18: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

9  

Basin  for  enhanced  oil  recovery  and  for  storage  in  the  Tuscaloosa-­‐Woodbine  formation  (Doughty  et  al,  2008).      Because  of  economic,  geologic,  and  geographic  conditions,  Texas  could  be  a  prime  location  for  wide  scale  implementation  of  geological  CO2  storage  and  enhanced  oil  recovery.    With  large  geological  formations  such  as  those  in  the  Permian  Basin  and  the  Gulf  Coast,  paired  with  myriad  abandoned  oil  wells,  Texas  is  in  a  better  position  than  other  states  to  exploit  geologic  CO2  storage  as  part  of  its  emissions  management  portfolio  (Gromatzky  et  al.,  2010).    CO2  storage  in  saline  aquifers  may  also  be  a  viable  option  in  Texas  due  to  the  state’s  abundant  brackish  groundwater  resources.    However,  since  San  Antonio  is  located  about  140  miles  from  the  coast,  CPS  Energy’s  ability  to  incorporate  oceanic  storage  as  part  of  its  carbon  management  strategies  is  limited.    Carbon  storage  in  the  state  has  not  been  utilized  to  its  fullest  extent  to  date  due  to  financial  implications,  technical  limitations,  and  lack  of  clear  regulatory  framework.    However,  research  continues  to  provide  answers  to  questions  posed  in  those  areas  (Gromatzky  et  al.,  2010).  It  should  also  be  noted  that  transporting  CO2  increases  the  overall  costs,  carbon  footprint,  and  energy  requirements  associated  with  implementation,  so  even  if  storage  is  technically  feasible,  the  transportation/infrastructure  costs  could  make  storage/sequestration  uneconomic.  

Technology  Overview:  Carbon  Reutilization  Carbon  reutilization  is  the  use  of  waste  CO2  as  a  raw  material  or  critical  component  of  a  new  beneficial  product  or  process.    In  an  ideal  sustainability  scenario,  the  waste  products  of  one  industry  serve  as  raw  materials  for  another.        Several  products  and  processes  have  the  potential  to  use  CO2  captured  from  local  power  plants,  including  the  fertilizer  industry  and  the  oil  &  gas  industry.    Some  companies  have  also  been  investigating  the  use  of  captured  carbon  into  green  building  materials,  plastics,  and  other  household  products.    More  research  will  be  necessary  to  demonstrate  the  viability  and  safety  of  products  that  use  captured  CO2  and  to  ensure  they  meet  federal  standards,  but  they  appear  to  hold  much  potential.    Potential  uses  for  captured  CO2  in  other  processes  are  shown  in  the  following  figure.    

Page 19: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

10  

 FIGURE  ES-­‐4.  Potential  Carbon  Reutilization  Paths  

SOURCE:  DOE/NETL,  2012  

CO2  reutilization  is  a  technology  that  would  benefit  CPS  Energy  as  well  as  the  San  Antonio  economy.      

 

 

 

Policy  Overview:  Carbon  Management  Carbon  management  is  the  combination  of  technology  and  innovation  with  socio-­‐economic  factors  such  as  policy,  regulatory  frameworks,  social  aspects,  cultural  values,  knowledge  management,  capacity  building,  geography,  and  economic  implications  to  develop  a  set  of  comprehensive  solutions  that  allow  for  the  reduction  of  carbon  emissions  while  remaining  competitive  in  the  marketplace  for  a  technical  and  scientific  challenge.        Clean  energy  policies,  as  well  as  sound  economic  principles,  are  needed  on  a  global  scale  to  transition  away  from  fossil  fuels  (Cleetus,  2011).    Policies  are  currently  being  executed  in  the  United  States  at  the  state  level,  but  a  cohesive  federal  policy  has  yet  to  be  implemented.        Carbon  markets  are  designed  to  facilitate  the  buying  and  selling  of  emissions  credits.    There  are  two  sub-­‐markets  of  the  global  carbon  market:  compliance  (regulatory)  and  voluntary  (Bayon,  

Reutilization  will  play  a  large  role  in  the  move  towards  a  

more  sustainable,  prosperous  and  competitive  metropolitan  area  and  could  catapult  San  Antonio  to  a  position  of  leadership  in  the  region,  state,  nation  and  the  

globe  in  general.  

Policy  makers  have  discussed  the  topic  of  climate  change  and  reducing  global  CO2  emissions  for  over  20  years,  with  increasing  attention  since  the  1997  Kyoto  Protocol  (Pielke,  2009).        Two  market-­‐based  instruments  for  carbon  

reduction  have  been  widely  considered  since  2003:  emissions-­‐trading  and  carbon  taxes  

(Helm,  2003).  

Page 20: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

11  

2007).    Compliance  markets  are  tied  to  the  Kyoto  Protocol,  or  other  regulatory  frameworks,  using  regulation  mechanisms  such  as  emissions  trading,  joint  implementation,  or  clean  development  mechanisms.    Voluntary  markets,  also  referred  to  as  “green  power  markets,”  allow  consumers  to  choose  cleaner  electricity  sources  for  their  own  consumption  in  order  to  support  the  development  of  renewable  energy  sources  (Bird,  2008).      Cap-­‐and-­‐trade  programs  are  different  from  carbon  trading  in  that  there  is  an  overall  cap  to  the  amount  of  emissions  allowed.    Due  to  the  emissions  cap  and  associated  tax,  the  cost  of  electricity  generation  from  traditional  fossil  fuels  would  increase,  thus  benefiting  renewable  and  cleaner  energy  generation  alternatives  (Bird,  2008).    The  United  Nations  Framework  Convention  on  Climate  Change  has  attempted  to  negotiate  commitments  to  cut  greenhouse  gas  emissions  from  nations  with  large  outputs;  however  a  debate  has  ensued  over  whether  a  flat  tax  on  carbon  emissions  or  a  cap-­‐and-­‐trade  policy  will  be  more  beneficial  (Cleetus,  2011).        Regardless  of  the  carbon  management  strategy  selected,  for  an  energy  policy  to  be  effective  and  be  an  integral  part  of  our  carbon  mitigation  portfolio,  it  must  “reduce  our  dependence  on  fossil  fuels,  protect  the  environment,  and  take  meaningful  steps  to  solve  global  warming  while  creating  jobs  and  saving  money”  (Cragg,  2009).    

Conclusions:  Summary  of  Major  Barriers  As  analyzed  in  this  document,  there  are  many  methods  and  technologies  that  could  be  employed  to  reduce  and  manage  CO2  emissions  from  coal  and  natural  gas  power  plants,  but  there  are  some  major  obstacles  and  challenges  that  will  need  to  be  overcome  before  they  become  widely  commercially  available,  especially  in  Texas.    Some  of  those  major  barriers  include:    

• Cost-­‐Effectiveness  • Technology  Risk  • Parasitic  Power  Loss  /  Energy  Penalty  • Water  Usage  • Policy/Regulatory  Uncertainty  • Identification  and  Availability  of  Appropriate  Storage/Sequestration/Reutilization  Sites  

 

Cost-­‐Effectiveness  As  stated  in  the  Tenaska  Front-­‐End  Engineering  Design  Study  for  their  Trailblazer  Project:      

“One  of   the  well-­‐known  challenges  with  CCS   is   the  cost  –  primarily   in   terms  of   the  capital  cost  and   energy   consumption.   Under   current   market   conditions,   power   plants   with   CCS   cannot  compete  with  those  without  CCS”  (Fluor,  2012).  

Increased  Capital  Costs  Part   of   these   increased   costs   of   carbon   mitigation   technologies   are   related   to   additional   capital  expenditures   for   additional   requisite  equipment.     For  example,  when   the  proposed  Good  Spring   IGCC  was   announced   to   be   changed   to   a   NGCC   on  May   17,   2012,   the   press   release   touted   a   reduction   in  capital  costs  of  at  least  60%  (Canada  NewsWire,  2012).    DOE/NETL  analyses  indicate  that  for  a  nominal  550-­‐MW  net  output  power  plant,  the  addition  of  CO2  capture  technology  increases  the  capital  cost  of  a  new  IGCC  facility  by  $400  million.    For  post-­‐

Page 21: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

12  

combustion  and  oxy-­‐combustion  capture,  the  increase  in  capital  costs  is  $900  million  and  $700  million  respectively.    For  an  NGCC  plant,  the  capital  cost  would  increase  by  $340  million  (DOE,  2010).    

Increased  Fuel  Costs  and  Decreased  Revenues  A  plant  with  carbon  mitigation  technologies  will  operate  at  a  lower  efficiency  due  to  parasitic  power  and  steam  losses,  therefore  a  greater  amount  of  fuel  will  be  needed  to  produce  the  same  net  output,  which  will  increase  fuel  use  and,  therefore,  fuel  costs.    Also,  any  reductions  in  potential  net  output  of  a  plant  represent  forgone  revenues.  

Cost  of  Energy  Challenges  The  increased  costs  of  these  plants  leads  to  increased  electric  prices  for  generated  power,  which  in  the  current  power  markets,  may  be  prohibitive.    For  example,  the  reported  Levelized  Cost  of  Electricity  (LCOE)  reported  in  recent  DOE/NETL  analyses  ranged  from  $116/MWh  to  $151/MWh,  depending  upon  the  type  of  facility  and  whether  the  application  was  for  a  new  plant  or  a  retrofit  of  an  existing  plant.  This  compared  to  an  LCOE  of  $85/MWh  for  a  new  supercritical  pulverized  coal  plant  and  a  $27/MWh  LCOE  for  the  existing  fleet  of  power  plants.    A  study  released  in  June  2011  by  Alstom  Power,  based  on  experience  from  their  13  pilot  and  demonstration  CCS  projects  and  validated  by  independent  experts,  concluded  that  the  cost  of  generating  electricity  at  commercial  scale  in  2015  will  be  below  10.6  cents/kWh  when  burning  coal  and  below  8.1  cents/kWh  when  burning  gas  (at  today’s  euro-­‐USD  exchange  rates).    A  compilation  of  multiple  costs  of  energy  figures  compiled  in  the  2011  Global  CCS  Status  Report  can  be  found  in  Appendix  F.  

Effects  of  Natural  Gas  Prices  Another  major  challenge  for  carbon  mitigation  projects  in  Texas  is  the  low  price  of  natural  gas.    Over  50%  of  ERCOT’s  generation  capacity  is  natural  gas,  and  therefore  the  cost  of  natural  gas  sets  the  marginal  price  of  power.    For  a  utility  looking  to  purchase  low-­‐cost  baseload  power,  natural  gas  plants  are  currently  much  more  competitive  than  coal  plants  with  carbon  capture  (and  natural  gas  plants  with  the  additional  cost  of  carbon  capture).    A  sensitivity  study  performed  by  DOE  on  natural  gas  price  reveals  that  the  COE  for  IGCC  is  equal  to  that  of  NGCC  at  $7.73/MMBtu,  and  for  pulverized  coal,  the  COE  is  equivalent  to  NGCC  at  a  gas  price  of  $8.87/MMBtu  (DOE  NETL,  2008).    With  natural  gas  prices  predicted  to  stay  under  $5/MMBtu  levels  for  at  least  the  next  5  years,  per  UT’s  Bureau  of  Economic  Geology,  it  will  be  hard  to  have  a  competitive  bid  from  an  IGCC  or  other  CCS  project.  

Effects  of  Additional  Revenue  Streams  Additional  revenue  produced  by  carbon  reutilization  markets  help  project  economics,  but  merely  offset  some  costs  and  contain  variability  adversely  impact  economics.    As  stated  in  the  Tenaska  Front-­‐End  Engineering  Design  Study  for  their  Trailblazer  Project:    

“The   strategic   location   of   the   Project   provides   the   ability   to   sell   CO2   into   the  mature   Permian  Basin  EOR  market.  This  defrays  some  of  the  costs  of  CCS.  However,  the  current  CO2  market  prices  are   insufficient   to   cover   the   entire   costs   of   CO2   capture.   In   addition,   the   CO2   prices   vary   as   a  function   of   oil   prices,  which   introduces   uncertainty   in   this   revenue   stream   over   the   life   of   the  Project.”  

Page 22: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

13  

Technology  Risk  Carbon  capture  and  storage  projects  have  significant  additional  costs  and  risks  from  scale-­‐up  and  the  first-­‐of-­‐a-­‐kind  nature  of  incorporating  capture  technology  (Global  CCS  Status  Report,  2011).    Electricity  markets  do  not  currently  support  these  costs  and  risks,  even  where  climate  policies  and  carbon  pricing  are  already  enacted  (Global  CCS  Status  Report,  2011).    

Parasitic  Power  Loss  /  Energy  Penalty  Another  major  challenge  for  carbon  mitigation  technologies  can  be  the  energy  penalty  or  ‘parasitic  load’  involved  in  applying  the  technologies  (Global  CCS  Status  Report,  2011).    Both  CO2  capture  technologies  and  CO2  compression  technologies  require  auxiliary  power  to  operate  and  often  require  steam  as  well.    In  the  published  project  documents,  Southern  Power  stated  that  operating  costs  for  an  amine  technology  were  too  high,  due  to  elevated  steam  usage  for  regeneration;  therefore,  a  physical  solvent  was  selected.    DOE/NETL  analyses  indicate  that  for  a  nominal  550-­‐MW  net  output  power  plant,  the  addition  of  CO2  capture  technology  results  in  an  energy  penalty  of  20%.    For  post-­‐combustion  and  oxy-­‐combustion  capture,  the  energy  penalties  would  be  30%  and  25%.    For  an  NGCC  plant,  the  energy  penalty  would  be  15%  (DOE,  2010).      Additionally,  since  the  plant  is  operating  at  a  lower  efficiency,  a  greater  amount  of  fuel  is  needed  to  produce  the  same  net  output.    This  increased  fuel  use  increases  cost.        

Policy/Regulatory  Uncertainty  The  lack  of  stable  regulatory  and  policy  environments  is  also  a  key  barrier  to  the  development  of  this  industry.    The  presence  of  a  price  on  carbon  emissions  would  directly  affect  project  economics,  but  the  framework  for  such  a  financial  mechanism  is  not  imminent.    Future  tax  credits  and  other  incentives  are  also  not  guaranteed.    We  have  also  observed  that  obtaining  regulatory  approval  to  recoup  the  additional  costs  of  projects  with  carbon  mitigation  technologies  has  been  problematic.    Southern  Company  ran  into  some  issues  with  the  Kemper  County  IGCC  and  the  Illinois  Legislature  voted  against  certain  project  incentives,  for  example.    

Identification  and  Availability  of  Storage/Sequestration/Reutilization  Sites  Another  challenge  will  be  finding  and  securing  suitable  sites  to  store  or  sequester  captured  carbon.    Texas  has  been  experimenting  with  storage  and  sequestration  in  shale  formations,  oceans,  and  aquifers,  but  there  is  not  an  unlimited  supply  of  storage/sequestration  sites.    Even  when  sites  can  be  identified,  transport  from  San  Antonio  generation  assets  to  those  locations  could  prove  problematic,  given  the  lack  of  CO2  pipeline  infrastructure  from  Central  Texas  to  the  Gulf  Coast.        There  are  also  concerns  expressed  about  the  duration  of  sequestration,  especially  with  seismic  events.    The  long-­‐term  effects  on  nearby  life  forms  are  also  under  debate  in  literature  reviewed.      

Page 23: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

14  

Conclusions:  Additional  San  Antonio  Considerations    With  the  largest  municipally-­‐owned,  vertically-­‐integrated,  electric  and  natural  gas  utility  in  the  nation,  San  Antonio  is  uniquely  positioned  to  be  a  leader  in  the  demonstration  of  carbon  mitigation  strategies  and  technologies.    Investor-­‐owned  utilities  may  face  stronger  opposition  from  their  shareholders  and  local  regulators  to  embark  on  carbon  mitigation  projects  that  could  incur  additional  costs,  even  if  there  are  increased  social  benefits.    For  example,  AEP  successfully  demonstrated  Alstom’s  chilled  ammonia  process  at  their  Mountaineer  Plant  and  was  preparing  to  undertake  a  larger  demonstration  project,  but  cancelled  the  project  given  regulatory  uncertainly.    Southern  Power’s  Kemper  IGCC  project  and  the  FutureGen  project  in  Illinois  both  ran  into  regulatory  hurdles  that  could  likely  be  avoided  in  San  Antonio.        With  strong  community  support  of—and  commitments  to—both  competitive  electric  rates  and  environmental  protection,  CPS  Energy  finds  itself  in  a  great  position  to  pursue  a  diversified  generation  fleet  that  includes  next  generation  clean  coal  technology  in  favorable  state  and  local  regulatory  environments.    CPS  Energy  has  a  Board  of  Directors  made  up  of  local  stakeholders  (not  investors),  who  have  vested  interests  not  just  in  financial  returns,  but  also  in  long-­‐term  environmental  benefits  for  the  surrounding  community.    As  a  state,  Texas  is  very  supportive  of  energy  development,  and  clean  coal  in  particular.    As  previously  mentioned,  CPS  Energy  is  playing  a  key  role  in  the  continued  development  of  pre-­‐combustion  carbon  capture  technology  with  its  involvement  in  Summit  Power’s  Texas  Clean  Energy  Project  IGCC  plant  and  should  be  commended  for  its  leadership  in  this  area.    However,  since  IGCC  pre-­‐combustion  technologies  are  not  typically  suitable  for  retrofit  to  existing  plants,  the  industry  will  continue  to  search  for  technologies  that  can  be  applied  to  the  world’s  existing  fleet  of  coal  and  natural  gas  plants.    There  are  opportunities  for  CPS  Energy  and  other  San  Antonio  entities  to  help  lead  in  this  area  as  well.    Energy  producers  and  utilities  like  Vattenfall  in  Europe,  SaskPower  in  Canada,  as  well  as  Chinese  and  Japanese  power  companies  have  been  working  with  a  variety  of  carbon  capture  industry  leaders  to  develop  and  test  advanced  chemical  solvents,  solid  sorbents,  membranes,  and  other  technologies  for  post-­‐combustion  capture.    CPS  Energy,  with  the  help  of  UTSA  and  other  partners,  could  play  a  similar  role  in  testing  and  advancing  post-­‐combustion  technologies  that  would  result  in  increased  efficacy,  less  parasitic  energy  loss,  and/or  less  water  usage.    CPS  Energy  could  also  determine  if  its  facilities  are  suitable  for  promising  oxy-­‐combustion  technologies,  or  if  there  is  a  role  for  the  utility  to  help  advance  emerging  “chemical  looping”  technologies  that  act  in  a  similar  fashion.        In  addition  to  opportunities  to  help  advance  specific  carbon  capture  technologies,  San  Antonio  could  also  be  a  leader  in  process  improvements  for  carbon  capture,  such  as  designs  for  “flexible  operation”  of  plant  facilities  in  which  utilities  store  solvents  for  regeneration  at  off-­‐peak  times,  where  the  parasitic  energy  loss  of  carbon  capture  operation  would  be  less  noticeable.      Given  the  proximity  of  San  Antonio  to  the  vast  Eagle  Ford  shale  and  abandoned  wells,  specific  opportunities  for  storage  and  sequestration  should  be  investigated.        However,  it  is  important  to  note  that  CO2  does  not  need  to  be  captured  in  gaseous  form,  then  stored  or  sequestered,  to  be  successfully  and  economically  mitigated.    Texas  has  also  helped  demonstrate  the  potential  of  carbon  reutilization  techniques  by  showing  the  value  of  carbon  reuse  in  enhanced  oil  recovery  (EOR),  cement/aggregate  production,  fertilizer  production,  conversion  to  plastics,  conversion  

Page 24: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

15  

to  other  solids,  and  carbonation  in  the  beverage  industry.      One  specific  example  is  the  major  demonstration  project  of  Austin-­‐based  Skyonic’s  carbon  mineralization  technology  in  San  Antonio  at  a  Capitol  Aggregates  facility.    San  Antonio  could  be  a  leader  in  successfully  reutilizing  CO2  to  produce  end  use  products,  such  as  green  chemicals,  green  building  materials,  plastics,  and  other  solids.    Our  analysis  of  carbon  mitigation  strategies  and  technologies  follows  in  Section  1.    Overviews  of  specific  companies  can  be  found  in  Section  2  (Company  Profiles).    Appendices  containing  a  list  of  literature  reviewed,  some  selected  article  abstracts,  a  list  of  worldwide  CCS  projects,  CCS  project  descriptions,  as  well  as  some  instructive  cost  and  efficiency  reports  have  also  been  included  for  reference.          

Page 25: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

16  

 

       

Page 26: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

                                             

SECTION  1:      ANALYSIS  OF  MITIGATION  STRATEGIES  

Page 27: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

18  

OVERVIEW  Throughout  the  literature  reviewed,  strategies  for  reducing  carbon  dioxide  emissions  were  interchangeably  named  and  categorized.    For  the  purpose  of  this  report,  the  carbon  mitigation  strategies  and  technologies  have  been  grouped  and  analyzed  in  the  following  categories:    

• Carbon  Capture:  The  process  of  separating  and  capturing  carbon  dioxide  at  a  power  plant  before  it  enters  the  atmosphere.  

o These  technologies  were  further  categorized  into  pre-­‐combustion,  post-­‐combustion,  and  oxy-­‐combustion  technologies  based  on  accepted  industry  nomenclature.  

o Some  carbon  “mineralization”  technologies  have  been  included  as  capture  technologies,  even  though  they  do  not  result  in  a  useable  gaseous  stream  of  CO2.    

• Carbon  Storage:  The  process  of  trapping  captured  carbon  dioxide  in  a  geological  formation,  aquatic  feature,  or  other  appropriate  abiotic  (non-­‐living)  storage  site  to  prevent  release  into  the  atmosphere  (examples:  salt  domes,  depleted  oil  and  gas  fields,  oceans,  aquifers).    

• Carbon  Sequestration:  The  process  of  trapping  captured  carbon  dioxide  in  a  biotic  (living)  organism,  such  as  algae,  trees,  and  vegetation.    

• Carbon  Reutilization:  The  re-­‐use  of  captured  CO2  as  a  raw  material  or  critical  component  of  another  product  or  process  (examples:  enhanced  oil  recovery  for  the  oil  &  gas  industry,  urea  for  the  fertilizer  industry,  carbonation  for  the  beverage  industry,  concrete  industry  use).    

• Carbon  Management:  The  combination  of  technical  solutions  with  socio-­‐economic  factors  such  as  policy,  regulatory  framework,  social  structure,  cultural  values,  education  levels,  and  economic  implications  to  develop  a  comprehensive  solution  for  a  technical  and  scientific  challenge.  

A  schematic  diagram  depicting  common  carbon  mitigation  processes  is  presented  below.    

 FIGURE  1-­‐1.  Representations  of  Common  Carbon  Mitigation  Processes  

SOURCE:  Intergovernmental  Panel  on  Climate  Change,  2005  

Page 28: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

19  

ANALYSIS  OF  CARBON  CAPTURE  TECHNOLOGIES  Three  general  categories  of  carbon  capture  technologies  applicable  to  coal  and  natural  gas  power  plants  are  pre-­‐combustion,  post-­‐combustion,  and  oxy-­‐combustion  technologies  (DOE,  2010;  David  and  Thrombeau,  2001).    Pre-­‐combustion  refers  to  the  separation  of  CO2  from  a  fuel  source  prior  to  igniting  it,  while  post-­‐combustion  refers  to  CO2  separation  after  the  burning  of  a  fuel  source,  typically  from  flue  gas.    Oxy-­‐combustion  refers  to  burning  a  fuel  source  in  oxygen  or  a  mixture  of  oxygen  and  re-­‐circulated  flue  gases,  rather  than  in  air,  which  eliminates  nitrogen  content  (typically  65-­‐75%  of  flue  gas  volume  since  it  is  so  prevalent  in  air)  thereby  making  it  much  easier  and  economical  to  recover  CO2.    These  processes  are  depicted  in  the  diagram  below.        

 FIGURE  1-­‐2.  Representation  of  Three  Common  Carbon  Capture  Processes  

SOURCE:  EPRI,  2011    

Pre-­‐combustion  capture  mainly  refers  to  processes  at  integrated  gasification  combined  cycle  (IGCC)  power  plants,  while  post-­‐combustion  and  oxy-­‐combustion  technologies  could  be  applied,  or  retrofitted,  to  conventional  power  plants.    Captured  CO2  can  be  transported  via  pipeline  or  tanker  truck  for  storage  and/or  sequestration  after  compression  and  dehydration  (DOE/NETL,  2010).    There  are  CO2  capture  technologies  commercially  available  that  have  been  successfully  used  for  many  years  in  various  industrial  applications.    Examples  include  natural  gas  processing  as  well  as  the  fertilizer  and  beverage  industries.    In  their  current  state  of  development  these  technologies  are  not  commercially  available  for  large-­‐scale  implementation  on  power  plants  for  three  primary  reasons:    

1)  They  have  not  been  successfully  demonstrated  at  the  scale  necessary  for  most  power  plants;    2)  The  parasitic  loads  (steam  and  power)  required  to  support  CO2  capture  processes  would  significantly  decrease  power  generating  capacity  and  require  more  fuel  input  to  produce  the  same  power  output;  and  3)  They  are  generally  not  cost  effective  (DOE/NETL,  2010).  

 

Page 29: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

20  

Detailed  Analysis  of  Pre-­Combustion  Carbon  Capture  Technology  Pre-­‐combustion  carbon  capture  refers  to  the  separation  of  CO2  from  a  fuel  source  prior  to  igniting  it.    Today,  pre-­‐combustion  capture  is  mainly  applicable  to  IGCC  power  plants,  in  which  a  fuel  source  like  coal  is  converted  into  gaseous  components  in  a  “gasifier”  then  combusted  to  produce  electricity.    An  acid  gas  removal  system  is  used  to  separate  the  CO2  prior  to  combustion  using  physical  solvents,  chemical  solvents,  solid  sorbents,  or  membranes.      One  great  advantage  of  an  IGCC  power  plant  is  that  it  can  utilize  different  fuel  sources  such  as  coal,  natural  gas  or  biomass  (Rhodes  and  Keith,  2005).    Its  greatest  disadvantages  are  cost  and  the  fact  that  the  technology  is  not  suitable  for  retrofitting  applications.        

Additional  Process  Details  A  schematic  representation  of  the  pre-­‐combustion  carbon  capture  process  is  shown  below.    

 FIGURE  1-­‐3.  Block  Diagram  Illustrating  Power  Plant  with  Pre-­‐Combustion  CO2  Capture  

SOURCE:  DOE  NETL,  2010    

By  applying  heat  under  pressure  in  the  presence  of  controlled  amounts  of  steam  and  oxygen  in  a  gasifier,  a  fuel  source  like  coal  is  converted  into  a  synthesis  gas,  or  "syngas",  which  can  be  treated  and  then  combusted  to  produce  electricity.    An  air  separation  unit  (ASU)  is  typically  used  to  remove  nitrogen  from  air  and  produce  oxygen  for  the  gasifier.    

To  capture  CO2  and  prevent  its  release  into  the  atmosphere,  the  syngas  is  typically  "shifted"  in  a  chemical  process  called  a  water-­‐gas  shift  (WGS)  reaction.    The  reaction  converts  carbon  monoxide  (CO)  into  CO2  in  the  presence  of  a  catalyst  and  steam  and  produces  additional  hydrogen  (H2)  for  combustion.    A  large  amount  of  steam  ensures  maximum  conversion  of  carbon  monoxide  and  inhibits  side  reactions,  but  it  also  reduces  the  overall  efficiency  of  the  IGCC  plant.    An  acid  gas  removal  system  can  then  be  used  to  separate  the  CO2  from  the  hydrogen.        Such  systems  could  employ  physical  solvents,  chemical  solvents,  solid  sorbents,  or  membranes.    Physical  solvents  are  currently  viewed  as  an  efficient  approach  for  processing  high-­‐pressure,  CO2-­‐rich  streams,  such  as  those  encountered  in  IGCC  systems  that  employ  an  upstream  WGS  reactor.    Both  Dow’s  Selexol  and  Linde’s  Rectisol  are  examples  of  physical  solvents  being  utilized.    However,  these  solvent-­‐based  processes  have  several  disadvantages,  including  loss  of  pressure  during  regeneration  and  requirement  of  a  low  operating  temperature,  which  requires  cooling  of  the  syngas  prior  to  CO2  absorption,  followed  by  reheating  to  gas  turbine  inlet  temperature.        

After  CO2  removal,  the  hydrogen-­‐rich  syngas  is  used  as  a  fuel  in  a  combustion  turbine  to  generate  electricity.    The  CO2  is  compressed  and  available  for  storage,  sequestration  or  other  transport.        

Page 30: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

21  

Relative  Advantages/Challenges:  Pre-­‐Combustion  CO2  Capture  Technologies  The  following  table  summarizes  major  advantages  and  challenges  of  pre-­‐combustion  carbon  capture  technologies.    As  previously  mentioned,  one  great  advantage  of  an  IGCC  power  plant  is  that  it  can  utilize  different  fuel  sources  such  as  coal,  natural  gas  or  biomass.    A  major  disadvantage  of  pre-­‐combustion  technologies  is  that  they  are  typically  not  retrofit  technologies.      

TABLE  1-­‐1.  Advantages  and  Challenges  of  Pre-­‐Combustion  Capture  Technologies  

CO2  Capture  Technology   Advantages   Challenges  

CO2  recovery  does  not  require  heat  to  reverse  a  chemical  reaction  

Must  cool  down  syngas  for  CO2  capture,  then  heat  it  back  up  and  re-­‐humidify  for  firing  to  turbine    

Common  for  same  solvent/sorbent  to  have  high  hydrogen  sulfide  (H2S)  solubility,  allowing  for  combined  CO2  

/H2S  removal  

CO2  pressure  is  lost  during  flash  recovery  

System  concepts  in  which  CO2  is  recovered  with  some  steam  stripping  rather  than  flashed  and  delivered  at  a  higher  pressure  may  optimize  processes  for  power  systems  

Some  H2  may  be  lost  with  the  CO2  Pre-­‐Combustion:  Physical  Solvents  and  Solid  Sorbents  

  Physical  Solvents:  Low  solubilities  can  require  circulating  large  volumes  of  solvent,  resulting  in  large  pump  loads  

No  steam  load  or  chemical  attrition   Membrane  separation  of  H2  and  CO2  is  more  challenging  than  the  difference  in  molecular  weights  implies  

H2  Permeable  Membrane  Only:  H2  permeation  can  drive  the  carbon  monoxide  (CO)  shift  reaction  towards  completion,  potentially  achieving  the  shift  at  lower  cost/higher  temperatures  

Due  to  decreasing  partial  pressure  differentials,  some  H2  will  be  lost  with  the  CO2  

Pre-­‐Combustion:    H2/CO2  Membranes  

H2  Permeable  Membrane  Only:  Can  deliver  CO2  at  high-­‐pressure,  greatly  reducing  compression  costs  

H2  Permeable  Membrane  Only:  H2  compression  is  often  required  and  offsets  the  gains  of  delivering  CO2  at  pressure  

SOURCE:  DOE/NETL,  2010    

Demonstration  Projects  IGCC  power  plants  have  been  able  to  capture  high  proportions  of  CO2  at  the  demonstration  level,  but  there  are  very  few  plants  running  at  scale.    Four  IGCC  demonstration  projects  were  included  in  the  DOE’s  1986-­‐1993  Clean  Coal  Technology  Program:  (1)  the  Pinon  Pine  IGCC  Power  Project,  (2)  the  Wabash  River  Coal  Gasification  Repowering  Project,  (3)  the  Tampa  Electric  Integrated  Gasification  Combined-­‐Cycle  Project,  and  (4)  the  Kentucky  Pioneer  Energy  Project.    The  Wabash  River  IGCC  (262  MW  output)  in  West  Terre  Haute,  Indiana  and  the  Polk  Power  Station  IGCC  (250  MW)  in  Tampa,  Florida  have  both  been  operational  since  the  late  1990s.    Each  started  as  a  demonstration  level  power  plant  through  the  DOE’s  Clean  Coal  Energy  Program  and  was  later  purchased  and  operated  by  a  private  company.    The  Wabash  River  plant  uses  ConocoPhillips  E-­‐Gas  gasification  technology  and  a  two-­‐stage  Selexol  physical  solvent  process.    The  Polk  Power  Station  demonstrated  Texaco’s  oxygen-­‐blown,  entrained-­‐flow  gasifier  and  an  amine-­‐based  capture  process.  

Page 31: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

22  

The  Pinon  Pine  plant  (107  MW)  in  Reno,  Nevada  was  completed  in  2003  and  the  Kentucky  Pioneer  Plant  (580  MW)  project  was  completed  in  2005,  though  neither  was  maintained  afterwards  (DOE,  2000;  DOE,  2006).    The  largest  obstacle  for  these  plants  was  the  reduced  power  efficiency  due  to  parasitic  loads  associated  with  the  CO2  capture  process.  This  loss  of  power  efficiency  varied  from  8  –  13%  of  the  total  energy  output  (Damen  et  al.,  2005;  Chen  et  al.,  2009)  and  resulted  in  higher  overall  capital  costs  for  the  projects  ($2,175/kW  versus  around  $1,740/kW  without  carbon  capture)  (Wagman,  2006).      CPS  Energy  has  committed  to  participate  in  the  newest  DOE-­‐sponsored  IGCC  plant  to  be  built  by  Summit  Power  in  Penwell,  Texas:  the  Texas  Clean  Energy  Project  (TCEP).    The  TCEP  and  additional  examples  of  IGCC  plants  that  employ  pre-­‐combustion  carbon  capture  technologies  can  be  found  in  the  appendices.        It  is  worth  noting  that  Tenaska  recently  investigated  the  possibility  of  building  an  IGCC  plant  in  Texas  at  their  “Trailblazer”  site  in  Sweetwater,  but  instead  decided  to  go  with  a  conventional  pulverized  coal  plant  with  post-­‐combustion  CO2  capture.    Tenaska’s  official  explanation  for  the  choice  was  that  IGCC  technology  works  best  with  low  moisture,  high  energy  content  (BTU)  coal  like  the  bituminous  coals  found  in  the  eastern  US  and  therefore  Tenaska  believed  that  pulverized  coal  technology  was  more  appropriate  for  the  high  moisture,  lower  BTU  coal  from  the  Powder  River  Basin  (Montana  and  Wyoming)  that  will  be  the  fuel  for  their  Texas  site.    Additionally,  they  noted  that  pulverized  coal  technology  is  more  appropriate  for  the  elevation  near  Sweetwater,  Texas  (2,100  –  2,300  feet  above  sea  level)  since  IGCC  technology  works  best  at  elevations  closer  to  sea  level.    

Additional  Cost  Analysis  Recent  DOE/NETL  analyses  indicate  that  for  a  nominal  550-­‐MW  net  output  power  plant,  the  addition  of  CO2  capture  technology  increases  the  capital  cost  of  a  new  IGCC  facility  by  $400  million  and  results  in  an  “energy  penalty”  (i.e.,  parasitic  loss)  of  20  percent  (NETL,  2010).    For  a  natural  gas  combined  cycle  (NGCC)  power  plant,  NETL  concludes  that  the  capital  cost  would  increase  by  $340  million  and  an  energy  penalty  of  15  percent  would  result  from  the  inclusion  of  CO2  capture.    The  levelized  cost  of  electricity  (LCOE)  ranged  from  $116/MWh  to  $151/MWh  in  their  analyses,  depending  upon  the  type  of  facility  and  whether  the  application  is  for  a  new  plant  or  a  retrofit  of  an  existing  plant.    This  compared  to  an  LCOE  of  about  $85/MWh  for  a  new  supercritical  pulverized  coal  plant  and  a  $27/MWh  LCOE  for  the  existing  fleet  of  power  plants.    In  terms  of  costs  per  metric  ton  (tonne)  of  CO2  avoided,  values  range  from  $60/tonne  to  $114/tonne.    Even  with  significant  incentives,  the  increased  capital  costs  and  parasitic  energy  losses  of  IGCC  plants  can  be  hard  to  justify.    With  natural  gas  prices  hovering  at  extremely  low  rates  in  2012,  the  increased  costs  compared  to  NGCC  plants  became  even  more  pronounced.    In  May  2012,  for  example,  it  was  announced  that  the  developers  of  the  Good  Spring  IGCC  were  changing  the  design  to  a  NGCC  plant  and  the  press  release  touted  a  reduction  in  capital  costs  of  at  least  60%  (Digital  Journal,  2012).  

Major  corporations  within  the  power  industry  continue  to  invest  in  research  targeting  improvements  in  the  IGCC  process  as  well  as  reduction  of  costs  (Zheng  et  al.,  2005).    DOE/NETL  and  others  are  currently  funding  the  development  of  several  advanced  pre-­‐combustion  CO2  capture  technologies  that  have  the  potential  to  provide  significant  improvements  in  both  cost  and  performance  as  compared  to  the  physical  solvents  Selexol  and  Rectisol  that  are  mainly  used  today.        

Page 32: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

23  

Detailed  Analysis  of  Post-­Combustion  Carbon  Capture  Technology    Post-­‐combustion  refers  to  CO2  separation  after  the  burning  of  a  fuel  source,  typically  from  flue  gas.    It  is  primarily  applicable  to  conventional  coal-­‐fired,  oil-­‐fired  or  gas-­‐fired  power  plants.    Due  to  the  large  number  of  coal  and  gas  fired  power  plants  and  the  importance  of  finding  technologies  that  can  be  retrofitted  onto  them,  many  research  efforts  have  concentrated  on  capturing  CO2  after  combustion.    Technology  for  the  removal  of  carbon  dioxide  from  flue  gas  streams  has  been  around  for  quite  some  time  and  has  been  in  commercial  operation  in  other  industries  for  many  years,  albeit  on  a  smaller  scale.    The  technology  was  developed  not  to  address  the  greenhouse  gas  effect  but  to  provide  an  economic  source  of  CO2  for  use  in  enhanced  oil  recovery  (EOR)  as  well  as  industrial  purposes,  such  as  in  the  beverage  industry  (Johnson  et  al.,  2009).    Common  methods  for  post-­‐combustion  carbon  capture  processes  include  the  use  of  amine-­‐based  solutions,  chilled  ammonia  processes,  and  other  carbonates.    Emerging  methods  include  the  use  of  membranes,  metal  organic  frameworks  (MOFs),  solid  sorbents,  and  biological  processes.    Post-­‐combustion  capture  of  CO2  can  be  difficult  for  many  reasons,  including  the  relatively  low  concentration  of  CO2  in  traditional  flue  gases,  presence  of  other  components  in  flue  gases,  high  temperatures,  and  relatively  high  cost  of  implementation.    These  issues  constitute  barriers  to  commercial  deployment  of  carbon  capture  technologies  (Gibbins  et  al.,  2008).    Reducing  the  energy  requirements  for  solvent  regeneration  is  also  one  of  the  main  challenges  in  post-­‐combustion  CO2  capture  from  power  plant  flue  gases.    

Additional  Process  Details  A  schematic  representation  of  the  post-­‐combustion  carbon  capture  process  is  shown  below.      

 FIGURE  1-­‐4.  Block  Diagram  Illustrating  Power  Plant  with  Post-­‐Combustion  CO2  Capture  

SOURCE:  DOE  NETL,  2010    

Post-­‐combustion  capture  essentially  involves  adding  a  scrubber  to  extract  CO2  from  exhaust  gas  (Alstom,  2012).    The  CO2  capture  process  would  be  located  downstream  of  the  conventional  pollutant  controls  for  nitrogen  oxides  (NOx),  particulate  matter  (PM),  and  sulfur  dioxide  (SO2)  (NETL,  2010).    Traditionally,  the  preferred  method  of  post-­‐combustion  carbon  capture  has  been  an  amine-­‐based  solvent  to  trap  CO2.  The  CO2  would  be  captured  by  “washing”  the  flue  gas  with  the  solvent,  resulting  in  only  nitrogen  (N2)  and  water  vapor  being  released  into  the  atmosphere  (Alstom,  2012).    The  mixture  of  CO2  and  solvent  would  then  be  heated  in  a  separate  tank  to  regenerate  the  solvent  and  produce  a  stream  of  CO2.  The  captured  CO2  would  then  be  compressed  and  available  for  storage,  sequestration,  and  reutilization.        

Page 33: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

24  

The  biggest  challenge  in  this  process  is  bringing  the  flue  gas  in  contact  with  the  solvent  (Wall,  2007).    The  use  of  mono-­‐ethanol  amine  (MEA)  and  methyldiethanolamine  (MDEA)  as  carbon-­‐capturing  solvents  has  reached  industrial  scale  (Idem  et  al.,  2006),  but  analysis  of  cost/benefit  efficiencies  reveals  the  increased  cost  related  to  carbon  capture  is  only  manageable  if  power  plants  are  operated  at  the  highest  possible  efficiencies,  i.e.,  >95%  (Rao  et  al.,  2005).    Research  efforts  and  studies  have  focused  on  using  different  types  of  solvents  and  modifying  the  conditions  under  which  capture  takes  place.    Kim  et  al.  (2010)  found  that  MEA  is  superior  to  other  traditional  solvents  such  as  methanol  for  carbon  capture,  while  a  study  by  Lee  et  al.  (2009)  concluded  2-­‐amino-­‐2  methyl-­‐1-­‐propanol  (AMP)  works  better  than  MDEA.    Merel’s  group  (2008)  used  different  types  of  zeolites,  with  varying  pore  sizes  as  CO2  adsorbent  material  and  found  CO2  capture  efficiency  to  be  pore-­‐size  specific.    Yang  et  al.  (2008)  summarized  the  different  materials  that  can  be  used  as  adsorbents,  but  found  it  difficult  to  perform  an  objective  evaluation  of  their  performance  since  material  performance  was  highly  dependent  on  testing  conditions.    The  research  on  post-­‐combustion  carbon  capture  emphasizes  the  relative  inefficiency  of  the  overall  process  and  highlights  the  gaps  to  be  filled  for  widespread  use  of  these  technologies.  Chalmers  et  al.  (2009)  also  attempted  to  analyze  the  efficiency  of  a  power  plant  run  with  flexible  operation  parameters  and  found  that  fixed-­‐point  operation  is  the  least  likely  to  provide  high  efficiency  when  paired  with  carbon  capture.    There  is  strong  support  for  the  use  of  amine  solvents  and  other  materials  for  CO2  capture.    Efforts  are  required  to  improve  efficiencies  and  reduce  costs  to  achieve  desired  levels  of  implementation.    D’Alessandro  et  al.  (2010)  reviewed  the  various  means  for  capturing  CO2  and  highlighted  those  that  had  more  promise  in  the  energy  sector.    One  of  the  more  promising  techniques  is  the  use  of  a  solid,  such  as  calcium  (Ca),  sodium  (Na),  or  potassium  (K),  to  capture  CO2  gas.    Various  research  teams  have  conducted  experiments  using  such  materials  under  varying  conditions.    Each  of  these  materials  has  shown  the  ability  to  capture  up  to  90%  of  CO2  from  flue  gas  (Liang  et  al.,  2003;  Salvador  et  al.,  2003;  Oexmann  et  al.,  2008;  Lu  et  al.,  2006).    There  are  still  questions  to  be  answered,  but  demonstration  projects  have  been  set  up  to  further  evaluate  the  applicability  of  the  technology.    In  a  few  cases,  industrial  scale  carbon  capture  in  a  solid  form  has  been  achieved  (St.  Angelo  et  al.,  2008).    Another  promising  technology  is  the  use  of  membranes  that  selectively  separate  CO2  from  the  flue  gas  (Merkel  et  al.,  2010).    A  similar  technology  has  been  used  in  the  water  industry  for  some  time  to  remove  dissolved  oxygen  and  other  gases  from  waters  being  injected  into  aquifers  for  augmenting  water  supplies  or  as  part  of  aquifer  storage  and  recovery  operations.    Through  a  mixture  of  membrane  types,  membrane  selectivity  and  solvent  type,  carbon  dioxide  can  be  captured  and  used  in  other  areas  such  as  the  horticulture  industry,  where  increased  CO2  concentrations  contribute  to  better  growth  rates  and  productivity  (Feron  and  Jansen,  1995).    Similar  to  the  membrane  method,  metal  organic  frameworks  actively  trap  CO2  molecules  by  separating  their  particular  size  and  shape  from  flue  gas  (Simmons  et  al.,  2011;  Li  et  al.,  2011).    Each  of  these  technologies  presents  their  own  opportunities  and  challenges.    Post-­‐combustion  carbon  capture  is  not  a  new  technique  nor  is  it  a  refined  one.    There  is  some  concern  that  the  emphasis  on  post-­‐combustion  CO2  capture  (currently  unregulated)  could  lead  to  a  decline  in  sulfur  oxides  and  nitrogen  oxides  capture.    A  study  by  Tzimas  et  al.  (2007)  predicted  that  the  decrease  in  capture  efficiency  could  range  from  5%  to  24%  for  nitrogen  oxides  and  1%  to  3%  for  sulfur  oxides.    Reduced  SOx  and  NOx  removal  from  flue  gases  could  have  significant  impacts  on  a  region’s  ability  to  comply  with  air  quality  regulations,  if  not  properly  monitored.  

Page 34: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

25  

Relative  Advantages/Challenges:  Post-­‐Combustion  CO2  Capture  Technologies  The  following  table  summarizes  major  advantages  and  challenges  of  post-­‐combustion  carbon  capture  technologies.    As  previously  mentioned,  a  major  advantage  of  post-­‐combustion  technologies  is  that  they  are  suitable  for  retrofitting  applications.    

TABLE  1-­‐2.  Advantages  and  Challenges  of  Post-­‐Combustion  Capture  Technologies  

CO2  Capture  Technology   Advantages   Challenges  

Chemical  solvents  provide  a  high  chemical  potential  (i.e.,  driving  force)  necessary  for  selective  capture  from  streams  with  low  CO2  partial  pressure  

Trade  off  between  heat  of  reaction  and  kinetics;  current  solvents  require  a  significant  amount  of  steam  to  reverse  chemical  reactions  and  regenerate  the  solvent,  which  de-­‐rates  the  power  plant  Solvents  

Wet-­‐scrubbing  allows  good  heat  integration  and  ease  of  heat  management  (useful  for  exothermic  adsorption  reactions)  

Energy  required  to  heat,  cool,  and  pump  non-­‐reactive  carrier  liquid  (usually  water)  is  often  significant  

Chemical  sites  provide  large  capacities  and  fast  kinetics,  enabling  capture  from  streams  with  low  CO2  partial  pressure  

Heat  required  to  reverse  chemical  reaction  is  significant  (although  generally  less  than  in  wet-­‐scrubbing)  

Higher  capacities  on  a  per  mass  or  volume  basis  than  similar  wet-­‐scrubbing  chemicals  

Heat  management  in  solid  systems  is  difficult,  which  can  limit  capacity  and/or  create  operational  issues  

Lower  heating  requirements  than  wet-­‐scrubbing  in  many  cases  

Pressure  drop  can  be  large  in  flue  gas  applications  

Solid  Sorbents  

Dry  process  –  less  sensible  heating  requirement  than  wet-­‐scrubbing  process  

Sorbent  attrition  

No  steam  load   Membranes  tend  to  be  more  suitable  for  high-­‐pressure  processes  such  as  IGCC    

No  chemicals   Trade  off  between  recovery  rate  and  product  purity  

Simple,  modular  designs   Requires  high  selectivity  

Membranes  

  Poor  economy  of  scale  SOURCE:  DOE/NETL,  2010  

 

Detailed  Analysis  of  Oxy-­Combustion  Carbon  Capture  Technology  Another  method  for  capturing  CO2  is  through  oxyfuel  combustion,  also  called  oxy-­‐combustion.    Oxy-­‐combustion  refers  to  burning  a  fuel  source  in  a  mixture  of  oxygen  and  re-­‐circulated  flue  gases,  rather  than  in  air  (about  21%  oxygen),  which  eliminates  nitrogen  content  (typically  65-­‐75%  of  flue  gas  volume  since  it  is  so  prevalent  in  air,  about  79%)  thereby  making  it  much  easier  and  economical  to  recover  CO2.    Additional  Process  Details  Typical  coal  and  natural  gas  fired  power  plants  use  air  as  part  of  the  combustion  process.    Air  contains  roughly  21%  oxygen.    Oxyfuel  combustion  burns  fuel  sources  in  an  environment  that  is  roughly  95%  oxygen.    Increased  oxygen  content  reduces  emissions  that  escape  in  the  flue  gas,  making  carbon  capture  easier  and  more  efficient  (Hadjpaschalis  et  al.,  2009).    

Page 35: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

26  

 

A  schematic  representation  of  the  oxy-­‐combustion  process  is  shown  below.    

 FIGURE  1-­‐5.  Block  Diagram  Illustrating  Power  Plant  with  Oxy-­‐Combustion  CO2  Capture  

SOURCE:  DOE  NETL,  2010    

Retrofitting  coal  power  plants  for  oxy-­‐combustion  has  been  accomplished  in  the  past;  however  researchers  have  identified  various  obstacles  for  wide  scale  implementation  of  this  technology  (Farley,  2006).    One  of  the  most  critical  challenges  is  the  resultant  higher  boiler  temperatures  within  the  system.    Materials  of  construction  utilized  in  boilers  used  in  today’s  power  plants  are  not  capable  of  handling  these  higher  temperatures,  and  retrofitting  boilers  for  oxyfuel  combustion  tends  to  shorten  their  life  span.    More  appropriate  construction  materials  are  required,  which  translates  into  higher  capital  costs.    Additionally,  high  flame  temperatures  cause  ashes  to  melt,  thus  enhancing  the  formation  of  nitrogen  oxides  (Jourdal  et  al.,  2004).    The  high  capital  cost  of  current  air  separation  units  is  also  a  disadvantage.    The  future  of  oxy-­‐combustion  technology  is  promising,  but  will  require  technological  improvements.    Kakaras  et  al.  (2007)  developed  an  exclusive  boiler  design  for  oxyfuel  combustion.    The  upgraded  boiler  was  able  to  capture  90%  of  the  CO2  produced  but  resulted  in  higher  boiler  costs  ($78/kWh)  suggesting  room  for  improvement.        Much  like  the  IGCC  power  plants,  oxyfuel  combustion  could  utilize  a  wide  range  of  fuel  sources.    Previous  studies  have  looked  at  the  impact  of  oxyfuel  combustion  with  coal  alone  (Kakaras  et  al.,  2007)  and  methane  combined  with  various  capture  methods  (Kutne  et  al.,  2011;  Tan  et  al.,  2008).    Although  large-­‐scale  oxyfuel  studies  are  limited,  an  optimization  software  platform,  Independent  Power  Producer,  has  been  used  to  conduct  cost-­‐benefit  analyses  and  the  results  are  promising  (Hadjipaschalis,  2009).    This  technology  may  become  part  of  a  management  strategy  upon  development  and  refinement  of  the  process  and  reduction  in  costs.  

Page 36: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

27  

Relative  Advantages/Challenges:  Oxy-­‐Combustion  Capture  Technologies  The  following  table  summarizes  major  advantages  and  challenges  of  oxy-­‐combustion  carbon  capture  technologies  (DOE/NETL,  2010).    

TABLE  1-­‐3.  Advantages  and  Challenges  of  Oxy-­‐Combustion  Capture  Technologies    

CO2  Capture  Technology  

Advantages   Challenges  

Combustion  products  are  CO2  and  water  

Cryogenic  air  separation  units  to  produce  O2  are  expensive  and  energy  intensive  

Relatively  pure  CO2  is  easily  separated,  making  sequestration  less  expensive  

Higher  temperatures  can  degrade  boiler  materials  or  require  new  materials  in  new  construction  

  Boiler  and  process  air  leakage  

Oxy-­Combustion  

  Additional  contaminants  from  flue  gas  could  enter  sequestration  stream  

SOURCE:  DOE/NETL,  2010    

As  previously  mentioned,  other  benefits  of  oxy-­‐combustion  are  that  it  can  utilize  a  wide  variety  of  coals  including  lignite,  sub-­‐bituminous,  and  bituminous  fuels  and  that  retrofitting/repowering  requires  less  complex  integration  into  the  existing  plant  energy  balance  than  post-­‐combustion  CO2  capture.    Additionally,  no  new  chemicals  or  waste  streams  are  introduced  into  the  power  plant  process.    The  bottom  ash,  fly  ash,  and  flue  gas  desulfurization  waste  streams  remain  unchanged,  and  there  is  no  major  change  to  the  plant  water  balance.    In  fact,  for  low  rank  fuels,  there  may  be  a  positive  water  balance  from  condensation  of  water  from  the  flue  gas  stream  (Vitalis,  2007).  

Research  and  Development  Trends  for  Carbon  Capture  Technologies  Research  and  development  efforts  for  pre-­‐combustion  technologies  include  the  use  of  advanced  physical  solvents  and  membranes  as  well  as  the  use  of  “chemical  looping”  and  pressure  swing  adsorption  (PSA)  systems  in  IGCC  designs  to  reduce  costs  and  improve  efficiency.    However  while  IGCC  with  capture  is  a  technically  viable  and  proven  method,  it  can  only  be  retrofitted  to  plants  in  limited  circumstances  (Gutierrez,  2006)  therefore  additional  methods  of  capture  that  can  be  applied  to  the  world’s  existing  coal  and  natural  gas  fleets  continue  to  garner  significant  interest  as  well.    Research  and  development  for  post-­‐combustion  technologies  include  the  use  of  advanced  amine  solvents,  chemical  solvents,  membrane  systems,  solid  sorbents,  metal  organic  frameworks,  ionic  liquids,  enzymes,  and  other  biological  processes.    Research  is  also  being  conducted  into  “flexible”  operation  of  coal  fired  power  plants  with  post-­‐combustion  capture  technologies,  including  the  use  of  solvent  storage  as  a  method  to  increase  plant  efficiency  at  times  of  peak  demand  (Chalmers  et  al.,  2009).    Parasitic  power  losses  can  be  reduced  by  storing  used  solvent,  rather  than  immediately  subjecting  it  to  the  regeneration  process.    Plant  operators  could  also  choose  to  selectively  bypass  the  capture  technologies  at  times  of  highest  energy  demand,  assuming  plant  design  accommodates  it,  which  could  be  environmentally  preferable  to  running  inefficient  gas  peaking  plants  or  other  generation  sources  (Chalmers  et  al.,  2009).    Much  research  and  development  attention  is  being  given  to  oxy-­‐combustion  technologies  since  they  could  be  particularly  cost-­‐effective  and  efficient  retrofit  technologies.    Oxy-­‐combustion  has  a  lower  relative  cost  on  both  levelized  cost  of  electricity  as  well  as  avoided  CO2  costs  when  compared  with  other  CCS  technologies  (Global  Status  CCS,  2011).    To  drastically  reduce  the  cost  of  oxy-­‐combustion,  the  cost  of  oxygen  production  can  be  reduced  through  systems  and  process  improvements.    Current  oxy-­‐

Page 37: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

28  

combustion  technologies,  such  as  systems  from  Air  Products,  typically  use  expensive  cryogenic  oxygen  systems  to  provide  the  oxygen.        The  use  of  “chemical  looping”  to  reduce  the  cost  of  oxygen  production  is  also  particularly  promising.    A  summary  of  potential  R&D  paths  as  a  function  of  both  cost  reduction  benefits  and  time  to  commercialization  is  shown  below  (Figueroa,  2007).    

 FIGURE  1-­‐6.  Potential  Research  and  Development  Paths  for  Carbon  Capture  Technologies  

SOURCE:  Figueroa,  2007      

Page 38: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

29  

ANALYSIS  OF  CARBON  STORAGE  TECHNOLOGIES  The  term  storage  has  also  been  used  as  a  synonym  for  sequestration  (Lal,  2008  and  2009;  Anderson  and  Newell,  2003);  however,  for  the  purposes  of  this  document,  storage  and  sequestration  have  been  divided  into  two  distinct  groups  based  on  whether  the  carbon  is  stored  in  a  biotic  location  (i.e.,  a  living  organism)  or  an  abiotic  environment.    In  the  context  of  this  paper,  “carbon  storage”  refers  to  the  process  of  trapping  captured  carbon  dioxide  in  a  geological  formation,  aquatic  feature  or  other  appropriate  abiotic  storage  site  to  prevent  release  into  the  atmosphere.    Examples  of  carbon  storage  include  depleted  oil  and  gas  fields,  salt  domes,  oceans,  and  aquifers.  “Carbon  sequestration”  refers  to  the  process  of  trapping  captured  carbon  dioxide  in  a  biotic  organism,  such  as  algae,  trees,  and  other  vegetation.    

Carbon  Storage:  Geological  The  most  commonly  utilized  type  of  carbon  storage  is  geological  storage.    In  geological  storage,  CO2  is  pumped  into  large  underground  formations.    Studies  looking  into  the  possibility  of  geological  storage  of  CO2  in  the  state  of  Texas  have  found  the  state  has  large  areas  that  might  serve  as  long-­‐term  CO2  sinks,  especially  along  the  Gulf  Coast  (Hovorka  et  al.,  2003;  Doughty  et  al,  2008).    Unresolved  questions  related  to  carbon  storage  technologies  include  dissolution  and  precipitation  kinetics  under  varying  operational  conditions  (pH,  pressure,  temperature).    The  impact  of  operational  conditions  as  well  as  geological  variables  on  stored  CO2  is  not  well  understood,  nor  is  the  effect  of  stored  CO2  on  groundwater  and  wells  (Friedmann,  2007).    Carbon  is  stored  thousands  of  feet  below  these  water  sources,  but  understanding  every  aspect  of  this  technique  will  reduce  the  risks  of  contamination.      To  better  understand  the  activity  of  carbon  that  is  geologically  stored,  investigators  have  tested  the  dispersal  of  supercritical  CO2  plumes  in  different  strata  (Hesse  et  al,  2010)  and  have  attempted  to  model  the  fate  and  transport  reactions  of  the  gases  over  geological  time  through  computer  simulation  environments.    Xu  et  al.  (2006)  were  able  to  model  CO2  injection  in  bedded  sandstone-­‐shale  with  no  negative  consequences.    Neufeld  et  al.  (2009)  and  Celia  et  al.  (2009)  attempted  similar  models  in  different  geological  formations,  but  were  unable  to  account  for  all  of  the  environmental  factors  that  are  likely  to  affect  dispersion  rates.    Enhanced  oil  recovery  (EOR)  is  a  type  of  geological  storage  that  has  emerged  as  a  viable  option  for  CO2  mitigation  based  on  the  availability  of  abandoned  oil  wells  (Alvarado  et  al.,  2010;  NETL,  2009;  Williams,  1996).    During  enhanced  oil  recovery,  critical  state  CO2  is  pumped  into  an  abandoned  oil  or  gas  well  where  the  increased  pressure  and  heat  drive  large  amounts  of  oil  and  natural  gas  away  from  the  pumping  site,  which  can  then  be  recovered  at  another  location.    Critical  state  CO2  refers  to  the  point,  in  terms  of  pressure,  where  there  is  no  clear  distinction  between  liquid  and  gas  phases.    In  other  words,  CO2  is  pressurized  to  the  point  where  it  forms  a  light  fog.    Enhanced  oil  recovery  using  critical  state  CO2  allows  for  increased  extraction  of  gas  and  hydrocarbons,  even  from  wells  considered  depleted.    EOR  is  often  favored  among  the  storage  types  due  to  its  relative  simplicity,  ability  to  utilize  existing  wells,  and  its  ability  to  produce  marketable  products  that  can  offset  the  cost  of  the  entire  process  (Han  et  al.,  2007).    Transportation  and  implementation  costs  associated  with  enhanced  oil  recovery  vary  widely  depending  on  local  conditions  and  its  applicability  should  be  evaluated  on  a  case-­‐by-­‐case  basis  (Dooley  et  al.,  2010).        

Page 39: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

30  

The  DOE  regulates  the  process  of  enhanced  oil  recovery  to  minimize  air,  water,  and  soil  pollution  through  permitting  and  inspections  of  injection  sites  (Madden  et  al.,  1991).    This  compliance  process  does  increase  the  overall  cost  of  EOR,  but  no  more  than  other  environmental  compliance  procedures.    Because  of  economic,  geologic,  and  geographic  conditions,  Texas  is  a  prime  location  for  wide  scale  implementation  of  enhanced  oil  recovery  and  geological  CO2  storage.    With  large  geological  formations  such  as  those  in  the  Permian  Basin  and  the  Gulf  Coast,  paired  with  myriad  abandoned  oil  wells,  Texas  is  in  a  better  position  than  other  states  to  exploit  CO2  storage  as  part  of  its  emissions  management  portfolio  (Gromatzky  et  al.,  2010).    The  DOE’s  National  Energy  Technology  Laboratory  (NETL)  has  estimated  the  state  of  Texas  has  a  sink  capacity  of  661  million  to  2.4  billion  tons  of  CO2.    Carbon  storage  in  the  state  has  not  been  utilized  to  its  fullest  extent  to  date  due  to  financial  implications,  technical  limitations,  and  lack  of  clear  regulatory  framework.    However,  research  continues  to  provide  answers  to  questions  posed  in  those  areas  (Gromatzky  et  al.,  2010).    

Carbon  Storage:  Aquifer  The  second  type  of  CO2  storage  is  the  use  of  a  saline  aquifer  for  long-­‐term  trapping.    During  this  process,  critical  CO2  is  pumped  1,650  feet  to  10,000  feet  (500  to  3,000  meters)  below  the  Earth’s  surface  into  an  aquifer  that  is  considered  too  salty  for  human  consumption  (>10,000  mg/L).    Once  in  place,  the  CO2  will  theoretically  undergo  a  mineralization  process  and  become  trapped  long  term  (Zerai  et  al.,  2011).    Eccles  et  al.  (2009)  performed  a  study  to  determine  the  optimum  depth  and  pressure  for  saline  aquifer  storage  and  determined  it  worked  best  at  5,250  feet  (1,600  m)  plus  or  minus  45  to  66%  below  the  surface  under  a  pressure  of  2,880  to  5,000  pounds  of  CO2  per  square  foot  (1.36  to  2.36  Atm).    While  this  information  would  likely  vary  for  the  state  of  Texas,  the  ability  to  test  these  parameters  and  run  other  simulations  (Basburg  et  al.,  2009)  shows  the  technology  is  on  track  to  become  commercially  available.    Texas  does  have  deep  saline  aquifers  that  would  suit  this  type  of  storage.    There  are  some  drawbacks  associated  with  the  disposal  of  CO2  into  underground  saline  aquifers.    The  first  issue  is  that  the  dispersion  of  CO2  within  the  aquifer  is  not  well  understood.    Studies  have  tried  to  predict  how  the  carbon  will  move  but  the  diversity  in  geological  features,  varying  salinities  and  heterogeneous  temperatures  make  it  difficult  to  model  on  a  large  scale.    Each  of  the  studies  that  attempted  to  model  CO2  dispersion  in  a  saline  aquifer  was  unable  to  account  for  these  factors  in  their  computer  modeling  due  to  the  increased  complexity  resulting  from  trying  to  incorporate  the  variables  (Ghesmat  et  al.,  2011;  Xu,  2006;  Juanes,  et  al.,  2010).    This  uncertainty  leads  to  a  series  of  questions  regarding  the  long-­‐term  safety  of  this  practice  under  conditions  that  cannot  be  controlled.    There  are  potential  risks  for  blowback  of  pumped  CO2  (Bruant  et  al.,  2002)  as  well  as  concerns  over  the  possible  contamination  of  groundwater  resources.    A  study  by  Lemieux  (2010)  predicted  CO2  could  have  long  lasting  effects  on  the  local  environment.    In  addition  to  possible  leaks  from  CO2  seeping  between  geological  layers  and  making  its  way  back  to  the  surface,  the  decreased  pH  caused  from  CO2  injection  could  promote  mobilization  of  lead,  arsenic,  and  other  elements/compounds  into  current  and  future  sources  of  drinking  water.    As  was  the  case  with  geological  storage,  long-­‐term  studies  are  lacking  but  their  availability  would  greatly  improve  understanding  of  this  issue  and  the  technology’s  viability  as  a  long-­‐term  CO2  solution.    In  Texas,  CO2  storage  in  saline  aquifers  may  be  a  viable  option  due  to  the  state’s  abundant  brackish  groundwater  resources.    The  Texas  Water  Development  Board  (TWDB)  estimated  the  State  of  Texas  has  greater  than  2.7  billion  acre-­‐feet  (equivalent  to  880  trillion  gallons)  of  brackish  groundwater  suitable  for  CO2  storage  (shown  in  the  following  figure).    Suitable  aquifers  are  geographically  dispersed  throughout  

Page 40: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

31  

the  state.    In  particular,  the  Gulf  Coast,  Ogallala,  Seymour,  and  Carrizo  aquifers  each  have  large  pockets  of  brackish  water  that  are  considered  too  saline  for  human  consumption  (TWDB,  2003).    Other  aquifers,  such  as  the  Edwards  and  Trinity  aquifers  have  greater  portions  of  clean,  potable  water,  but  still  have  some  layers  that  may  be  suitable  for  CO2  storage.    

FIGURE  1-­‐7.  Distribution  of  brackish  groundwater  resources  in  Texas  

SOURCE:    LBG-­‐Guyton  Associates,  2003  

 

Carbon  Storage:  Oceanic  Another  type  of  carbon  storage  is  oceanic  storage.    Storage  of  CO2  in  the  ocean  is  a  practice  that  has  been  utilized  for  some  time,  though  retention  rates  and  long-­‐term  effects  are  still  poorly  understood  (Adams  et  al.,  2008).    Oceanic  carbon  storage  is  performed  in  two  major  ways:    dissolution  and  lake  deposition.    The  former  method,  dissolution,  is  used  to  directly  pump  carbon  below  the  ocean  surface  to  the  greatest  depth  possible  in  its  critical  state.    As  the  CO2  bubbles  upward,  it  dissolves  into  the  water.    The  primary  means  through  which  this  is  accomplished  is  using  pipelines  that  are  constructed  for  the  deposition.    These  pipelines  already  exist  in  some  areas  but  their  availability  and  durability  will  likely  play  a  role  in  utilizing  this  particular  method.    Pumping  the  CO2  off  moving  ships  can  create  the  same  result,  though  this  practice  has  its  own  drawbacks.    Ships  traveling  far  enough  from  the  shore  to  find  the  required  depths  may  be  required  to  burn  large  amounts  of  fuel,  negating  the  positive  effects  associated  with  CO2  storage  (Ozaki  et  al.,  2001).        The  second  method  of  oceanic  storage,  lake  deposition,  uses  the  unique  pressures  of  the  deep  ocean  to  store  carbon  dioxide.    During  this  process,  CO2  can  be  pumped  into  the  abyssal  zone  of  the  ocean  to  create  a  “lake”  of  liquid  CO2.    If  the  critical  state  CO2  is  pumped  9,800  feet  (about  3,000  m)  below  the  surface  or  more,  the  pressure  is  great  enough  (>72.9  Atm)  that  the  pumped  CO2  will  remain  in  a  semi-­‐liquid  form.    Semi-­‐liquid  CO2  is  denser  than  seawater  and  as  a  result,  will  then  sink  to  the  ocean  floor.    

Page 41: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

32  

This  “lake”  will  eventually  be  dissolved  into  the  water  or  trapped  in  the  oceanic  sediment  (Goldberg  et  al.,  2008;  House  et  al.,  2005).    Previous  research  has  generated  positive  reports  on  this  process,  but  little  is  known  about  the  wide  scale  and  long-­‐term  impacts  of  oceanic  carbon  storage  (Harvey,  2003).    A  major  concern  for  oceanic  carbon  storage  is  the  effect  the  concentrated  CO2  will  have  on  water  quality  and  overall  chemistry.    Changes  in  these  parameters  have  the  potential  to  affect  organisms  in  a  variety  of  ways  or  disrupt  important  metabolic  processes.    These,  in  turn,  can  result  in  consequences  for  entire  oceanic  ecosystems.    In  particular,  the  generation  of  carbonic  acid  (H2CO3)  during  the  normal  assimilation  of  CO2  into  the  ocean  environment  may  create  changes  in  pH  that  can  be  detrimental  to  oceanic  life  (Kita  et  al.,  2003).    CO2  that  mixes  with  saltwater  will  form  carbonic  acid  in  a  “plume.”    Within  the  plume,  increased  levels  of  CO2  have  been  shown  to  cause  lower  pH  levels  which,  in  turn,  have  decrease  the  survivability  and  growth  of  marine  organisms  such  as  shrimp  (Bechman  et  al.,  2011)  and  phytoplankton  (Orr,  et  al.,  2005).    In  addition  to  direct  effects  on  survivability,  an  increased  acidification  of  the  ocean  might  result  in  the  decreased  ability  of  calcifying  organisms  such  as  corals,  calcifying  algae,  and  mollusks  to  utilize  calcite  and  aragonite  in  their  shells  (Kroeker  et  al.,  2010).    Oceanic  storage  of  CO2  is  a  technology  that  is  still  immature  and  will  require  more  understanding  of  the  long-­‐term  implications  should  it  be  included  in  a  carbon  management  portfolio.    Access  to  the  ocean  is  a  key  factor  for  evaluating  the  applicability  of  these  technologies.    Since  San  Antonio  is  located  about  140  miles  from  the  coast,  CPS  Energy’s  ability  to  incorporate  oceanic  storage  as  part  of  its  carbon  management  strategies  is  limited,  since  CO2  generated  at  the  power  plants  will  have  to  be  transported  to  the  coast  for  injection  and  disposal.    Transporting  CO2  increases  the  overall  costs,  carbon  footprint,  and  energy  requirements  associated  with  implementation  of  oceanic  storage.    

Page 42: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

33  

ANALYSIS  OF  CARBON  SEQUESTRATION  TECHNOLOGIES  In  carbon  sequestration,  captured  CO2  is  stored  in  various  biotic  (living)  media  such  as  microalgae,  soil,  trees,  and  other  photosynthetic  organisms  and  vegetation.    Because  CO2  is  a  major  reactant  in  photosynthesis,  excess  carbon  dioxide  released  to  the  atmosphere  can  be  utilized  to  promote  plant  growth  under  controlled  environments.    Greenhouse  enrichment  is  a  process  by  which  the  concentration  of  CO2  is  increased  artificially  with  captured  CO2.    As  early  as  the  1960s,  Wittwer  et  al.  (1964)  demonstrated  the  increased  productivity  of  plants  grown  in  CO2-­‐rich  atmospheres.    Greenhouses  maintained  at  1,000  mg/L  (ppm)  of  CO2  showed  an  increased  productivity  of  over  50%.    Subsequent  studies  and  projects  attempted  to  design  novel  CO2  delivery  methodologies,  such  as  underground  pipes  or  pores  (Erickson,  2001).    It  should  be  noted  that  the  CO2  reutilization  rate  for  greenhouses  is  reliant  upon  the  source  of  carbon.    CO2  from  fuel  combustion  produces  heat  that  can  be  used  to  maintain  optimal  greenhouse  temperatures  but  may  also  include  impurities  that  can  have  detrimental  impacts  on  plants  if  not  removed  correctly.    The  Ontario  Ministry  of  Agriculture,  Food,  and  Rural  Affairs  maintains  demonstration  scale  greenhouses  to  test  the  viability  of  long-­‐term  greenhouse  production  using  CO2  supplementation  (Blom  et  al.,  2012).    A  modified  version  of  greenhouse  enrichment  has  also  been  demonstrated  using  bioreactors  that  culture  algae.    By  introducing  a  pure  stream  of  carbon  dioxide,  bioreactors  can  increase  the  productivity  of  algae  populations  and  increase  the  nutritional  value  as  a  feed  for  livestock  (Zeiler  et  al.,  1995;  Chae  et  al.,  2006;  Rosa  et  al.,  2011).    The  algae  cultures  may  also  be  utilized  to  produce  other  fuel  sources,  such  as  methane.    Studies  have  indicated  that  certain  species  may  release  methane  as  a  byproduct  when  in  the  presence  of  carbon  dioxide  and  oxidizable  molecules  (Barker,  1940).    This  process  also  produces  water  molecules,  which  may  aid  in  the  reduction  of  water  consumed  in  order  to  generate  the  carbon  dioxide,  though  only  if  this  method  is  utilized  in  a  large-­‐scale  application.        

Page 43: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

34  

ANALYSIS  OF  CARBON  REUTILIZATION    Carbon  reutilization  is  the  use  of  waste  CO2  as  a  raw  material  or  critical  component  of  a  new  beneficial  product  or  process.    In  an  ideal  sustainability  scenario,  the  waste  products  of  one  industry  would  serve  as  raw  materials  for  another.        Several  products  and  processes  have  the  potential  to  use  CO2  captured  from  local  power  plants,  including  the  fertilizer  industry  (urea),  the  oil  &  gas  industry  (EOR),  and  the  beverage  industry  (carbonation).    Some  companies  have  also  been  investigating  the  use  of  captured  carbon  into  green  building  materials,  plastics,  and  other  household  products.    More  research  will  be  necessary  to  demonstrate  the  viability  and  safety  of  products  that  use  captured  CO2  and  to  ensure  they  meet  federal  standards,  but  they  appear  to  hold  much  potential.    Potential  uses  for  captured  CO2  in  other  processes  are  shown  in  the  following  figure.  

FIGURE  1-­‐8.  Schematic  Illustrating  the  Many  Uses  of  CO2.  

SOURCE:  DOE  NETL,  2012  

 CO2  reutilization  is  a  technology  that  would  benefit  CPS  Energy  as  well  as  the  San  Antonio  economy.    Several  products  and  processes  have  the  potential  to  use  CO2  captured  from  local  power  plants,  including  the  local  concrete/aggregates  industry,  oil  &  gas  industry  (EOR),  fertilizer  industry,  and  construction  companies.    Reutilization  will  play  a  large  role  in  the  move  towards  sustainability  for  the  city  and  the  state  in  conjunction  with  some  of  the  other  technologies  discussed.    Additional  analysis  follows.    

Page 44: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

35  

Conversion  to  Solids  One  of  the  newer  methods  for  CO2  mitigation  that  has  gained  attention  in  recent  years  is  the  conversion  of  carbon  gas  into  marketable  solid  products  such  as  aggregates  or  substrates.    This  method  not  only  removes  CO2,  but  also  immediately  provides  a  product  that  can  be  sold  in  the  open  market.    Solids  that  are  produced  using  carbon  dioxide  are  not  only  environmentally  friendly;  they  have  an  economic  value  and  provide  additional  benefits  to  society.    Specifically,  one  of  the  more  readily  available  uses  of  CO2  in  solids  is  the  utilization  of  CO2  in  cement  and  concrete  production.    Cement  production  is  the  second  largest  source  of  carbon  emissions  (1st  being  power  production)  and  an  increase  in  the  sustainability  of  that  industry  would  have  significant  global  impact.    Flower  et  al.  (2007)  estimated  that  1.1  tons  of  carbon  dioxide  are  produced  per  ton  of  marketable  cement.    To  offset  the  production  of  carbon  dioxide  in  the  process,  studies  have  investigated  the  possibility  of  using  common  aggregate  materials  as  adsorbents.    During  production  of  the  concrete,  carbon  dioxide  addition  results  in  a  reaction  with  calcium  hydroxide  that  holds  the  carbon  dioxide.    This  process  is  referred  to  as  carbonation.    Carbonation  can  be  used  to  create  an  additional  CO2  sink  using  a  material  that  is  high  in  demand  (Silaban  et  al.,  1995;  Lackner  et  al.,  1997;  Fernandez-­‐Bertos  et  al.,  2004;  O’Connor  et  al.,  2001;  Monkman,  2010;  Karceski,  2010;  Bradley,  2010;).    Frank  Collins  (2010)  found  that  this  process  works  for  the  primary  production  of  cement  but  works  better  when  recycled  concrete  is  exposed  to  CO2.    Recycled  concrete  utilizes  crushed  cured  concrete  as  an  aggregate.    Aggregates  that  are  recycled  tend  to  have  a  higher  surface  area  to  volume  ratio  and  therefore  have  more  sites  for  carbon  dioxide  to  bind.    The  recycled  concrete  was  found  to  be  of  lesser  quality  than  the  primary  concrete  but  still  has  various  uses  such  as  non-­‐aggressive  service  environments.    In  a  similar  study,  Shao  et  al.  (2006)  demonstrated  that  the  introduction  of  carbon  dioxide  in  the  cement  production  processes  could  remove  9%  –  16%  of  the  cement’s  weight  in  carbon  dioxide.    Using  this  model,  each  masonry  block  produced  could  remove  around  0.3  pounds  (0.136  Kg)  of  carbon  dioxide  emissions.    The  addition  of  carbon  dioxide  to  cement  does  have  some  unique  advantages  that  may  serve  the  construction  industry  well.    Aggregates  made  with  the  reutilization  of  CO2  are  lighter  than  typical  cement  and  30%  to  90%  stronger  than  the  lightweight  expanded  clay  aggregates  that  are  utilized  today  (Gunning  et  al.,  2009).    In  addition,  carbonated  concrete  has  shown  porosity  that  is  nearly  21%  less  than  typical  concrete,  making  it  a  good  candidate  for  areas  that  are  used  for  storing  potentially  hazardous  chemicals  (Cheng-­‐Feng  et  al.,  2005;  Huertas  et  al.,  2009).    Carbonated  concrete  is  not  as  strong  as  non-­‐carbonated  but  the  strength  increases  with  the  amount  of  carbon  dioxide  included  up  to  a  critical  point.    One  downside  of  this  approach  is  that  carbonated  concrete  has  a  limited  number  of  activation  sites  and  thus  CO2  is  only  able  to  bond  within  a  certain  distance  of  the  surface  (Chang,  2006;  Sang-­‐Hwa  et  al.,  2011).    Sean  Monkman  (2008)  found  that  the  amount  of  carbon  dioxide  that  can  be  added  to  cement  is  actually  greater  than  previous  models  predicted  (25%  by  weight  versus  20%  by  weight)  and  is  dependent  on  the  form  of  concrete  to  which  it  is  added  (pre  cured  versus  cured).    In  a  similar  technique,  aggregates  can  be  directly  produced  from  critical  phase  carbon  dioxide.    Steel  slag  and  concrete  waste  are  submerged  in  water  then  mixed  with  CO2  in  ambient  air  to  simulate  the  same  chemical  process  that  is  used  in  geological  storage.    The  reaction  results  in  a  solid,  calcium  or  magnesium  carbonate  that  can  be  used  as  a  component  for  further  cement  production  (Stolaroff  et  al.,  2005).    The  process  of  “green”  cement  production  requires  the  addition  of  saltwater  or  possibly  brackish  groundwater  to  cooled  carbon  dioxide  that  is  separated  from  the  flue  of  a  power  plant.    By  providing  an  abundance  of  solutes  to  which  the  carbon  dioxide  can  bind,  large  concentrations  of  calcium  carbonate  are  produced  at  temperatures  much  lower  than  typical  cement  production.    This  not  only  removes  carbon  dioxide  from  flue  gas  but  it  also  reduces  the  amount  of  fuel  burned  to  produce  the  concrete,  

Page 45: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

36  

further  mitigating  CO2  emissions.    The  solid  compounds  produced  in  the  saltwater  reactor  are  later  removed  and  dried.    From  there,  they  are  ready  for  use  as  an  aggregate  in  cement  production.    Testing  has  shown  the  capture  of  CO2  for  aggregates  used  in  cement  generally  surpasses  50%  efficiency  and  can  reach  90%  under  the  right  conditions  (Calera,  2009).    The  production  of  aggregates  using  carbon  dioxide  may  require  larger  inputs  of  energy  in  the  form  of  pressure  for  crushing  and  increasing  reaction  rates  or  the  transport  of  salt/brackish  water  but  an  increase  in  the  understanding  and  efficiency  of  the  process  will  reduce  these  costs.    In  some  areas  aggregate  production  using  captured  carbon  dioxide  has  already  reached  demonstration  scale  and  is  being  refined  in  preparation  of  wide  scale  distribution.    Pilot  scale  plants  using  this  “green”  cement  are  being  utilized  in  the  United  States  and  in  Canada.    Currently  advertised  processes  are  offered  regionally,  located  adjacent  to  power  plants  and  can  capture  high  percentages  (>  95%)  of  sulfur  oxides  and  trace  metals  (chromium,  cadmium  and  selenium)  present  in  the  flue  gases.    Current  research  is  still  attempting  to  identify  the  short  and  long-­‐term  costs  of  this  process.  

Conversion  to  Plastics  Donald  Darensbourg  (2006)  has  conducted  extensive  research  looking  into  the  possibility  of  using  CO2  to  produce  plastics.    This  process  is  still  a  novel  approach  to  reducing  emissions,  but  has  the  potential  to  play  a  significant  role  in  future  markets.    During  the  process  of  plastic  production,  CO2  is  coupled  to  epoxides  using  a  metal  catalyst  producing  polycarbonates  or  cyclic  carbonates.    These  compounds  then  act  as  building  blocks  for  larger  plastic  polymers  that  can  be  used  for  a  wide  range  of  purposes.    Due  to  the  heavy  use  of  plastics  in  the  economy  today,  much  of  the  work  creating  plastics  from  CO2  focuses  on  developing  more  efficient  catalysts  and  processes  to  streamline  the  waste  to  product  timeline.    Several  types  of  monomers  and  polymers  can  be  produced  using  this  process,  so  extensive  research  will  be  required  to  understand  potential  application,  costs,  demand  on  resources  and  regulatory  constraints  associated  with  each  product.    Another  process  that  has  shown  some  promise  for  the  reutilization  of  CO2  is  for  recycling  polyethylene  terephthalate  (PET)  beverage  bottles.    In  this  process,  rather  than  melting  the  bottles  down  and  remolding  them,  the  container  surface  is  broken  down  and  reformed  by  mixing  with  CO₂.    This  process  not  only  cleans  the  bottle,  it  refinishes  the  surface  for  a  like-­‐new  bottle  (Al-­‐Ghatta,  1991).    The  safety  of  this  process  is  still  undergoing  the  approval  process  before  wide  scale  use  can  begin.    A  similar  process  is  performed  by  a  dry  cleaning  system  designed  to  use  liquid  CO₂  to  adhere  to  a  primary  cleaner  and  remove  an  unwanted  substrate  (Dewees  et  al.,  1993).    Each  of  these  processes  has  drawbacks  but  could  prove  to  be  a  useful  way  to  slow  the  flow  of  CO₂  into  the  atmosphere  in  an  economically  friendly  way.        

Page 46: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

37  

ANALYSIS  OF  CARBON  MANAGEMENT  Carbon  management  is  the  combination  of  technology  and  innovation  with  socio-­‐economic  factors  such  as  policy,  regulatory  frameworks,  social  aspects,  cultural  values,  knowledge  management,  capacity  building,  geography,  and  economic  implications  to  develop  a  set  of  comprehensive  solutions  that  allow  for  the  reduction  of  carbon  emissions  while  remaining  competitive  in  the  marketplace  for  a  technical  and  scientific  challenge.    Policy  makers  have  discussed  the  topic  of  climate  change  and  reducing  global  CO2  emissions  for  over  20  years,  with  increasing  attention  since  the  1997  Kyoto  Protocol  (Pielke,  2009).    The  largest  contributor  to  the  anthropogenic  greenhouse  effect  is  carbon  dioxide  and  recent  observations  point  to  an  increase  in  the  airborne  fraction  of  anthropogenic  CO2  (Houghton,  2007).    Clean  energy  policies,  as  well  as  sound  economic  principles,  are  needed  on  a  global  scale  to  transition  away  from  fossil  fuels  (Cleetus,  2011),  which  is  a  current  topic  at  the  federal  level  in  the  United  States.    Policies  have  already  been  implemented  in  many  US  states,  with  California  being  the  leader  (Bird,  2008).    Soon  after  Congress  passed  the  National  Energy  Act,  progressive  regulators  in  California  helped  to  create  commercial  renewable  energy  technology  markets  (Mallon,  2006).    In  2006,  California  Governor,  Arnold  Schwarzenegger,  created  a  plan  to  reduce  CO2  emissions  to  1990  levels,  statewide,  by  2020  using  a  progressive  cap-­‐and-­‐trade  plan  (Phillips,  2008).    In  2003,  two  market-­‐based  instruments  for  carbon  reduction  were  actively  being  considered:  emissions-­‐trading  and  carbon  taxes  (Helm,  2003).    Currently,  the  same  two  market-­‐based  policies  are  being  discussed:  a  quantity-­‐based  cap  and  trade  method  that  promotes  long-­‐term  investments,  and  a  price-­‐based  method  of  taxation  that  promotes  shorter-­‐term  investment  (Neuhoff,  2011).    “Economic  theory  shows  that  there  are  two  basic  options  for  implementing  a  carbon  price:  we  can  set  a  cap  on  the  quantity  of  emissions  and  allow  the  market  to  determine  the  resulting  price;  or,  we  can  set  a  price  and  allow  the  market  to  determine  the  corresponding  quantity  of  emissions”  (Cleetus,  2011).  

Policy  Background  The  United  Nations  Framework  Convention  on  Climate  Change  adopted  the  Kyoto  Protocol  in  1997  as  an  international  environmental  agreement  to  stabilize  greenhouse  gas  levels  in  the  atmosphere  (UNFCCC,  1997).    While  it  has  not  been  ratified  by  the  United  States,  and  the  federal  government  does  not  currently  regulate  climate  change  pollutants  such  as  CO2  (Bayon,  2007),  the  international  agreement  encourages  participating  nations  to  reduce  their  emission  levels  over  a  given  amount  of  time.    The  Protocol,  signed  by  37  industrialized  nations,  set  a  binding  target  of  reducing  emissions  to  1990  levels  over  a  period  of  time  from  2008-­‐2012  (UNFCCC,  1997),  but  was  not  ratified  by  major  polluters  including  the  United  States  and  China  (Kyoto  Protocol:  Status  of  Ratification,  2006).    In  talks  after  the  Kyoto  Protocol’s  establishment,  leaders  of  the  G8  (Group  of  8)  nations  and  Brazil,  China,  India,  Mexico,  and  South  Africa  formed  a  nonbinding  declaration  of  “Responsible  Leadership  for  a  Sustainable  Future”  in  July  of  2009.    The  declaration  covers  global  issues,  stating  that  challenges  of  climate  change  and  sustainable  uses  of  natural  resources  are  important  to  ensure  global  sustainability  (G8  Summit,  2009).        In  an  effort  to  improve  upon  the  Kyoto  Protocol,  the  Copenhagen  Accord  (2009)  uses  low  emissions  development  strategies  and  provides  incentives  for  developed  countries  to  reduce  emissions  through  ambitious  mitigation  strategies.    Through  the  Copenhagen  Accord,  developing  countries,  not  considered  in  the  Kyoto  discussions,  are  encouraged  to  work  with  developed  countries  to  improve  low  carbon  alternative  technologies  and  mitigation  strategies  (Neuhoff,  2011).  

Page 47: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

38  

Overview  of  Carbon  Markets  Carbon  markets  are  the  regulation  and  action  of  buying  and  selling  emissions  credits.    These  markets  often  work  in  terms  of  carbon  credits,  which  are  defined  amounts  of  carbon  that  are  either  emitted  or  contained  (Bayon,  2007).    Carbon  emissions  credits  can  be  bought  by  nations  that  exceed  their  emissions  limit  and  sold  by  nations  that  either  do  not  have  an  emissions  limit  (developing  nations)  or  those  meeting  their  limits,  thus  allowing  supply  and  demand  to  control  the  price  of  such  credits  (Laurance,  2008).    The  creation  of  a  global  carbon  market  has  the  potential  to  provide  incentives  for  technological  and  economic  innovation  as  well  as  diffusion  of  low-­‐carbon  infrastructure  and  technologies  (Neuhoff,  2011).        There  are  two  sub-­‐markets  of  the  global  carbon  market:  compliance  (regulatory)  and  voluntary  (Bayon,  2007).    Voluntary  markets,  referred  to  as  “green  power  markets,”  allow  consumers  to  choose  cleaner  electricity  sources  for  their  own  consumption  in  order  to  support  the  development  of  renewable  energy  sources  (Bird,  2008).    In  San  Antonio,  Texas,  CPS  Energy  has  created  a  “Windtricity”  program,  allowing  customers  to  voluntarily  participate  in  support  of  investments  made  by  the  utility  in  clean  energy  and  renewable  sources  of  energy.    Customers  agree  to  pay  a  slightly  increased  rate  ($0.03/kWh)  on  their  electricity  bill  to  cover  the  higher  cost  of  producing  wind  energy  (CPS  Energy,  2012).    Customers  can  choose  to  enroll  based  on  a  set  rate  (i.e.  $20/month)  or  based  on  percentage  (i.e.  20%  of  their  total  electricity  consumption).    Pacific  Power,  operating  in  the  Northwestern  United  States,  has  a  similar  program,  the  Blue  Sky  Renewable  Energy  Program.    The  program  allows  customers  to  pay  at  least  $1.95  per  month  in  order  to  help  bring  new  renewable  energy  sources  online  (Pacific  Power,  2012).    Compliance  markets  are  tied  to  the  Kyoto  Protocol,  using  regulation  mechanisms  such  as    emissions  trading,  joint  implementation,  and  clean  development  mechanisms.    The  most  developed  of  the  three,  emissions  trading,  is  a  transaction  system  that  allows  countries  to  purchase  and  sell  credits.    Joint  implementation  and  clean  development  mechanisms  are  project-­‐based  transaction  systems  where  reductions  projects  occur  in  other  countries.    In  joint  implementation,  credits  are  purchased  by  developed  countries  from  developed  countries  or  countries  in  transition.    Clean  development  mechanisms  occur  when  developed  countries  fund  reduction  in  developing  countries  (Bayon,  2007).   Carbon  trading,  or  carbon  offsets,  is  an  integral  portion  of  the  carbon  market.    It  requires  defined  carbon  assets,  such  as  the  Carbon  Financial  Instrument,  defined  by  the  Chicago  Climate  Exchange  as  1  metric  ton  of  CO2  (Bayon,  2007;  Bigsby,  2009).    A  reduction  in  carbon  emissions  or  increase  in  sequestration  by  one  entity  will  be  traded  to  another  entity,  which  produces  an  excess  of  emissions  (Galik,  2009).    According  to  Marland  et  al.,  (2001)  “if  sequestered  carbon  becomes  a  commodity  that  can  be  saved  or  sold,  there  would  presumably  be  a  system  of  both  credits  and  debits.”    Essentially,  when  carbon  is  sequestered,  credits  would  be  granted,  however  if  carbon  emissions  were  released  to  the  atmosphere,  debits  would  occur.    The  Kyoto  Protocol  (Article  3.4)  implies  that  these  credits  and  debits  will  occur  continuously,  but  be  evaluated  at  set  times  as  compared  to  a  baseline  (Bottcher,  2008).    Cap-­‐and-­‐trade  programs  are  different  from  carbon  trading  in  that  there  is  an  overall  cap  to  the  amount  of  emissions  allowed.    Due  to  the  emissions  cap  and  associated  tax,  the  cost  of  electricity  generation  from  traditional  fossil  fuels  would  increase,  thus  benefiting  renewable  and  cleaner  energy  generation  alternatives  (Bird,  2008).    The  United  Nations  Framework  Convention  on  Climate  Change  (UNFCCC)  has  attempted  to  negotiate  commitments  to  cut  greenhouse  gas  emissions  from  nations  with  large  outputs;  however  a  debate  has  ensued  over  whether  a  flat  tax  on  carbon  emissions  or  a  cap-­‐and-­‐trade  policy  will  be  more  beneficial  (Cleetus,  2011).    Policy  makers  in  the  United  States,  European  Union,  and  China  are  pressured  to  create  national  policies  due  to  their  respective  contributions  to  global  demands  for  energy  

Page 48: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

39  

and  resulting  emissions,  as  shown  by  the  figure  below.    However,  at  UNFCCC  negotiations,  “there  has  been  a  disappointing  lack  of  commitment  from  major  emitting  nations  to  curtail  their  greenhouse  gas  emissions  and  help  developing  nations  cope  with  unavoidable  climate  change”  (Cleetus,  2011).    As  Cragg  points  out  in  an  article  on  Carbon  Geography,  both  carbon  pricing  and  non-­‐price  policies  will  likely  be  needed  in  order  to  meet  goals  for  cutting  carbon  emissions  (Cragg,  2009).    However,  it  will  not  be  sufficient,  nor  will  it  be  possible,  for  one  country  to  tackle  the  problem  on  its  own  due  to  globalization,  free  trade  and  other  complicating  factors.    If  one  country  attempts  sustainable  development  at  a  higher  degree,  products  made  in  that  country  will  become  more  expensive,  leading  to  greater  imports  from  less  sustainable  countries,  driving  local  companies  in  the  first  country  out  of  business  (Daly,  2008).    

FIGURE  1-­‐9.  Regional  Energy  Use  and  CO2  Emissions.  

SOURCES:  IEA,  CDIAC  for  UN,  World  Bank,  2011.    

Future  of  Carbon  Policy  Rachel  Cleetus  establishes  that  a  hybrid  solution  of  the  carbon  tax  and  carbon  cap-­‐and-­‐trade  system  may  be  preferred,  as  shown  by  prior  US  House  and  Senate  bills  that  set  an  emissions  cap,  price  floor,  and  price  ceiling  (Cleetus,  2011).    For  an  energy  policy  to  be  effective,  it  must  “reduce  our  dependence  on  fossil  fuels,  protect  the  environment,  and  take  meaningful  steps  to  solve  global  warming  while  creating  jobs  and  saving  money”  (Cragg,  2009).    While  efforts  are  made  to  reduce  dependence  on  fossil  fuels,  other  efforts  focus  on  reducing  imports  of  foreign  oil  by  expanding  local  production  of  oil  through  enhanced  oil  recovery  (EOR)  and  development  of  shale  resources.        According  to  a  report  from  Massachusetts  Institute  of  Technology  (MIT)  and  University  of  Texas,  Austin,  using  CO2  for  enhanced  oil  recovery  could  not  only  cut  CO2  emissions  but  also  increase  domestic  oil  production  (MIT  EI,  2010).    The  United  States  is  focused  on  using  clean  sources  of  electricity  such  as  wind,  solar,  nuclear,  clean  coal,  and  natural  gas,  in  an  effort  to  have  a  diversified  portfolio  of  energy  sources  while  reducing  overall  CO2  emissions  (United  States,  2011).    Although  carbon  policies  have  been  discussed  for  years,  any  serious  policy  proposed  would  face  serious  opposition  on  the  political  scene  (Cleetus,  2011).    Economist  Herman  Daly  ascertains  that  “politically  unpopular  removal  of  subsidies  and  addition  of  taxes”  are  necessary  for  prices  to  be  adjusted  to  support  sustainable  development  (Daly,  2008).    California  adopted  a  greenhouse  gas  cap-­‐and-­‐trade  program  in  October  of  2011  as  part  of  the  Global  Warming  Solutions  Act  (AB  32),  which  regulates  major  greenhouse  gas  emitters  within  the  state.    An  

0  

10000  

20000  

30000  

40000  

50000  

60000  

70000  

80000  

90000  

USA   EU-­‐27   China   India  

Regional  Energy  Use  (kWh/capita)  

CO2  Emissions  (thousands  of  metric  tonnes/capita)  

Page 49: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

40  

enforceable  cap  on  emissions  has  been  set  and  will  decline  over  time,  with  emissions  being  granted  through  tradable  permits.    The  permits  will  allow  for  a  given  quantity  of  certain  emissions  to  be  released,  and  permits  will  have  specific  restrictions  as  to  how  they  can  be  traded  or  sold.    This  plan,  as  defined  by  California,  fits  into  the  Western  Climate  Initiative,  a  collaboration  of  eleven  US  states  and  Canadian  provinces  that  have  agreed  to  reduce  climate-­‐changing  emissions  (Adams,  2009).    The  European  Union  (EU)  has  become  a  leader  in  climate  change  policies,  with  regional  policies  as  well  as  countries  adopting  their  own  policies.    In  2007,  the  EU  made  a  commitment  to  cut  emissions  by  at  least  20%  of  1990  levels,  far  exceeding  the  requirements  of  the  Kyoto  Protocol.    More  recently,  the  EU  proposed  an  agreement  that  would  begin  in  early  2013  to  reduce  its  emissions  to  30%  by  2020  if  other  major  emitters  in  the  developed  and  developing  world  will  do  their  part  as  well  (Europa,  2011).    The  United  States  has  been  focused  on  energy  independence  for  years,  with  President  Obama  stating,  “the  United  States  of  America  cannot  afford  to  bet  our  long-­‐term  prosperity  and  security  on  a  resource  that  will  eventually  run  out”  (United  States,  2011).    

Page 50: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SECTION  2:    COMPANY  PROFILES  

Page 51: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

42  

SECTION  SUMMARY  

This  section  is  comprised  of  profiles  of  the  following  companies  with  technologies  in  the  carbon  mitigation  market:  

• Air  Products  and  Chemicals  • Alstom  Power  • Aker  Clean  Carbon  • BASF  • Calera  • Cansolv  Technologies,  Inc.  • Codexis  • ConocoPhillips  • Dakota  Gasification  Company  • Dow  Oil  &  Gas  • Fluor  • Hitachi  • Linde  • Mitsubishi  Heavy  Industries  (MHI)  • Membrane  Technology  &  Research  (MTR)  • Novomer  • Powerspan  • Siemens  • Skyonic  • Southern  Company  • UOP  

Page 52: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

43  

 

 Air  Products  and  Chemicals,  Inc.  7201  Hamilton  Boulevard  Hamilton,  Pennsylvania  18195    http://www.airproducts.com/industries/Energy/Power/Power-­‐Technologies.aspx    Research  &  Technology  Summary  From  origins  in  cryogenic  air  separation  technology,  Air  Products  has  grown  to  become  a  global  supplier  

of  industrial  gases  (e.g.,  merchant  hydrogen)  and  of  equipment  based  on  cryogenic,  adsorption,  and  membrane  technologies.      Air  Products  is  a  recognized  leader  in  oxy-­‐combustion  carbon  capture  technology  and  has  additional  product  offerings  in  carbon  capture  from  gasification,  membrane  

separation  technologies,  cogeneration  technologies,  and  energy  storage,  just  to  name  a  few.    They  have  over  18,000  employees,  operations  in  more  than  40  countries,  2010  revenues  in  excess  of  $9B,  and  were  founded  in  1940.    They  are  currently  working  on  several  CCS  projects  around  the  world  for  power  

markets  and  industrial  markets.    Specific  technologies  include:    Oxy-­‐Combustion  Technologies:  Their  oxy-­‐combustion  system  coupled  with  their  compression/purification  technologies  can  reportedly  provide  a  CCS  system  with  the  potential  to  remove  up  to  99%  SOx,  about  90%  NOx,  deliver  a  CO2  stream  

with  purities  in  the  95-­‐98%  range,  and  capture  up  to  one  million  tons  of  CO2  per  year.    It  is  retrofit  or  new-­‐build  technology  and  has  been  demonstrated/piloted  in  Germany,  Scotland,  and  the  United  States.    They  are  also  working  with  Shanxi  International  Energy  Group  Co.,  Ltd  (SIEG)  to  perform  a  feasibility  

study  and  reference  plant  design  for  potential  installation  at  SIEG’s  350  MW  Oxyfuel  Electrical  Generation  Demonstration  Project.    H2PSA  from  Sour  Syngas  Pre-­‐Combustion  Technology:  Air  Products  also  has  a  proprietary  low-­‐cost  option  for  pre-­‐combustion  capture  that  capitalizes  on  their  

years  of  experience  in  the  design  and  operation  of  H2  pressure  swing  adsorption  (PSA)  systems  associated  with  steam  reformers.    The  “  H2PSA  from  Sour  Syngas”  technology  is  an  alternative  to  traditional  physical  solvent  absorption  processes  like  Rectisol.      

 Demonstrated?            Yes                or            No      

Demonstrations/pilots  include:    • Demonstration  at  Doosan  Power  Systems’  facility  in  Renfrew,  Scotland  • Pilot  at  Vattenfall’s  Schwarze  Pumpe  plant  in  Germany  

• Pilot  at  boiler  simulation  facility  in  Windsor,  CT  • Working  with  SIEG  to  perform  a  feasibility  study  and  reference  plant  design  for  potential  

installation  at  SIEG’s  350  MW  Oxyfuel  Electrical  Generation  Demonstration  Project  

Air  Products  and  Chemicals  is  a  proven  leader  in  

oxy-­‐combustion  technology.  They  also  have  an  innovative  pre-­‐combustion  technology  for  sour  

syngas.    Major  partners  include  Vattenfall,  Doosan  Power  Systems,  and  Shanxi  

International  Energy  Group.  

 

Page 53: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

44  

 

Process  Flow  Diagrams  Oxy-­‐Combustion:  

 FIGURE  2-­‐1:  Air  Products’  Oxy-­‐Combustion  Technology  Process  

SOURCE:  Air  Products,  2012    

Pre-­‐Combustion:    

 FIGURE  2-­‐2:  Air  Products’  Pre-­‐Combustion  Technology  Process    

SOURCE:  Air  Products,  2012  

 Additional  Links  /  Information  

• Air  Products  Website:  Air  Products  and  Chemicals,  Inc  Carbon  purification  technologies  • Air  Products  Website:  Carbon  Capture  using  OxyFuel  Technology  • Air  Products  Website:  Carbon  Capture  from  Gasification  • May  5,  2011  Article:  Air  Products’  Proprietary  Technology  Onstream  at  World’s  Premier  

Demonstration  of  Oxyfuel  CO2  Capture  and  Storage  at  Vattenfall  • Vattenfall  Website:  Vattenfall’s  Carbon  Capture  Technology    

Page 54: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

45  

 

Alstom  Power  Brown  Boveri  Strasse  74  CH-­‐5401  Baden  Switzerland  http://www.alstom.com/power/fossil/coal-­‐oil/carbon-­‐capture-­‐solutions    

Research  &  Technology  Summary  Alstom  is  a  recognized  leader  in  both  post-­‐combustion  and  oxy-­‐combustion  carbon  capture  technologies.    Their  strategy  has  been  developed  through  their  belief  that  these  technologies  are  not  only  the  most  economically  viable  and  sustainable  solutions  for  customers,  but  also  because  they  can  be  retrofitted  to  an  existing  installed  base.    Specifically,  they  have  post-­‐combustion  chilled  ammonia  solutions,  post-­‐combustion  amine  solutions,  and  oxy-­‐combustion  systems  that  have  been  demonstrated  worldwide  and  are  currently  testing  chemical  looping  technologies  as  well.        Alstom’s  list  of  global  CCS  partners  includes  AEP,  Dow  Chemical,  EPRI,  E.ON,  Polska  Grupa  Energetyczna,  Schlumberger,  SRI  International,  StatoilHydro,  Total,  TransAlta,  VattenFall,  and  We  Energies.      They  are  continuing  their  significant  R&D  efforts  in  CCS  and  are  validating  the  technologies  at  a  number  of  pilot  and  demonstration  projects  around  the  world  (13  demonstrations  in  all).    They  are  working  closely  with  partners  towards  full-­‐scale  commercialization  that  hopes  to  be  available  on  the  market  around  2015.    Specific  technologies  include:    Chilled  Ammonia  Technology:  Alstom’s  proprietary,  proven  chilled  ammonia  process  (CAP)  uses  ammonium  carbonate  to  absorb  CO2  from  flue  gas.    Ammonia  is  an  inexpensive  and  widely  available  commodity.    There  is  no  degradation  of  the   solvent   in   the   process;   however   there   is   some   designed   ammonia   loss,   and   it   requires   high  regeneration  temperature  and  pressure.    The  process  generates  ammonium  sulphate  as  by-­‐product  that  could  be  sold  as  fertilizer.  Oxy-­‐Combustion  Technology:  Alstom’s  process  consists  of  burning   fuel   in  a  mixture  of  oxygen  and   recirculated   flue  gas,  eliminating  the   high   volume  of   nitrogen   that   comes   from  air   during   conventional   combustion.     The   process   then  facilitates   the  second  phase  of   the  concentration  and  purification  of   the  CO2,  separating  up  to  90%  of  the  CO2  created  during  combustion.    Advanced  Amine  Technology:  Dow  Oil  &  Gas  and  Alstom  are  working  on  developing  advanced  amine  process  technology  that  utilizes  UCARSOL  FGC  3000,  an  advanced  amine  solvent  from  Dow,  in  combination  with  advanced  flow  schemes  to  provide  cost  effective  post-­‐combustion  carbon  capture.    This  process  is  reportedly  more  degradation-­‐resistant  and  efficient  when  capturing  CO₂  compared  to  traditional  methods.    

Demonstrated?            Yes                or            No    13  different  pilot/demonstration  projects,  including:    

Alstom  Power  is  a  recognized  leader  in  both  post-­‐combustion  and  oxy-­‐combustion  

technologies.    They  have  13  demonstration  projects.    Major  partners  include  AEP,  Dow,  

EPRI,  E.ON,  Schlumberger,  SRI,  Statoil,  Total,  and  others.  

Page 55: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

46  

• Brandenburg,  Germany:  Using  an  Alstom-­‐engineered  and  built  oxy-­‐combustion  steam  generator  system,  the  Vattenfall  pilot  plant  operates  on  air-­‐firing  as  well  as  oxy-­‐firing  modes.  

The  pilot  plant,  with  its  complete  oxy-­‐combustion  process  chain,  is  intended  to  validate  and  support  the  technical  concept  and  serve  as  the  main  step  towards  the  construction  of  a  200-­‐300  MW  plant,  generating  “near-­‐zero  CO2”  electricity  by  2015.  

• Pleasant  Prairie,  USA:  We  Energies’  chilled  ammonia  CO2  capture  pilot  in  Wisconsin  went  into  operation  in  2008.  The  pilot,  designed  to  capture  15,000  metric  tons  of  CO2  per  year,  has  already  logged  more  than  7,000  operating  hours  and  been  subjected  to  24  x  7  operations  to  prove  

reliability  –  it  succeeded  and  captured  90%  of  all  CO2  in  continuous  operation  at  full  load.  • Mongstad,  Norway:  The  carbon  capture  facility  built  by  Alstom  at  Testing  Centre  Mongstad  is  

also  based  on  Alstom’s  proprietary  chilled  ammonia  process.    CO2  will  be  captured  from  flue  gas  from  a  combined  heat  and  power  plant  with  an  annual  capacity  of  22,000  metric  tons.    The  facility  allows  for  testing  of  CO2  concentrations  in  the  range  between  3%  and  9%  by  recirculation  of  captured  CO2.    This  will  be  used  to  simulate  a  number  of  power  and  industrial  sources  of  CO2  such  as  gas  turbines  with  flue  gas  recirculation.  

• More  information  on  these  demonstrations  available  at:  http://www.alstom.com/Global/Power/Resources/Documents/Brochures/co2-­‐solutions-­‐balanced-­‐portfolio.pdf  

 Process  Flow  Diagrams  

 FIGURE  2-­‐3:  Alstom  Power’s  Post-­‐Combustion  Chilled  Ammonia  Process    

SOURCE:  Alstom  Power,  2012  

 

Page 56: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

47  

 FIGURE  2-­‐4:  Alstom  Power’s  Oxy-­‐Combustion  Technology  Process    

SOURCE:  Alstom  Power,  2012  

 Additional  Links  /  Information  

• Company  CCS  Brochure,  including  Factsheets:  Alstom  CO₂  Solutions  –  Balanced  Portfolio  

     

Page 57: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

48  

 

   Aker  Clean  Carbon  AS  1324  Lysaker  Norway  http://www.akercleancarbon.com    Research  &  Technology  Summary  Aker  Solutions,  the  parent  company  of  Aker  Clean  Carbon,  is  one  of  the  world‘s  leading  providers  of  oilfield  products,  systems,  and  services.    The  company‘s  knowledge  and  technologies  span  from  reservoir  to  production  and  through  the  life  of  a  field  with  approximately  18,500  people  in  more  than  30  countries.    Aker  Clean  Carbon  was  established  in  2007  to  commercialize  carbon  capture  technology  developed  by  a  group  of  in-­‐house  expert  engineers.    They  have  subsequently  been  investigating  additional  solvents  and  processes  as  well  as  a  unique  concept  involving  bio  energy  plants.   Post-­‐Combustion  Amine  Technology:  Aker  Clean  Carbon  has  developed  a  post-­‐combustion  technology  for  carbon  capture  based  on  the  chemical  reaction  between  an  amine-­‐based  liquid  absorbent  and  CO₂.    They  are  currently  experimenting  with  different  solvents  and  processes  in  an  effort  to  reduce  costs.        Aker  Clean  Carbon’s  research  and  development  program,  SOLVit,  was  initiated  with  the  Scandanavian  research  organization  SINTEF  and  the  Norwegian  University  of  Science  and  Technology  (NTNU)  in  2008.  It  is  an  8-­‐year  program  with  a  budget  of  approximately  $60M.    E.ON  has  been  an  active  partner  in  SOLVit  from  the  start  and  has  now  entered  into  stage  2  along  with  Energie  Bade-­‐Württemberg  AG  (EnBW).    Their  current  research  efforts  are  focused  on  selecting  a  “green  and  energy  efficient”  solvent,  gathering  emission  and  degradation  measurements  in  pilots,  and  developing  emission  control  systems.    More  than  80  solvent  systems  have  been  screened  so  far  in  the  SINTEF  and  NTNU  laboratories,  and  the  best  candidates  have  been  selected  for  long  term  testing  in  the  pilots.    Carbon  Capture  with  Bio  Energy:  Aker  Clean  Carbon  has  also  developed  a  concept  to  combine  CO₂  capture  with  a  bio  energy  plant,  providing  steam  and  electricity  to  the  capture  facility.  This  concept  takes  any  dependency  on  fossil  fuel  fired  power  plants  for  the  capture  facility  and  increases  the  total  CO₂  capture  by  catching  the  emitted  CO₂  from  the  bio  fuel  burner  as  well.      Demonstrated?            Yes                or            No        Proposed  pilots/demonstrations  include:  

• Tests  at  Technology  Centre  Mongstad  in  Norway  • EnBW’s  carbon  capture  pilot  in  Heilbronn,  Germany  will  be  integrated  as  part  of  the  on-­‐going  

SOLVit  program  • Tests  at  Longannet  Power  Station  in  Scotland  

Aker  Clean  Carbon  has  been  working  on  post-­‐combustion  amine  technologies  since  2007.    

They  have  a  significant  research  program  that  includes  SINTEF,  NTNU,  E.ON,  and  EnBW.    Their  

parent  company,  Aker  Solutions,  is  a  leading  provider  of  oilfield  products  and  services.    

Page 58: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

49  

 Process  Flow  Diagram  

 FIGURE  2-­‐5:  Aker  Clean  Carbon’s  Post-­‐Combustion  Technology  Process  

SOURCE:  Aker  Solutions,  2012  

 Additional  Links  /  Information  

• Company  Website:  http://www.akercleancarbon.com/section.cfm?path=418,456  • May  2012  Press  Release  on  Opening  of  Aker  Clean  Carbon’s  Testing  Center  in  Norway:  

http://www.akercleancarbon.com/news.cfm?id=1239&path=436  • Information  on  Aker’s  Mobile  Test  Capture  Facility:  mobile  test  capture  facility    

   

 

Page 59: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

50  

 

   BASF  25  Middlesex/Essex  Turnpike  Iselin,  NJ  08830  www.BASF.com    Research  &  Technology  Summary  BASF  is  one  of  the  world’s  leading  chemical  companies  with  a  portfolio  of  solutions  ranging  from  chemicals,  plastics,  and  performance  products  to  agricultural  products,  fine  chemicals  as  well  as  oil  and  gas  solutions.    BASF  has  significant  experience  in  capturing  CO2  from  gas  flows  in  industrial  uses.    The  company  markets  its  amine-­‐based  gas  treatment  technology  under  the  brand  name  aMDEA  (short  for  activated  Methyldiethanolamine).    For  many  years  this  BASF  process  has  been  used  successfully  around  the  world  in  more  than  220  gas  scrubbing  facilities,  mainly  in  natural  gas  and  syngas  facilities.  

BASF  also  has  a  series  of  catalyst  systems  that  can  destroy  carbon  monoxide  (CO)  and  volatile  organic  compounds  (VOCs)  produced  by  power  generation  equipment.    In  addition,  BASF  and  its  partners  JGC  Corporation  and  INPEX  Corporation  have  successfully  completed  a  test  of  removing  carbon  dioxide  from  natural  gas  under  high  pressure.  The  new  gas  treatment  technology  reportedly  enables  a  reduction  of  25-­‐35%  in  the  cost  of  CO2  recovery  and  compression.    Their  “High  Pressure  Acid  gas  Capture  Technology”  (HiPACT)  was  developed  by  JGC  and  BASF  and  tested  at  an  INPEX  natural  gas  plant  in  

Koshijihara.  

BASF  has  been  working  on  other  CO2  projects  in  partnership  with  RTI  International,  Linde  Group,  and  others.    BASF  and  RTI  have  been  working  to  develop  a  new,  cost-­‐effective  CO2  carbon  capture  technology,  while  BASF's  partnership  with  Linde  aims  to  market  licenses  and  plants  for  the  capture  of  

carbon  dioxide  from  flue  gases.  

Demonstrated?            Yes              or            No    Demonstrations/pilots  include:  

• High  pressure  acid  gas  capture  technology  tested  at  an  INPEX  natural  gas  plant  in  Koshijihara,  Japan  

• Pilot  facility  for  CO2  scrubbing  with  the  Linde  Group  and  RWE  at  a  lignite  power  plant  in  Niederaubem,  Germany      

 

BASF  is  one  of  the  world’s  leading  chemical  companies  and  has  a  number  of  post-­‐combustion  

solutions,  including  an  amine-­‐based  treatment  technology  and  a  high  pressure  acid  gas  capture  

technology.    Partners  include  Linde  Group,  RTI  International,  JGC,  and  INPEX.    Most  applications  

have  been  in  industrial  facil ities.      

Page 60: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

51  

 

Process  Flow  Diagram  

 FIGURE  2-­‐6:  BASF/JGC  HiPACT  Process  

SOURCE:  JGC  Corporation,  2012  

 Additional  Links  /  Information  

• Company  Website  on  Solutions  for  Power  Generators:  http://www.catalysts.basf.com/p02/USWeb-­‐Internet/catalysts/e/content/microsites/catalysts/prods-­‐inds/stationary-­‐emissions/sol-­‐pow-­‐gen  

• Press  Release  on  Partnership  with  Linde:  http://www.basf.com/group/pressrelease/P-­‐10-­‐118  • Press  Release  on  Partnership  with  RTI:  http://www.basf.com/group/pressrelease/P-­‐10-­‐328    

   

 

Page 61: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

52  

 

 

Calera  14600  Winchester  Blvd.  Los  Gatos,  CA  95032  http://www.calera.com    Research  &  Technology  Summary  Calera’s  technology  captures  carbon  and  converts  it  to  solid  minerals  that  can  be  used  as  building  materials.    They  refer  to  this  new  process  as  Mineralization  via  Aqueous  Precipitation,  or  MAP  for  short.    In  its  simplest  form,  MAP  involves  contacting  gas  from  a  power  plant  or  industrial  source  with  alkaline  water  to  form  soluble  carbonates.      These  carbonates  can  be  used  to  make  cement  and  aggregates,  for  example.    Calera  is  also  developing  a  proprietary  suite  of  electrochemical  technologies  called  Alkalinity  Based  on  Low  Energy  (ABLE).  Once  fully  developed  this  could  allow  low  energy  and  high  efficiency  production  of  chemicals,  both  for  use  as  inputs  to  the  MAP  process  as  well  as  in  green  chemical  applications.    Calera’s  technology  may  be  suitable  for  a  variety  of  facilities,  including  both  power  plant  retrofits  and  new  plants  (coal  and  natural  gas).      The  Calera  process  has  been  proven  to  be  robust  and  is  not  very  sensitive  to  flue  gas  carbon  dioxide  composition.    Other  carbon  capture  technologies  require  pre-­‐scrubbing  of  sulfur  dioxide  to  very  low  levels  prior  to  capture  of  carbon  dioxide.    In  contrast,  MAP  actually  removes  sulfur  dioxide  compounds  and  other  air  pollutants  using  the  same  basic  absorption  and  conversion  techniques  used  for  carbon  dioxide.      Founded  in  2007,  Calera  Corporation  is  a  privately  owned  company  backed  by  Khosla  Ventures.    It  raised  an  additional  $10.6M  in  December  2011.    In  January  2011,  China  Huaneng  Group,  Peabody  Energy,  and  Calera  announced  the  development  of  a  green  coal  energy  campus  in  the  Xilinguole  Region  of  Inner  Mongolia  that  would  use  Calera  technology  to  capture  part  of  the  carbon  dioxide.    Demonstrated?            Yes                or            No        Demonstrations/pilots  include:  

• A  gas  plant  in  Moss  Landing,  California  • Additional  plans  for  demonstration  in  China  

   

Calera’s  mineralization  technology  captures  

carbon  and  converts  it  to  solid  materials  that  can  be  used  as  green  building  materials,  such  as  

cement.     It  was  founded  in  2007  and  is  backed  by  Khosla  Ventures.    Other  partners  include  

Peabody  Energy,  Bechtel,  Dynegy,  Gruppo  de  Nora,  and  China  Huaneng  Group.  

Page 62: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

53  

 Process  Flow  Diagrams  

 FIGURE  2-­‐7:  Calera’s  Mineralization  via  Aqueous  Precipitation  (MAP)  Process  

SOURCE:  Calera,  2012  

 

 FIGURE  2-­‐8:  Calera’s  Alkalinity  Based  on  Low  Energy  (ABLE)  Process

SOURCE:  Calera,  2012  

 Additional  Links  /  Information  

• Company  Website:  Calera  –  Carbon  Dioxide  Technology      

Page 63: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

54  

   Cansolv  Technologies,  Inc.  (subsidiary  of  Shell)  400,  de  Maisonneuve  Ouest,  Suite  200  Montreal,  Quebec,  Canada  H3A  1L4  http://www.cansolv.com    Research  &  Technology  Summary  Cansolv  provides  advanced  air  pollution  control  and  capture  solutions  for  SO₂  and  CO₂  emissions.    Their  research  and  development  program  is  focused  on  continuously  improving  the  Cansolv  SO₂  process,  developing  a  CO₂  capture  process,  and  integrating  advanced  amine  purification  systems.    At  this  time,  fifteen  commercial  Cansolv  SO₂  scrubbing  systems  are  in  operation  and  many  more  are  in  the  detailed  engineering  or  procurement  phase.    A  number  of  Cansolv  CO₂  capture  demonstration  and  commercial  units  are  currently  being  engineered  or  built,  including  a  project  with  SaskPower  at  the  Boundary  Dam  Power  Station.    Cansolv  was  acquired  by  ShellGlobal  Solutions  International  BV,  a  member  of  the  Royal  Dutch  Shell  group,  in  November  2008.   The  Cansolv  CO₂  capture  system  is  a  regenerable  CO₂  scrubbing  process  that  uses  an  aqueous  amine  solution  to  capture  CO₂  and  SO₂.    The  process  can  be  used  in  a  multitude  of  applications,  including  treatment  of  power  plant  flue  gases.    The  scrubbing  by-­‐product  is  a  pure,  water  saturated  CO₂  gas  recovered  from  steam  stripping.    This  system  enables  CO₂  to  be  absorbed  from  feed  gas  by  having  contact  with  the  absorbent  in  the  absorption  tower.    The  absorbent  reacts  reversibly  with  the  CO₂,  therefore  a  multi-­‐stage  counter  current  contacting  is  used  to  achieve  maximum  loading  of  CO₂  into  the  absorbent.  The  solvent  is  then  fed  into  the  top  of  the  tower  and  as  it  flows  down  it  selectively  reacts  with  the  CO₂.  At  the  bottom  of  the  tower  the  amine  is  pumped  into  a  regeneration  tower  where  it  is  heated  in  order  to  reverse  the  absorption  reaction.  As  the  absorbent  moves  down  the  tower,  the  CO₂  is  gradually  stripped,  and  at  the  bottom  the  heat  from  the  “lean”  amine  (the  CO₂  stripped  absorbent)  is  used  to  heat  incoming  rich  amine  to  maximize  the  heat  recovery.  The  amount  of  heat  added  at  this  point  will  determine  the  extent  to  which  the  absorbent  will  be  stripped  of  CO₂.  The  Cansolv  CO₂  capture  system  is  typically  designed  to  remove  approximately  90%  of  the  CO₂  in  the  absorption  tower.    The  CO₂  that  is  removed  is  then  cooled  and  available  at  a  positive  pressure  for  utilization/storage/sequestration.      Demonstrated?            Yes                or            No        Proposed  demonstrations/pilots  include:  

• Its  first  commercial  scale  project  is  proposed  at  the  Boundary  Dam  Power  Station  in  the  province  of  Saskatchewan,  Canada  .    Partners  include  SaskPower  and  Hitachi.    This  project  is  projected  to  be  operational  in  2014.  

 

Cansolv  has  a  proven  SO₂  capture  system  and  is  developing  CO₂  capture  solutions.    They  have  a  

post-­‐combustion  amine  CO₂  capture  technology  that  will  be  demonstrated  by  SaskPower  at  the  

Boundary  Dam  Power  Station  in  Canada.  

Page 64: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

55  

 

Process  Flow  Diagram    

 FIGURE  2-­‐9:  Cansolv’s  Post-­‐Combustion  Technology  Process  

SOURCE:  Cansolv  Technologies,  Inc.,  2012  

 Additional  Links  /  Information  

• Publications  by  Cansolv:  Cansolv  Publications  • Technology  Brochure:  Cansolv  Technologies  Brochure  • News  Release  on  Boundary  Dam  Project:  Saskatchewan  Committed  to  Proceeding  with  Carbon-­‐

Capture  Project                        

Page 65: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

56  

   Codexis  200  Penobscot  Drive  Redwood,  California  94063  http://www.codexis.com/    Research  &  Technology  Summary  Codexis,  Inc.  is  a  developer  of  industrial  enzymes  to  enable  the  cost-­‐advantaged  production  of  biofuels,  bio-­‐based  chemicals,  and  pharmaceutical  intermediates.    Partners  and  customers  include  global  leaders  such  as  Shell,  Alcoa,  Merck,  and  Pfizer.        The  Codexis  “CodeEvolver”  technology  platform  combines  sophisticated  DNA  shuffling  and  proprietary  bioinformatics  with  advanced  systems  biology  and  nearly  a  decade  of  research  experience  to  create  powerful  new  biocatalysts.    Biocatalysts  are  enzymes  or  microbes  that  initiate  or  accelerate  chemical  reactions.    The  CodeEvolver  platform  enables  evolution  of  biocatalysts  designed  "fit  for  purpose"  to  perform  specific  functions  at  industrial  scale.  This  technology  can  transform  industrial  applications  of  biocatalysts,  by  improving  commercially  relevant  characteristics  such  as  stability,  activity,  product  yield  and  tolerance  to  industrial  conditions.    They  have  been  working  with  Alcoa  and  the  U.S.  Department  of  Energy  under  the  ARPA-­‐E  program  to  develop  enzymes  to  increase  the  amount  of  carbon  dioxide  captured  by  power  plants  with  less  parasitic  energy  loss  and  to  convert  carbon  dioxide  into  useful  end  products  such  as  nutrient  rich  fertilizer.    Recent  data  from  the  DOE  program  show  Codexis  technology  has  improved  carbon  capture  performance  by  about  two-­‐million-­‐fold  over  natural  forms  of  the  enzyme.    Based  on  initial  models,  Codexis  believes  that  their  biocatalysts  may  reduce  parasitic  energy  loss  by  up  to  35%.  In  the  laboratory,  these  biocatalysts  have  also  exhibited  increased  tolerance  for  flue  stack-­‐type  operating  conditions,  though  not  yet  at  target  commercial  levels.    Over  the  past  few  months,  the  company  has  experienced  some  management  turmoil.    Their  CFO  resigned  in  January  2012,  their  CEO  resigned  in  February  2012,  and  their  Chief  Business  Officer  will  be  resigning  in  August  2012.    Their  new  CEO  was  announced  in  June  2012.      Demonstrated?            Yes                or            No        Proposed  demonstrations/pilots  include:  

• A  project  with  Alcoa  and  the  U.S.  Department  of  Energy  under  the  ARPA-­‐E  program                

Codexis  is  working  with  Alcoa  and  the  U.S.  

Department  of  Energy  to  develop  enzymes  that  would  increase  the  amount  of  carbon  dioxide  

captured  by  power  plants  with  less  parasitic  energy  loss.    Key  members  of  their  management  

team  resigned  earlier  this  year.  

Page 66: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

57  

 Process  Flow  Diagram  

 FIGURE  2-­‐10:  Codexis  Technology  Process  

SOURCE:  Codexis,  2012    

Additional  Links  /  Information  • Company  Website:  www.codexis.com/code_evolver_code_xporter  

 

Page 67: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

58  

 

 ConocoPhillips    600  North  Dairy  Ashford    Houston,  TX  77252  http://www.conocophillips.com    Research  &  Technology  Summary  ConocoPhillips  is  actively  pursuing  advances  in  the  technology  components  of  CO2  capture  and  storage  and  is  making  detailed  studies  of  specific  opportunities  to  demonstrate  the  process  on  a  large  scale.    Their  “E-­‐Gas”  gasification  technology  has  over  20  years  of  commercial  experience,  including  a  DOE  demonstration  site  at  Wabash  River.    ConocoPhillips  had  been  investigating  building  an  IGCC  plant  near  their  refinery  in  Sweeny,  Texas,  but  it  was  cancelled  due  to  uncertain  financial,  regulatory,  and  market  conditions.        The  E-­‐Gas  technology  converts  petroleum  coke,  coal  or  other  low-­‐value  hydrocarbon  feedstocks  into  high-­‐value  synthesis  gas  used  for  a  slate  of  products,  including  power,  substitute  natural  gas,  hydrogen,  and  chemicals.    This  clean,  efficient  technology  facilitates  carbon  capture  and  storage,  minimizes  criteria  pollutant  emissions,  and  reduces  water  consumption.    E-­‐Gas  Technology  has  been  utilized  in  commercial  applications  since  1987,  first  at  the  Louisiana  Gasification  Technology  facility  in  Plaquemine,  Louisiana,  and  since  1995  at  SG  Solutions’  Wabash  River  Plant  near  Terre  Haute,  Indiana.    The  company  is  also  working  to  advance  beneficial  carbon  reuse  options.    For  example:  

• The  company  is  leveraging  its  more  than  30  years  of  operational  experience  in  miscible  gas  injection  at  its  North  Slope  assets  in  Alaska  and  25  years  of  CO2  EOR  experience  in  West  Texas  to  evaluate  new  EOR  opportunities  to  facilitate  production  growth.  

• ConocoPhillips  was  selected  by  the  DOE  to  conduct  the  first  field  trial  using  CO2  to  produce  methane  from  gas  hydrates  on  Alaska’s  North  Slope.    

• The  company  is  investing  in  CO2  EOR  research  in  Norway  as  part  of  the  Ekofisk  EOR  program.    • ConocoPhillips  has  contracted  to  sell  CO2  captured  from  the  ConocoPhillips’  Lost  Cabin  Gas  Plant  

in  Wyoming  for  use  in  EOR.    

The  company  also  collaborates  with  universities  on  other  technologies  with  “game-­‐changing”  potential.  ConocoPhillips  provides  financial  support  and  participates  in  external  CCS  research,  development,  and  policy  programs  that  are  funded  by  industry  and  government.  

 Demonstrated?            Yes              or            No      Demonstrations/pilots  include:    

• Wabash  River  Plant  near  Terre  Haute,  Indiana  • Louisiana  Gasification  Technology  facility  in  Plaquemine,  Louisiana    • Proposed  at  a  project  near  their  refinery  in  Sweeny,  Texas,  but  cancelled  

ConocoPhill ips  has  been  involved  with  CO2  

capture  and  storage  technologies  for  over  20  years.    They  are  also  active  in  beneficial  

reutil ization  options.    Their  E-­‐Gas  technology  has  been  demonstrated  at  the  Wabash  River  Plant  

and  was  proposed  at  a  cancelled  project  near  their  refinery  in  Sweeny,  TX.    

Page 68: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

59  

Process  Flow  Diagram    

 FIGURE  2-­‐11:  ConocoPhillips’  IGCC  Plant  Process  Flow  

SOURCE:  DOE/NETL,  2007    

Additional  Links  /  Information  • Company  Website  on  Carbon  Capture  and  Storage  Solutions:  

http://www.conocophillips.com/EN/susdev/environment/ourapproach/carboncaptureandstorage/Pages/CarbonCaptureandStorage.aspx  

• Company  Website  on  E-­‐Gas  Technology:  http://www.conocophillips.com/EN/tech/downstream/e-­‐gas/pages/petcoke.aspx  

• NETL  Summary  of  IGCC  Plant  with  E-­‐Gas  Technology:  http://www.netl.doe.gov/energy-­‐analyses/pubs/deskreference/B_IG_CoP_CCS_051507.pdf  

   

 

Page 69: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

60  

 

   Dakota  Gasification  Company  1600  E.  Interstate  Ave  Bismarck,  ND  58506  http://www.dakotagas.com/    Research  &  Technology  Summary  Dakota  Gasification  Company  (Dakota  Gas)  is  a  for-­‐profit  subsidiary  of  Basin  Electric  Power  Cooperative.    Dakota  Gas  owns  and  operates  the  $2-­‐billion  Great  Plains  Synfuels  Plant,  which  began  operations  in  1984.      The  Great  Plains  Synfuels  Plant  is  the  only  commercial-­‐scale  coal  gasification  plant  in  the  United  States  that  manufactures  natural  gas.    The  plant  currently  consumes  more  than  6  million  tons  of  coal  to  produce  54  billion  standard  cubic  feet  of  synthetic  natural  gas  annually.    It  also  produces  fertilizers,  solvents,  phenol,  carbon  dioxide,  and  other  chemical  products  for  sale.    The  Great  Plains  Synfuels  Plant  is  adjacent  to  Basin  Electric's  Antelope  Valley  Station,  a  900-­‐megawatt  coal  plant,  and  a  lignite  coal  mine.  The  Great  Plains  Synfuels  Plant  and  Antelope  Valley  Station  share  certain  facilities  and  coal  and  water  supplies.    Specifically,  the  Antelope  Valley  Station  supplies  the  Synfuels  Plant  with  electricity,  and  the  Synfuels  Plant  supplies  several  of  Basin  Electric's  gas  peaking  facilities  with  synthetic  natural  gas.    The  plant  has  been  an  international  leader  in  technologies  that  capture,  compress,  and  transport  CO₂  emissions  from  a  coal  gasification  process.    The  Synfuels  Plant  currently  captures  more  CO₂  from  coal  conversion  than  any  other  plant  in  the  world  and  is  participating  in  the  world’s  largest  CO₂  sequestration  project.    Dakota  Gas  captures  approximately  3  million  tons  of  CO₂  a  year  and  50%  of  CO₂  emissions  are  captured  every  day  the  plant  is  in  operation.    Since  the  end  of  2008,  Dakota  Gas  has  captured  more  than  17  million  metric  tons  of  CO₂.    Some  of  the  gas  is  transported  through  a  205-­‐mile  pipeline  to  oil  companies  in  Saskatchewan,  Canada  that  use  it  for  enhanced  oil  recovery  operations  that  result  in  permanent  CO₂  geologic  sequestration.    Demonstrated?            Yes                or            No        Demonstrations/pilots  include:  

• Great  Plains  Synfuels  Plant  in  operation  since  1984      

The  Dakota  Gasification  Company,  a  subsidiary  of  Basin  Electric  Power  Cooperative,  owns  and  

operates  the  Great  Plains  Synfuels  Plant,  which  is  the  only  commercial-­‐scale  coal  gasification  

plant  in  the  United  States  that  manufactures  natural  gas.  

Page 70: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

61  

Process  Flow  Diagram  

FIGURE  2-­‐12:  Simplified  Plant  Process  at  the  Great  Plains  Synfuels  Plant  SOURCE:  DOE/NETL,  2012  

 

Additional  Links  /  Information    • Company  Website:  The  Dakota  Gasification  Company  CO₂  Story  • Company  Website:  The  Greatest  CO₂  Story  Ever  Told  –  Dakota  Gasification  Company  • DOE/NETL  Website:  www.netl.doe.gov/technologies/coalpower/gasification/gasifipedia/6-­‐

apps/6-­‐4-­‐4-­‐1_great-­‐plains.html    

     

Page 71: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

62  

 

   Dow  Oil  &  Gas  Houston,  Texas  http://oilandgas.dow.com    Research  &  Technology  Summary  Dow,  through  the  Gas  Treating  Products  &  Services  division  of  its  Oil  &  Gas  division,  has  proven  technologies  for  economical  bulk  CO₂  removal  and  selective  absorption  of  H2S,  COS,  mercaptans,  and  BTEX  from  a  variety  of  natural  and  synthesis  gas  streams.    Specific  technologies  include  UCARSOL  and  SELEXOL  solvents,  specialty  amines,  the  UCARSEP  amine  reclamation  system,  UCARKLEAN  solutions,  gas  treating  chelants,  and  others.      Dow  offers  solutions  for  both  pre-­‐combustion  and  post-­‐combustion  applications.    To  aid  in  both  plant  design  and  operation,  Dow  also  offers  a  variety  of  support  services,  including  advanced  simulation  capabilities,  state-­‐of-­‐the-­‐art  laboratories,  field  testing  equipment,  analytical  procedures,  and  an  on-­‐going  optimization  program.        Pre-­‐Combustion  Technology:  UCARSOL  and  SELEXOL  solvents  have  been  the  first  choice  for  many  world-­‐scale  gasification  projects  in  operation  today.  The  SELEXOL  line  of  physical  solvents  was  created  together  with  UOP  to  perform  in  the  high  pressure  requirements  of  large-­‐scale  gasification  operations.    The  treatment  technology  from  Dow  was  coupled  with  UOP's  process  and  technology  know-­‐how.      SELEXOL  is  particularly  effective  in  high-­‐pressure,  low-­‐temperature,  high-­‐acid  gas  systems.    Post-­‐Combustion  Technology: Dow  Oil  &  Gas  and  Alstom  Power  are  also  working  on  developing  advanced  amine  process  technology  that  utilizes  UCARSOL  FGC  3000,  an  advanced  amine  solvent  from  Dow,  in  combination  with  advanced  flow  schemes  to  provide  cost  effective  post-­‐combustion  carbon  capture  technology.  This  process  is  reportedly  more  degradation-­‐resistant  and  energy  efficient  when  capturing  CO₂.    Dow  and  Alstom  are  working  together  under  a  Joint  Development  Agreement  to  develop  the  Advanced  Amine  Process  (AAP)  by  designing,  constructing,  and  operating  a  carbon  capture  pilot  plant  on  a  coal-­‐fired  boiler.      Demonstrated?            Yes                or            No        Demonstrations/deployments  include:  

• SELEXOL  has  been  demonstrated  at  the  Wabash  River  Power  Plant  and  is  the  proposed  capture  technology  for  Mississippi  Power’s  Kemper  County  IGCC  Plant;  it  has  been  used  in  many  other  industrial  facilities  as  well  

• Dow  and  Alstom  are  partnering  in  South  Charleston,  West  Virginia  on  an  industrial  boiler  combusting  hard  West  Virginia  coal  using  advanced  amine  post-­‐combustion  technology  to  capture  approximately  1,800  metric  tons  of  CO₂  per  year  

   

Dow  has  a  variety  of  proven  technologies  for  

carbon  capture  in  both  pre-­‐combustion  and  post-­‐combustion  applications.    Their  SELEXOL  

and  UCARSOL  solvents  have  been  the  first  choice  for  many  world-­‐scale  gasification  

projects  in  operation  today.      

Page 72: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

63  

Process  Flow  Diagrams  

Selexol:  

 FIGURE  2-­‐13:  Simplified  Selexol  Flow  Diagram  

SOURCE:  DOE/NETL,  2012  

 Post-­‐Combustion  Advanced  Amine:  

 FIGURE  2-­‐14:  Dow/Alstom’s  Post-­‐Combustion  Advanced  Amine  Design  in  South  Charleston,  WV  

SOURCE:  Alstom/Dow,  2010  

 

Page 73: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

64  

Additional  Links  /  Information  

• Company  Website:  www.dow.com/gastreating/solution/ngp_cor.htm  • Company  Website  on  EOR:  Enhanced  Oil  Recovery  • Operational  Comparison  of  DEA  Versus  Selective  Amine  Technology:  

msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0039/0901b803800391e2.pdf?filepath=gastreating/pdfs/noreg/170-­‐01388.pdf&fromPage=GetDoc  

• Details  on  Dow/Alstom  Efforts  in  West  Virginia:  www.mcilvainecompany.com/Decision_Tree/subscriber/CO2DescriptionTextLinks/AlstomDow2010.pdf  

• DOE/NETL  Information  on  Gasification  Technologies:  http://www.netl.doe.gov/technologies/coalpower/gasification/gasifipedia/5-­‐support/5-­‐6_agr.html    

   

Page 74: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

65  

 

 

Fluor  Power  140  Pinehurst  Road    Farnborough,  United  Kingdom  GU14  7BF    www.fluor.com    Research  &  Technology  Summary  Fluor  designs,  builds,  and  maintains  power  plants  using  a  variety  of  fuel  sources,  including  coal,  gas,  oil,  nuclear,  and  wind. Fluor  also  has  developed  the  proprietary  Econamine  FG  Plus  post-­‐combustion  carbon  capture  process,  which  uses  different  novel  amine  solvents.    It  was  specially  designed  to  capture  CO2  from  low  pressure,  oxygen-­‐containing  streams.    Fluor’s  solvent  formulation  and  advanced  reclaiming  techniques  allow  the  technology  to  work  in  an  environment  where  most  other  processes  would  fail,  such  as  on  boiler  and  reformer  stack  gas  and  gas  turbine  flue  gas  streams.    Fluor’s  Econamine  FG  Plus  is  licensed  in  over  26  plants  worldwide  with  flue  gas  derived  from  a  variety  of  feed  stocks  such  as  bunker  sea  oil,  heavy  fuel  oil  mixed  with  coal,  light  fuel  oil,  heavy  fuel  oil,  gas-­‐fired  reformer  furnace,  steam  reformer,  heavy  fuel  oil  and  refinery  gas  mixture,  LPG,  natural  gas,  and  gas  turbine  exhaust.    It  is  used  at  NRG’s  Washington  Parish  Plant  and  proposed  at  Tenaska’s  Trailblazer  plant.    For  more  than  two  decades,  Fluor  has  designed,  constructed,  and  commissioned  more  gas-­‐fueled  power  generating  plants  than  any  other  EPC&M  company.  During  the  last  decade  alone,  Fluor  was  the  EPC  and  commissioning  contractor  for  more  than  30  percent  of  the  gas-­‐fired  generation  installed  in  the  U.S.,  representing  more  than  60  power  plants  in  operation  today.      Demonstrated?            Yes                or            No        Demonstrations/pilots  include:  

• Licensed  at  commercial  scale  in  26  industrial  plants  worldwide,  including  three  in  the  US  • Used  at  NRG’s  Washington  Parish  Plant  • Proposed  at  Tenaska’s  Trailblazer  plant  

   

Fluor’s  Econamine  FG  Plus  post-­‐combustion  

amine  technology  is  one  of  the  first  and  among  the  most  widely  applied  commercial  carbon  

capture  solutions.     It   is   l icensed  in  over  26  plants  worldwide.     It   is  used  at  NRG’s  

Washington  Parish  Plant  and  proposed  at  Tenaska’s  Trailblazer  plant.    

Page 75: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

66  

Process  Flow  Diagrams  

 FIGURE  2-­‐15:  Fluor  Econamine  FG  Plus  Process  Flow    

SOURCE:  DOE/NETL,  2010    

 FIGURE  2-­‐16:  Typical  Fluor  Econamine  FG  Plus  Process  

SOURCE:  Fluor,  2012    

Additional  Links  /  Information  • Company  Website:  www.fluor.com/econamine/Pages/default.aspx  • News  Article:  Secretary  Chu  Announces  Up  To  $154  Million  for  NRG  Energy’s  Carbon  

Capture  and  Storage  Project  in  Texas

Page 76: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

67  

 

   Hitachi  6-­‐6,  Marunouchi  1-­‐chome,  Chiyoda-­‐ku  Tokyo,  Japan  100-­‐8280  www.hitachi-­‐power.com/en/co2-­‐capture.html    Research  &  Technology  Summary  Hitachi  started  their  research,  development,  and  deployment  of  post-­‐combustion  CO₂  capture  for  coal-­‐fired  applications  in  the  early  1990’s.    Hitachi’s  first  CO₂  capture  pilot  plant  was  built  at  Yokosuka  Thermal  Power  Unit  2  in  collaboration  with  Tokyo  Electric  Power  Corporation  in  Japan.    During  the  2-­‐year  demonstration  period,  they  tested  five  solvents,  including  a  commercial  MEA.  The  test  for  Hitachi’s  proprietary  solvent  formulation,  H3,  was  the  best  out  of  the  five  tested.    The  H3  solvent  consistently  achieved  greater  than  80%  CO₂  removal  with  the  average  rate  well  above  90%.    Since  these  tests,  Hitachi  has  continued  to  refine  their  proprietary  solvent  blends  in  their  laboratories.    Hitachi  Power  Europe  is  involved  as  a  technology  partner  in  the  "Schwarze  Pumpe"  oxy-­‐combustion  pilot  of  energy  supplier  Vattenfall  and  is  carrying  out  combustion  tests  there.    Hitachi  hopes  to  supply  components  for  future  oxyfuel  process  equipped  power  plants.    Hitachi  and  SaskPower  are  partnering  to  construct  a  $60  million  carbon  capture  test  facility  (CCTF)  at  SaskPower’s  Shand  Power  Station  in  southeastern  Saskatchewan.    SaskPower  will  act  as  owner/operator,  but  both  companies  will  contribute  approximately  $30  million  to  the  facility,  with  construction  beginning  in  late  2012/early  2013  and  scheduled  completion  in  summer  2014.  Hitachi’s  proprietary  amine  technology  is  scheduled  to  be  the  first  technology  tested  at  the  CCTF.    SaskPower  and  Hitachi  plan  on  evaluating  a  number  of  current  and  emerging  carbon  capture  technologies.      In  addition  to  the  CCTF,  Hitachi,  SaskPower,  and  Cansolv  Technologies,  Inc.  have  joined  along  with  other  collaborators  to  be  among  the  first  to  operate  a  commercial-­‐scale  power  plant  with  a  fully  integrated  carbon  capture  and  storage  operating  system.    Hitachi  will  provide  the  steam  turbine  designed  to  integrate  a  coal-­‐fired  power  plant  with  CO₂  capture  technology.  Cansolv  will  provide  the  CO₂  capture  technology  process.    This  is  the  $1.24  billion  project  to  rebuild  a  coal-­‐fired  unit  at  the  Boundary  Dam  Power  Station  and  equip  it  with  a  fully  integrated  carbon  capture  system.    Hitachi,  working  with  utility  partners  Electrabel  /GDF  Suez  and  E.ON,  is  also  currently  building  a  large  mobile  pilot  plant  for  the  separation  of  CO₂  from  coal-­‐fired  power  plant  flue  gas.  This  plant  will  be  used  to  generate  the  data  needed  to  develop  and  design  concept  for  both  the  new  power  plant  integrated  with  CCS  or  the  retrofit  plant.        Demonstrated?            Yes                or            No        Demonstrations/pilots  include:  

• Pilot  at  Yokosuka  Thermal  Power  Unit  2  in  Japan    

Hitachi  has  been  actively  involved  in  the  testing  

of  post-­‐combustion  and  oxy-­‐combustion  technologies  for  over  two  decades.    They  have  

developed  proprietary  solvent  blends  and  advanced  amine  technologies.    They  also  hope  to  

be  a  supplier  of  turbines  and  other  components  to  CCS  projects.  Partners  include  SaskPower,  TEPCO,  

Vattenfall,  Cansolv,  Electrabel,  and  E.On.  

Page 77: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

68  

• Pilot  post-­‐combustion  capture  facility  with  E.ON  and  GDF  Suez  in  the  Netherlands  • Pilot  mobile  plant    for  testing  CO2  scrubbing  agents  in  Duisburg,  Germany  • Constructing  a  $60M  test  facility  with  SaskPower  at  the  Shand  Power  Station  • Technology  partner  in  the  Boundary  Dam  Power  Station  project  • Technology  partner  in  Vattenfall’s  Schwarze  Pumpe  oxy-­‐combustion  pilot    • Additional  project  details  can  be  found  at:  

http://www.hitachi.com/rev/archive/2010/__icsFiles/afieldfile/2010/08/25/r2010_03_111.pdf    

Process  Flow  Diagram  

 FIGURE  2-­‐17:  Process  Diagram  of  the  Hitachi  CO₂  Capture  System  

SOURCE:  Hitachi,  2010    

Additional  Links/  Information  • Company  Website:  http://www.hitachi-­‐power.com/en/co2-­‐capture.html  • Coal-­‐Gen  2010  Technical  Paper:  

http://www.hitachipowersystems.us/supportingdocs/forbus/hpsa/technical_papers/Advanced%20Amine-­‐based%20CO2%20Capture%20for%20Coal-­‐fired%20Power%20Plants.pdf    

 

Page 78: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

69  

 

   The  Linde  Group  Bodenbacher  Strasse  80  01277  Dresden,  Germany  http://www.linde-­‐engineering.com/en/process_plants/CCS/CCS/index.html    Research  &  Technology  Summary  The  Linde  Group  is  a  leading  supplier  of  industrial,  process,  and  specialty  gases  and  is  one  of  the  most  profitable  engineering  companies  in  the  world.    Linde  has  many  solutions  for  CO₂  capture  varying  from  the  removal  from  industrial  processes  to  carbon  capture  at  power  plants.    They  have  proven  post-­‐combustion,  pre-­‐combustion  and  oxy-­‐fuel  combustion  technology  systems,  as  described  below.    Pre-­‐Combustion  Technology:  Linde  provides  air  separation  units,  gasification  systems  as  well  as  synthesis  gas  separation  and  purification  systems,  including  shift  and  RECTISOL  selective  CO₂  recovery  systems.    RECTISOL  is  a  physical  acid  gas  removal  process  that  uses  an  organic  solvent  (typically  methanol)  at  subzero  temperatures.      Due  to  the  physical  nature  of  the  RECTISOL  process,  high  pressure  and  high  sour  gas  concentrations  are  particularly  favorable.    RECTISOL  is  therefore  frequently  used  to  purify  shifted,  partially  shifted  or  unshifted  gas  downstream  residue  oil-­‐,  coal-­‐  or  lignite  gasification.    Due  to  the  low  operation  temperature,  RECTISOL  is  also  favorable  for  cryogenic  downstream  processes,  like  liquid  nitrogen  wash  and  cryogenic  recovery  of  carbon  monoxide.    Post-­‐Combustion  Technology:  In  the  post-­‐combustion  pathway,  Linde  provides  an  amine-­‐based  solvent  system  and  CO₂  compression,  drying,  and  purification  systems.    As  of  January  2010,  they  have  entered  into  an  agreement  with  BASF  to  jointly  market  licenses  and  plants  for  the  capture  of  carbon  dioxide  from  flue  gases.    Oxy-­‐Combustion  Technology:    In  the  oxy-­‐fuel  combustion  pathway,  Linde  provides  the  air  separation  unit  for  the  production  of  oxygen,  the  CO₂  compression,  drying,  and  purification  system  as  well  as  an  optional  liquefaction  system.    They  have  entered  into  a  partnership  with  Vattenfall  to  test  oxy-­‐combustion  solutions.    Sequestration  Technology:  Linde  is  also  currently  in  the  developmental  stages  of  CO₂  sequestration.  They  are  participating  in  research  into  technologies  capable  of  injecting  CO₂  into  plutonic  rock  over  extended  periods  of  time.  The  company  is  further  involved  in  a  pilot  that  is  using  carbon  dioxide  to  increase  natural  gas/oil  recovery  rates  via  EOR.        Demonstrated?            Yes                or            No        Demonstrations/pilots  include:  

Linde  has  proven  pre-­‐combustion,  post-­‐

combustion,  and  oxy-­‐combustion  technology  systems,  including  the  Rectisol  pre-­‐combustion  

solution  that  is  proposed  at  Summit  Power’s  IGCC  Texas  Clean  Energy  Project  and  the  HECA  

project  in  California.    They  have  established  partnerships  with  BASF,  Vattenfall,  and  others.  

Page 79: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

70  

• CO2  scrubbing  pilot  facility  at  a  lignite  power  plant  in  Niederaubem,  Germany  with  BASF  • 30MW  pilot  facility  for  oxy-­‐combustion  technology  in  Brandenburg,  Germany  with  Vattenfall  • Rectisol  proposed  at  Summit  Power’s  IGCC  Texas  Clean  Energy  Project  • Rectisol  proposed  at  SCS  Energy’s  Hydrogen  Energy  California  Project  

 Process  Flow  Diagrams  

 FIGURE  2-­‐18:  Linde  Pre-­‐Combustion  Process  

SOURCE:  Linde,  2012    

 FIGURE  2-­‐19:  Linde  Post-­‐Combustion  Process  

SOURCE:  Linde,  2012      

 FIGURE  2-­‐20:  Linde  Oxy-­‐Combustion  Process  

SOURCE:  Linde,  2012  

Page 80: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

71  

 

   Mitsubishi  Heavy  Industries  Yokohama  Engineering  Headquarters  Mitsubishijuko  Yokohama  Bldg.,  3-­‐1,  Minatomirai  3-­‐chome,  Nibhi-­‐KU,  Yokohama  Kanagawa,  Japan  http://www.mhi.co.jp/en/products/category/co2_recovery_plants.html    Research  &  Technology  Summary  Mitsubishi  Heavy  Industries  (MHI)  offers  a  large  scale,  advanced,  and  reliable  CO₂  recovery  process  called  the  Kansai  Mitsubishi  Carbon  Dioxide  Recovery  Process  (KM  CDR  Process).    It  uses  an  advanced  solvent  called  KS-­‐1  to  capture  CO2  from  a  flue  gas  stack.    The  flue  gas  is  directed  to  the  KM  CDR  Process  where  the  KS-­‐1  solvent  reacts  with  and  captures  the  CO2.    CO2  can  then  be  separated  from  the  KS-­‐1  and  compressed  for  pipeline  transport.    This  technology  was  developed  through  cooperation  between  MHI  and  Kansai  Electric  Power  Company.    Their  CO₂  recovery  process  reportedly  uses  less  energy  when  compared  to  other  processes.    It  is  also  

reported  to  have  lower  solvent  degradation  and  low  corrosion.    The  company’s  process  allows  for  urea  and  methanol  production  as  well  as  the  production  of  dimethyl  ether.    Other  important  applications  supported  by  the  technology  are  Enhanced  Oil  Recovery  and  capture  and  storage.    

The  technology  is  deployed  at  two  coal  plants  worldwide.  MHI  has  also  delivered  nine  commercial  CO₂  recovery  plants  in  Japan  and  other  countries,  with  one  more  currently  in  construction.          Demonstrated?            Yes                or            No        Demonstrations/pilots  include:    

• Southern  Company’s  Plant  Barry  Power  Station  in  Alabama    • J-­‐POWER  Matsushima  Power  Station  in  Nagasaki,  Japan  • Multiple  commercial  plants,  including  locations  in  Malaysia,  India,  Bahrain,  Vietnam,  Japan,  UAE,  

and  Pakistan.    

MHI’s  proven  post-­‐combustion  technology  uses  

an  advanced  solvent  called  KS-­‐1  to  capture  CO2  from  flue  gases.    The  technology  is  being  

deployed  at  two  coal  plants:  Southern  Company’s  Plant  Barry  Power  Station  in  

Alabama  and  the  J-­‐POWER  Matsushima  Power  Station  in  Nagasaki,  Japan.  

Page 81: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

72  

Process  Flow  Diagrams  

 FIGURE  2-­‐21:  Flow  of  the  KM  CDR  Process  

SOURCE:  MHI,  2012    

 FIGURE  2-­‐22:  Gas  Boiler  CO2  Capture  Plant  for  3,000  metric  T/D  (300MW)    

SOURCE:  MHI,  2012    Additional  Links  /  Information  

• Company  Website:  MHI,  Ltd.  Flow  of  the  Standard  Process  • Company  Website:  MHI,  Ltd.  Commercial  Experiences  –  Commercial  Plants  in  operation  • Company  Website:  MHI,  Ltd.  Coal  Fired  Demonstration  Experiences  • Southern  Company  Website  on  Plant  Barry  Project:  

http://www.southerncompany.com/planetpower/demonstration_carboncapture.aspx    

 

Page 82: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

73  

 

 

Membrane  Technology  and  Research,  Inc.  39630  Eureka  Drive  Newark,  CA  94560  http://www.mtrinc.com    Research  &  Technology  Summary  Membrane  Technology  and  Research  (MTR)  has  developed  a  commercially  available  membrane  that  separates  CO₂  from  syngas:  the  Polaris  membrane.    The  membrane  is  unique  because  it  is  highly  permeable  to  CO2,  but  it  retains  hydrogen.    With  this  advance,  it  is  possible  to  use  membranes  to  remove  CO2  from  streams  containing  hydrogen,  such  as  gasifier  streams,  PSA  tail  gas,  and  various  petrochemical  process  streams.    MTR  is  currently  managing  one  of  ten  projects  chosen  by  the  Department  of  Energy  to  develop  advanced  technologies  for  capturing  CO₂  from  coal  combustion  flue  gas.    MTR,  with  Southern  Company,  Electric  Power  Research  Institute,  and  Babcock  &  Wilcox,  will  begin  their  3-­‐year  project  to  construct  a  membrane  skid  capable  of  90%  CO₂  capture  form  a  20  TPD  slipstream  of  coal-­‐fired  flue  gas.  This  is  the  equivalent  to  the  CO₂  generated  by  1  MW  of  power  generation.    MTR’s  Polaris  membrane  will  be  tested  at  the  DOE  National  Carbon  Capture  Center  for  6  months,  and  the  data  will  be  used  to  clarify  the  process  design  and  economics  of  the  membrane  based  CO₂  capture  from  power  plant  flue  gas.      The  Polaris  membrane  permeability  allows  this  technology  to  be  used  to  recover  and  purify  CO₂  for  sequestration,  enhanced  oil  recovery,  or  for  use  in  chemical  and  industrial  applications.    The  CO₂  enriched  stream  can  be  produced  in  a  gas  or  liquid  form,  depending  on  the  final  use  of  the  CO₂.  The  areas  in  which  this  technology  may  be  applied  are:  hydrogen  plants,  syngas  production,  methanol  production,  GTL  or  CTL  for  liquid  fuel  production,  gasifier  feeding  IGCC,  and  other  power  plants,  and  pressure  swing  adsorption  feed  /  tail  gas.      Demonstrated?            Yes              or            No        Proposed  demonstrations/pilots  include:    

• DOE  project  with  Southern  Company,  Electric  Power  Research  Institute,  and  Babcock  &  Wilcox  is  in  the  construction  /  testing  phase  

   

MTR  has  developed  a  commercially  available  membrane  that  separates  CO₂  from  syngas.    

Demonstration  partners  include  Southern  Company,  EPRI,  Babcock  &  Wilcox,  and  the  U.S.  

DOE.  

Page 83: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

74  

Process  Flow  Diagram  

 FIGURE  2-­‐23:  CO2  Removal  from  Syngas  Using  Polaris  Membrane  

SOURCE:  MTR,  2012  

 Additional  Links  /  Information  

• Company  Website:  MTR  -­‐  CO₂  Removal  from  Syngas  • Company  Website:  MTR  Case  Study:  CO₂  Removal  from  Reformer  Gas  

Page 84: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

75  

 

 

Novomer  1601  Trapelo  Road,  Suite  152  Waltham,  MA  02451    http://www.novomer.com    Research  &  Technology  Summary  Novomer  is  an  emerging  sustainable  chemistry  company  pioneering  a  family  of  high  performance,  environmentally  responsible  plastics,  polymers,  and  chemical  intermediates.    Novomer’s  proprietary  catalyst  technology  developed  by  Cornell  University  allows  traditional  chemical  feedstocks  to  be  combined  with  carbon  dioxide  or  carbon  monoxide  to  synthesize  sustainable  chemicals  and  materials  for  everyday  applications,  including  plastics.        The  chemicals  and  materials  contain  up  to  50%  carbon  dioxide  or  carbon  monoxide  and  have  a  significantly  reduced  carbon  and  energy  footprint  compared  to  the  materials  they  will  replace.  The  materials  can  sequester  the  CO2  and  CO  for  the  life  of  the  product,  mitigating  global  warming  and  climate  change.    Novomer  received  $18.4  million  from  the  US  Department  of  Energy  to  develop  a  process  for  converting  carbon  dioxide  into  polycarbonate  polymers  that  could  be  used  to  make  plastic  bottles    Demonstrated?            Yes              or            No        Process  Flow  Diagram    

 FIGURE  2-­‐24:  Novomer  Technology  Process  

SOURCE:  Novomer,  2012    

Additional  Links  /  Information  • Company  Press  Releases:  http://www.novomer.com/?action=news  

     

Novomer  is  commercializing  a  proprietary  

catalyst  system  that  transforms  waste  carbon  dioxide  (CO2)  into  sustainable  chemicals  and  

materials  for  everyday  applications,  such  as  plastic  bottles.      

Page 85: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

76  

   Powerspan    100  International  Drive,  Suite  200  Portsmouth,  NH  03801  http://powerspan.com    Research  &  Technology  Summary  Powerspan  offers  advanced  air  pollution  control  solutions  for  existing  and  new  coal-­‐fired  power  plants  and  large  industrial  applications  that  rely  on  coal  for  their  operation  or  electricity  generation.    Their  proprietary  Electro-­‐Catalytic  Oxidation  technology,  branded  with  “ECO”  nomenclature,  is  a  multi-­‐pollutant  control  technology  line  that  reduces  emissions  of  sulfur  dioxide,  nitrogen  oxides,  oxidized  mercury,  and  fine  particulate  matter.    The  original  ECO  process  produces  a  commercial  grade  ammonium  sulfate  fertilizer  co-­‐product.    Their  carbon  capture  solution  in  the  ECO  line,  ECO₂,  is  a  post-­‐combustion  process  that  dries  and  compresses  carbon  dioxide  for  transfer  to  another  site.    The  ECO2  technology  can  be  installed  following  conventional  SO2  scrubbing  technology  (such  as  a  limestone  forced-­‐oxidation  SO2  scrubber)  or  following  their  ECO  or  ECO-­‐SO2  technologies.    Powerspan  tested  its  ECO₂  process  from  December  2008  through  2010  at  a  one  megawatt  pilot  facility  at  FirstEnergy  Corp.’s  R.E.  Burger  Plant.  During  extended  runs  at  the  ECO₂  pilot  test  facility  averaged  greater  than  90  percent  CO₂  capture.    Powerspan’s  carbon  capture  technology  was  originally  selected  by  Basin  Electric  in  March  2008  for  use  at  their  proposed  Antelope  Valley  Station  plant,  however  Powerspan  was  replaced  with  HTC  Purenergy  in  December  2009  before  the  entire  project  was  cancelled.    In  April  2009,  Powerspan  announced  the  closing  of  over  $50  million  in  new  financing  from  a  group  of  new  investors  including  George  Soros,  Tenaska  Energy,  AllianceBernstein,  and  Persimmon  Tree  Capital  along  with  returning  investors  NGEN  Partners,  The  Beacon  Group,  The  Tremont  Group,  RockPort  Capital  Partners,  Calvert,  Angeleno  Group,  Fluor  Corporation,  and  FirstEnergy  Corp.    Demonstrated?            Yes                or            No        Demonstrations/pilots  include:    

• Demonstrated  at  FirstEnergy  Corp.’s  R.E.  Burger  Plant  and  independently  reviewed  by  WorleyParsons  

• Proposed  at  Basin  Electric’s  Antelope  Valley  Station,  but  replaced  with  HTC  Purenergy                  

Powerspan  has  developed  post-­‐combustion  

electro-­‐catalytic  oxidation  technology  that  offers  advanced  air  pollution  controls  for  new  

and  existing  coal  power  plants.    They  successfully  demonstrated  their  solution  on  a  1  

MW  facility,  but  were  replaced  in  the  design  of  Basin  Electric’s  proposed  Antelope  Valley  

Station.    

Page 86: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

77  

Process  Flow  Diagram  

 FIGURE  2-­‐25:  Power  Plant  with  ECO-­‐SO2  and  ECO2  Systems  Installed  

SOURCE:  Powerspan,  2012  

 Additional  Links  /  Information  

• Company  Website:  Powerspan  ECO₂  -­‐  CO₂  Capture  • Detailed  Process  Flow:  http://powerspan.com/wp-­‐content/themes/simplo/site-­‐

images/Powerspan_Integrated_ECO-­‐SO2-­‐ECO2_Process_Flow.pdf  • WorleyParsons  Independent  Review:  Independent  Review  of  ECO2  –  Pilot  Assessment  &  Scale-­‐

Up  Analysis                

Page 87: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

78  

 

 

Siemens  AG  Energy  Sector  Freyeslebenstrasse  1  91058  Erlangen,  Germany  http://www.energy.siemens.com/fi/en/power-­‐generation/power-­‐plants/carbon-­‐capture-­‐solutions    Research  &  Technology  Summary  Siemens  provides  multiple  technologies  and  products  along  the  entire  value  chain  of  energy  production  and  carbon  capture  from  power  generation  equipment  to  solutions  for  flue-­‐gas  cleaning  ,  CO₂  capture,  and  CO₂  compression  for  transport  and  storage.    Additional  details  follow.    Pre-­‐Combustion  Technology:  The  Siemens  IGCC  pre-­‐combustion  concept  incorporates  a  Siemens  oxygen-­‐blown,  solid-­‐fuel  gasifier  and  a  Siemens  combined  cycle  power  plant.    The  current  Siemens  fuel  gasification  technology  uses  the  entrained-­‐flow  principle,  followed  with  a  direct  water  quench  to  cool  the  produced  hot  raw  gas.    It  is  possible  to  capture  the  heat  of  the  hot  raw  gas  in  a  syngas  cooler  to  generate  high-­‐pressure  steam  for  the  steam  turbine.  Both  of  these  processes  cool  the  gas  so  that  it  may  be  directly  sent  to  the  gas  treatment  system.  Plants  with  CO₂  capture  and  storage  find  the  direct  water  quench  to  have  advantages  as  the  water  /  steam  that  is  needed  for  the  shift  reaction  is  already  in  the  raw  syngas.      Post-­‐Combustion  Technology:  Siemens  offers  a  proprietary  post-­‐combustion  capture  process  using  amino-­‐acid  salt  formulations  called  the  PostCap  process.    The  process  features  several  significant  environmental  and  energy  efficiency  advantages  compared  to  first  generation  technologies,  e.g.  the  monoethanolamine  (MEA)  process.    For  example,  the  Siemens  PostCap  process  does  not  require  any  complex  downstream  scrubbing  of  the  flue  gas  after  capture.  The  solvent  actually  removes  any  further  contaminants  contained  in  the  flue  gas.      Related  Products:  Siemens’  compression  portfolio  comprises  turbomachinery  best  suited  for  high-­‐efficiency  CO2  compression  required  in  power  plants  with  integrated  gasification  combined  cycle,  oxyfuel  or  post-­‐combustion  capture  technology.    Their  preferred  solution  is  an  integrally  geared  compressor  type  called  STC-­‐GV.    A  conventional  single-­‐shaft  solution  with  single-­‐shaft  compressor  types  (STC-­‐SH/SV)  is  feasible  as  well.    Together  with  the  CO2  compressor,  Siemens  has  compression  technology  for  air  separation  units  used  in  oxyfuel  and  IGCC  plants,  including  main  air  compressors,  booster  air  compressors,  oxygen  compressors,  and  nitrogen  compressors.    Demonstrated?            Yes                or            No        Demonstrations/pilots  include:    

• Post-­‐combustion  CO₂  capture  testing  lab  at  Frankfurt  Hoechst  Industrial  Park  (fully  automated  lab  plant  for  CO₂  capture  for  24/7  test  operations)  

• CO₂  capture  pilot  plant  at  E.ON’s  SPP  Staudinger  coal-­‐fired  power  plant  in  Grosskrotzenburg,  Germany    

Siemens  has  proven  pre-­‐combustion  and  post-­‐combustion  solutions  along  with  related  

products  such  as  turbines,  compressors,  and  air  quality  controls.    Their  gasification  technology  

will  be  used  in  Summit  Power’s  IGCC  Texas  Clean  Energy  Project.  

Page 88: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

79  

 

Process  Flow  Diagram  

 FIGURE  2-­‐26:  Siemens  Gasification  Process  Flow  

SOURCE:  Siemens,  2012  

 Additional  Links  /  Information  

• Company  Website:  Siemens  Carbon  Capture  Technology  • Company  Website:  Siemens  –  Integrated  Gasification  Combined  Cycle    • Company  Website:  Siemens  –  Post-­‐Combustion  CO₂  Capture  • Company  Website:  Siemens  –  CCS  Related  Products  

Page 89: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

80  

 

 

Skyonic  900  S.  Capital  of  Texas  Highway  Austin,  Texas  78746  http://skyonic.com    Research  &  Technology  Summary  Skyonic,  based  in  Austin,  Texas,  is  developing  systems  that  capture  carbon  dioxide  by  mineralizing  the  gas  into  sodium  bicarbonate  (baking  soda),  which  primarily  will  be  sold  as  an  antacid  ingredient  for  cattle  feed.    Specifically,  Skyonic  has  created  the  “SkyMine”  which  removes  CO2  and  other  harmful  pollutants  from  flue  gas.    Flue  gas  is  moved  from  the  stacks  into  the  SkyMine,  where  mercury,  SO2,  and  NOx  are  removed,  leaving  CO2.    Sodium  hydroxide  (salt  water)  is  then  introduced  to  the  carbon  dioxide  causing  a  chemical  reaction  producing  sodium  bicarbonate  (baking  soda  in  crystalline  form),  hydrogen  gas,  and  chlorine  gas.    Each  product  is  stored  separately  and  can  be  sold  on  the  market,  while  the  remaining  –and  significantly  less  harmful–  flue  gas  is  returned  to  the  stacks.    Unlike  other  carbon-­‐capture  systems  that  require  concentrated  CO2,  Skyonic’s  technology  is  effective  with  low  concentrations  and  has  been  tested  as  low  as  3  percent,  according  to  Skyonic’s  CEO.    SkyMine  has  an  adjustable  capture  rate  between  10-­‐90%  of  CO2  to  accommodate  different  CO2  removal  configurations.    Chlorine  gas,  hydrogen  gas,  and  sodium  bicarbonate  can  all  be  sold  as  byproducts.    Skyonic  received  $9  million  from  ConocoPhillips,  BP,  and  other  new  investors  to  fund  its  first  commercial  facility  at  a  Texas  cement  plant.      It  has  also  funded  by  $28  million  in  grants  from  the  U.S.  Department  of  Energy.  Other  Skyonic  backers  include  Luminant,  a  unit  of  Energy  Future  Holdings  Corp.,  and  David  Zachry,  chief  executive  officer  of  Capitol  Aggregates’  parent  company  Zachry  Corp.    Demonstrated?            Yes                or            No    Demonstrations/pilots  include:    

• Operational  at  Luminant  Big  Brown  Steam  Electric  Station  since  2007    • In  the  process  of  developing  a  demonstration  site  at  the  Capitol  Aggregates  cement  plant  in  San  

Antonio      

Skyonic  is  a  promising  carbon  mineralization  company  with  deployments  in  Texas  at  

Luminant  and  the  Capitol  Aggregates  cement  plant  in  San  Antonio.    The  end  products  of  their  

process  are  baking  soda,  hydrogen  gas,  and  chlorine  gas.    

Page 90: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

81  

Process  Flow  Diagram  

 FIGURE  2-­‐27:  Flow  Diagram  of  the  SkyMine  Process  

SOURCE:  Skyonic,  2012  

 Additional  Links  /  Information  

• Bloomberg  Article:  http://www.bloomberg.com/news/2012-­‐06-­‐25/skyonic-­‐gets-­‐conocophillips-­‐bp-­‐backing-­‐for-­‐carbon-­‐capture-­‐plant.html    

               

Page 91: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

82  

 

   Southern  Company    30  Ivan  Allen  Jr.,  Blvd.  NW  Atlanta,  GA  30308  http://www.southerncompany.com/    Research  &  Technology  Summary  Southern  Company’s  Transport  Integrated  Gasification  (TRIG)  technology  easily  handles  low-­‐rank  coals  that  account  for  more  than  half  of  the  world's  vast  coal  reserves.    TRIG  is  an  integrated  gasification  combined  cycle  technology,  which  is  sometimes  referred  to  as  coal  gasification.    TRIG  was  developed  over  the  last  15  years  at  the  Power  Systems  Development  Facility  in  Wilsonville,  Alabama–a  research  facility  for  the  Department  of  Energy  and  Southern  Company,  Mississippi  Power’s  parent  company.    As  coal  is  fed  into  the  TRIG  gasifier,  it  is  heated  at  a  high  temperature  and  under  high  pressure.    The  combination  of  heat  and  pressure  is  what  turns  the  coal  into  a  gas.        A  unique  feature  of  TRIG  is  that  it  sends  coal  that  is  not  converted  to  gas  in  the  initial  process  back  for  a  second  round  of  gasification.    A  new  IGCC  plant  project  in  Kemper  County  will  utilize  TRIG.    With  TRIG,  the  IGCC  facility  in  Kemper  County  will  turn  Mississippi  lignite  into  gas  while  cleaning  emissions  of  sulfur  dioxide,  nitrogen  oxides,  and  mercury  to  near  natural-­‐gas  levels.    It  also  will  produce  65  percent  less  carbon  dioxide  emissions  than  current  pulverized  coal  plants.        In  addition  to  gasification  and  capture,  Southern  Company  also  works  with  storage  and  sequestration.    Demonstrated?            Yes                or            No      Demonstrations/pilots  include:    

• 25  MW  plant  in  operation  in  Bucks,  Alabama  • The  Kemper  County  IGCC  Project  will  utilize  the  TRIG  technology  

In  coordination  with  the  U.S.  Department  of  Energy,  Southern  Company  has  developed  a  

gasification  technology  that  can  handle  low-­‐rank  coal.     It  has  been  demonstrated  in  

Alabama  and  is  proposed  at  the  Kemper  County  IGCC  project.  

Page 92: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

83  

Process  Flow  Diagram  

 FIGURE  2-­‐28:  Proposed  Kemper  IGCC  Process  Flow  

SOURCE:  Mississippi  Power,  2012  

 Additional  Links  /  Information  

• Company  Brochure  on  Kemper  IGCC  Plant:  http://www.mississippipower.com/kemper/IGCC_BROCHURE.pdf  

• Company  Website  on  Plant  Barry  Project:  http://www.southerncompany.com/planetpower/demonstration_carboncapture.aspx    

     

Page 93: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

84  

 

 

UOP,  LLC  25  East  Algonquin  Road  P.O.  Box  5017  Des  Plaines,  IL  60017-­‐5017    Research  &  Technology  Summary  UOP,  a  Honeywell  Company,  partnered  with  Dow  to  create  a  popular  line  of  solvents,  SELEXOL,  that  can  be  used  for  selective  removal  of  H₂S,  COS,  RSH,  and  CO₂.    The  treatment  technology  from  Dow  was  coupled  with  UOP's  process  and  technology  know-­‐how.      SELEXOL  is  particularly  effective  in  high-­‐pressure,  low-­‐temperature,  high-­‐acid  gas  systems.     UOP  has  also  been  investigating  algae-­‐to-­‐biofuel  solutions  that  use  captured  carbon  dioxide  as  a  feedstock.    They  were  awarded  $1.5  million  in  funding  for  a  project  to  demonstrate  technology  to  capture  CO₂  and  produce  algae  for  the  use  in  biofuel  and  energy  production.      Demonstrated?            Yes                or            No        Demonstrations/pilots  include:    

• SELEXOL  demonstrated  at  Wabash  River  Plant  • SELEXOL  proposed  at  Southern  Company’s  Kemper  County  IGCC  • Coffeyville  Resources  Gasification  Ammonia  Complex  in  Coffeyville,  Kansas  

 Process  Flow  Diagram  

 FIGURE  2-­‐29:  UOP  Syngas  Purification  Complex  Optimization  

SOURCE:  UOP,  2009  

Additional  Links  /  Information  • Meeting  Staged  CO₂  Capture  Requirements  with  UOP  SELEXOL™  Process  • UOP  SELEXOL™  Technology  for  Acid  Gas  Removal  

UOP  and  Dow  jointly  developed  the  Selexol  physical  solvent.    UOP  has  also  been  looking  

into  solutions  for  algal  biofuel  creation  that  util ize  captured  carbon  dioxide.  

 

Page 94: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX  A:    ADDITIONAL  RESOURCES  

Page 95: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

86  

ADDITIONAL  RESOURCES  Other  organizations  and  publications  have  done  an  excellent  job  of  explaining  the  technologies  and  the  state  of  the  market,  including:      

• DOE  National  Energy  Technology  Laboratory  (NETL)  CCS  Resources  o December  2010  Carbon  Capture  &  Storage  RD&D  Roadmap:  

www.netl.doe.gov/technologies/carbon_seq/refshelf/CCSRoadmap.pdf  o Many  other  useful  documents  available  at  the  “Reference  Shelf”  at:  

www.netl.doe.gov/technologies/carbon_seq/refshelf/refshelf.html  o Main  site:  http://www.netl.doe.gov/technologies/carbon_seq/index.html  

 • DOE  Office  of  Fossil  Energy  CCS  Resources  

o Clean  Coal  Technologies  main  site:  http://fossil.energy.gov/programs/powersystems/index.html  

o Carbon  Sequestration  main  site:  http://fossil.energy.gov/programs/sequestration/index.html    

• Global  CCS  Institute    o Annual  Global  Status  of  CCS:  www.globalccsinstitute.com/publications/global-­‐status-­‐ccs-­‐2011  

 • MIT  Sequestration  Resources  

o Database  of  projects  available  at:  http://sequestration.mit.edu    

• International  Journal  of  Greenhouse  Gas  Control  o www.journals.elsevier.com/international-­‐journal-­‐of-­‐greenhouse-­‐gas-­‐control  

 • Carbon  Capture  Journal  

o www.carboncapturejournal.com      

Page 96: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX  B:    LITERATURE  REVIEWED  

Page 97: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

88  

LITERATURE  REVIEWED  Adams,  E.  E.  and  K.  Caldeira  (2008).  "Ocean  Storage  of  CO2."  Elements  4(5):  319-­‐324.  Al-­‐Ghatta,  H.  (1990).  "Method  for  Recycling  Polyethylene  Terephthalate  (PET)  Beverage  Bottles  by  Treating  with  

Carbon  Dioxide."  US  Patent.  Alstom  Power/Dow:  Edvardsson,  C.,  L.  Czarnecki,  et  al.  (2010).  “ADVANCED  AMINE  PROCESS:  UPDATE  ON  

TECHNOLOGY  AND  PILOT  PLANT  OPERATION.”  Paper  presented  to  Power  Gen  International  2010.  Alvarado,  V.  a.  M.,  E.  (2010).  "Enhanced  Oil  Recovery:    An  Updated  Review."  Energies  3:  1529-­‐1575.  Amrollahi,  Z.,  P.  A.  M.  Ystad,  et  al.  (2012).  “Optimized  process  configurations  of  post-­‐combustion  CO2  capture  for  

natural-­‐gas-­‐fired  power  plant  –  Power  plant  efficiency  analysis.”  International  Journal  of  Greenhouse  Gas  Control.  

Andersson,  K.,  T.  P.  Evans,  et  al.  (2009).  "National  forest  carbon  inventories:  policy  needs  and  assessment  capacity."  Climatic  Change  93(1):  69-­‐101.  

Angelo,  D.  S.,  M.  Clayton,  et  al.  (2008).  CO2  Capture  in  Solid  Form  -­‐  An  Overview  of  the  SkyMine  Process.  Energy  2030  Conference,  2008.  ENERGY  2008.  IEEE.  

Auer,  S.  M.,  S.  V.  Gredig,  et  al.  (1999).  "Synthesis  of  methylamines  from  CO2,  H2  and  NH3  over  Cu‚  Mg‚  Al  mixed  oxides."  Journal  of  Molecular  Catalysis  A:  Chemical  141(1):  193-­‐203.  

Baiker,  A.  (2000).  "Utilization  of  carbon  dioxide  in  heterogeneous  catalytic  synthesis."  Applied  Organometallic  Chemistry  14(12):  751-­‐762.  

Barker,  H.  A.,  S.  Ruben,  et  al.  (1940).  "The  Reduction  of  Radioactive  Carbon  Dioxide  by  Methane-­‐Producing  Bacteria."  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America  26(6):  426-­‐430.  

Basbug,  B.  and  F.  Gumrah  (2009).  "Parametric  Study  of  Carbon  Dioxide  Sequestration  in  Deep  Saline  Aquifers."  Energy  Sources,  Part  A:  Recovery,  Utilization,  and  Environmental  Effects  31(3):  255-­‐272.  

Bayon,  R.,  A.  Hawn,  et  al.  (2009).  Voluntary  Carbon  Markets  :  An  International  Business  Guide  to  What  They  Are  and  How  They  Work.  London,  Earthscan.  

Bechmann,  R.  e.  K.,  I.  C.  Taban,  et  al.  (2011).  "Effects  of  Ocean  Acidification  on  Early  Life    Stages  of  Shrimp  (Pandalus  borealis)  and  Mussel  (Mytilus  edulis)."  Journal  of  Toxicology  and  Environmental  Health,  Part  A  74(7-­‐9):  424-­‐438.  

Benson,  S.  M.  and  P.  J.  Cook  (2009).  "Geological  storage  of  carbon  dioxide:  Current  status."  IOP  Conference  Series:  Earth  and  Environmental  Science  6(17):  172005.  

Bigsby,  H.  (2008).  "Carbon  Banking:  Creating  Flexibility  for  Forest  Owners."  Forest  Ecology  and  Management  257(1):  378-­‐383.  

Bird,  L.  A.,  E.  Holt,  et  al.  (2008)  Implications  of  carbon  cap-­‐and-­‐trade  for  US  voluntary  renewable  energy  markets.  36,  2063-­‐2073    

Blankinship,  S.  (2006).  "Deep  in  the  Heart  of  Texas."  Power  Engineering  The  Resurgence  in  Coal  (Journal  Article):  8.  Bottcher,  H.,  W.  A.  Kurz,  et  al.  (2008).  "Accounting  of  forest  carbon  sinks  and  sources  under  a  future  climate  

protocol-­‐factoring  out  past  disturbance  and  management  effects  on  age-­‐class  structure."  Environmental  Science  and  Policy  11(8):  669-­‐686.  

Bradley,  D.  (2010)  Green  concrete:  storing  carbon  dioxide  in  cement.(10  EMERGING  TECHNOLOGIES  2010).  113,  56    Brown,  S.  (2002).  "Measuring,  monitoring,  and  verification  of  carbon  benefits  for  forest-­‐based  projects."  

Philosophical  Transactions  of  the  Royal  Society  A:  Mathematical,  Physical  and  Engineering  Sciences  360(1797):  1669-­‐1683.  

Bruant,  J.  R.  G.,  A.  J.  Guswa,  et  al.  (2002).  "Safe  storage  of  CO2  in  deep  saline  aquifers."  Environmental  Science  &  Technology  36(11):  240.  

Busch,  A.,  S.  Alles,  et  al.  (2008).  “Carbon  dioxide  storage  potential  of  shales.”  International  Journal  of  Greenhouse  

Gas  Control.  Canada  NewsWire  (2012).  “Good  Spring  Power  Project  Increases  to  300  MW.”  EmberClear  Corp.  

http://digitaljournal.com/pr/714797).  Accessed  July  19,  2012.  Casella,  F.  and  P.  Colonna  (2012).  "Dynamic  modeling  of  IGCC  power  plants."  Applied  Thermal  Engineering  

35(Journal  Article):  91.  

Page 98: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

89  

Celia,  M.  A.  and  J.  M.  Nordbotten  (2009).  "Practical  modeling  approaches  for  geological  storage  of  carbon  dioxide."  Ground  water  47(5):  627.  

Centi,  G.  and  S.  Perathoner  (2009).  "Opportunities  and  prospects  in  the  chemical  recycling  of  carbon  dioxide  to  fuels."  Catalysis  Today  148(3-­‐4):  191-­‐205.  

Chae,  S.  R.,  E.  J.  Hwang,  et  al.  (2006).  "Single  cell  protein  production  of  Euglena  gracilis  and  carbon  dioxide  fixation  in  an  innovative  photo-­‐bioreactor."  Bioresource  Technology  97(2):  322-­‐329.  

Chalmers,  H.,  M.  Lucquiaud,  et  al.  (2009).  "Flexible  operation  of  coal  fired  power  plants  with  postcombustion  capture  of  carbon  dioxide."  Journal  of  Environmental  Engineering  135(6):  449.  

Chalmers,  J.  G.  a.  H.  (2008).  "Carbon  capture  and  storage."  Energy  Policy  36:  4317-­‐4322.  Chang,  C.F.  and  J.W.  Chen  (2006).  "The  experimental  investigation  of  concrete  carbonation  depth."  Cement  and  

Concrete  Research  36(9):  1760-­‐1767.  Chen,  C.  and  E.  S.  Rubin  (2008)  CO2  control  technology  effects  on  IGCC  plant  performance  and  cost.  37,  915    Cheng,  L.,  L.  Zhang,  et  al.  (2006).  "Carbon  dioxide  removal  from  air  by  microalgae  cultured  in  a  membrane-­‐

photobioreactor."  Separation  and  Purification  Technology  50(3):  324-­‐329.  Cheng-­‐Feng,  C.  and  C.  Jing-­‐Wen  (2005).  "Strength  and  Elastic  Modulus  of  Carbonated  Concrete."  ACI  Materials  

Journal  102(5):  315-­‐315.  Clark,  M.  C.  and  B.  Subramaniam  (1998).  "Extended  Alkylate  Production  Activity  during  Fixed-­‐Bed  Supercritical  1-­‐

Butene/Isobutane  Alkylation  on  Solid  Acid  Catalysts  Using  Carbon  Dioxide  as  a  Diluent."  Industrial  &  Engineering  Chemistry  Research  37(4):  1243-­‐1250.  

Cleetus,  R.  (2011).  "Finding  common  ground  in  the  debate  between  carbon  tax  and  cap-­‐and-­‐trade  policies."  Bulletin  of  the  Atomic  Scientists  67(1):  19-­‐27.  

Cohen,  S.,  Rochelle,  G.,  and  Webber,  M.  (2012).    “Optimizing  post-­‐combustion  CO2  capture  in  response  to  volatile  electricity  prices.”  International  Journal  of  Greenhouse  Gas  Control.  

Collins,  F.  (2010).  "Inclusion  of  carbonation  during  the  life  cycle  of  built  and  recycled  concrete:  influence  on  their  carbon  footprint."  The  International  Journal  of  Life  Cycle  Assessment     15(6):  549-­‐556.  

Corwin,  H.  and  T.  H.  Shellhammer  (2002).  "Combined  Carbon  Dioxide  and  High  Pressure    Inactivation  of  Pectin  Methylesterase,  Polyphenol  Oxidase,  Lactobacillus  plantarum  and  Escherichia  coli."  Journal  of  Food  Science  67(2):  697-­‐701.  

Cramer,  W.,  A.  Bondeau,  et  al.  (2004).  "Tropical  Forests  and  the  Global  Carbon  Cycle:  Impacts  of  Atmospheric  Carbon  Dioxide,  Climate  Change  and  Rate  of  Deforestation."  Philosophical  Transactions:  Biological  Sciences  359(1443):  331-­‐343.  

Crowley,  T.  J.  (2000).  "Causes  of  Climate  Change  Over  the  Past  1000  Years."  Science  289(5477):  270-­‐277.  D'Alessandro,  D.  M.,  B.  Smit,  et  al.  (2010).  "Carbon  dioxide  capture:  prospects  for  new  materials."  

  Angewandte  Chemie  (International  ed.  in  English)  49(35):  6058.  Daly,  H.  E.  (2008).  "Beyond  Growth:  the  Economics  of  Sustainable  Development."  Damen,  K.,  M.  Van  Troost,  et  al.  (2007).  "A  comparison  of  electricity  and  hydrogen  production  systems  with  CO2  

capture  and  storage  -­‐-­‐  Part  B:  Chain  analysis  of  promising  CCS  options."  Progress  in  Energy  and  Combustion  Science  33(6):  580.  

Darde,  V.,  K.  Thomsen,  et  al.  (2012).  “Comparison  of  two  electrolyte  models  for  the  carbon  capture  with  aqueous  ammonia.”    International  Journal  of  Greenhouse  Gas  Control.  

Daresbourg,  D.  (2007).  "Making  Plastics  from  Carbon  Dioxide:  Salen  Metal  Complexes  as    Catalysts  for  the  Production  of  Polycabonates  from  Epoxides  and  CO2."  Chemical  Reviews  107(6):  2388.  

Davison,  J.  a.  T.,  K.  (2004).  "Technologies  for  Capture  of  Carbon  Dioxide."  Proceedings  of  GHGT.  Descamps  C.,  C.  B.  a.  M.  K.  (2008).  "Efficiency  of  an  Integrated  Gasification  Combined  Cycle  (IGCC)  power  plant  

including  CO2  removal."  Energy  33:  874-­‐881.  Dewees,  T.  K.,  FM;  Mitchell,  JD;  Taylor,  RG;  Iliff,  RJ;  Carty,  DT;  Latham,  JR  and  Lipton,  TM    (1992).  

"liquid/supercritical  carbon  dioxide  dry  cleaning  system."  US  Patent.  Dieter,  H.,  H.  Cameron,  et  al.  (2003).  "CREDIBLE  CARBON  POLICY."  Oxford  Review  of  Economic  Policy  19(3):  438.  Digital  Journal.  http://digitaljournal.com/pr/714797,  last  accessed  July  2012.  Doctor,  R.  (2007).  "CARBON  DIOXIDE  ON  THE  MOVE."  Bulletin  of  the  Atomic  Scientists  63(4):  19.  DOE/NETL:  Ciferno,  J.P.  (2008).  CO2  Capture-­‐Ready  Coal  Power  Plants,  DOE/NETL-­‐2007/1301.  Technical  Report,  US  

DOE/NETL,  Washington,  DC  (April  2008).  

Page 99: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

90  

DOE/NETL:  Ciferno,  J.P.,  and  J.L.  Litynski  (2011).  DOE/NETL  Advanced  Carbon  Dioxide  Capture  R&D  Program:  Technology  Update.  Technical  Report,  US  DOE/NETL,  Washington,  DC  (May  2011).  

DOE/NETL:  Ciferno,  J.P.,  and  S.I.  Plasynski  (2008).  The  Cost  of  Carbon  Dioxide  Capture  and  Storage  in  Geologic  Formations.  Fact  Sheet,  US  DOE/NETL,  Washington,  DC  (April  2008).  

DOE/NETL:  Ciferno,  J.P.,  J.L.  Litynski,  and  S.I.  Plasynski  (2010).  DOE/NETL  Carbon  Dioxide  Capture  and  Storage  RD&D  Roadmap.  Technical  Report,  US  DOE/NETL,  Washington,  DC  (December  2010).  

DOE/NETL:  (2007).    Cost  and  Performance  Baseline  for  Fossil  Energy  Plants,  Vol.  1,  DOE/NETL-­‐2007/1281,  (May  2007).  B_IG_CoP_CCS_051507.  

DOE/NETL:  (2011).    DOE/NETL  Carbon  Sequestration  Program:  Technology  Program  Plan.  Technical  Report,  DOE/NETL-­‐2011/1464,  US  DOE/NETL,  Washington,  DC  (February  2011).  

DOE/NETL:  Tomer,  B.,  McMahon,  T.,  and  Greeson,  D.  (2010).  NRG  Energy:  W.A.  Parish  Post-­‐Combustion  CO2  Capture  and  Sequestration  Project.    Fact  Sheet  FE0003311,  NETL,  Washington,  DC  (May  2010).  

DOE/PNNL:  Dooley,  J.  J.,  C.  Davidson,  and  R.  Dahowski  (2009).  “An  Assessment  of  the  Commercial  Availability  of  Carbon  Dioxide  Capture  and  Storage  Technologies  as  of  June  2009.”    PNNL,  Richland,  WA  (June  2009).  

Dominnguez,  M.  I.,  F.  Romero-­‐Sarria,  et  al.  (2008).  "Gold/hydroxyapatite  catalysts."  (Journal  Article).  Doughty,  C.,  B.  M.  Freifeld,  et  al.  (2008).  "Site  characterization  for  CO2  geologic  storage  and  vice  versa:  the  Frio  

brine  pilot,  Texas,  USA  as  a  case  study."  Environmental  Geology  54(8):    1635-­‐1656.  Durucan,  S.,  J.Q.  Shi,  et  al.  (2011).  "In  Salah  CO2  storage  JIP:  Carbon  dioxide  plume  extension  around  KB-­‐502  well:  

New  insights  into  reservoir  behaviour  at  the  In  Salah  storage  site."  Energy  Procedia  4(0):  3379-­‐3385.  Dutta,  S.,  C.  Y.  Wen,  et  al.  (1977).  "Reactivity  of  Coal  and  Char.  1.  In  Carbon  Dioxide  Atmosphere."  Industrial  &  

Engineering  Chemistry  Process  Design  and  Development  16(1):  20-­‐30.  Eccles,  J.  K.,  L.  Pratson,  et  al.  (2009).  "Physical  and  Economic  Potential  of  Geological  CO2  Storage  in  Saline  Aquifers."  

Environmental  Science  &  Technology  43(6):  1962-­‐1969.  Erickson,  S.  (1995).  "method  for  recycling  carbon  dioxide  for  enhancing  plant  growth."  US  Patent.  Farley,  M.  (2006).  "Developing  oxyfuel  capture  as  a  retrofit  technology."  Modern  Power  Systems    26(4):  20.  Fernandez  Bertos,  M.,  S.  J.  R.  Simons,  et  al.  (2004).  "A  review  of  accelerated  carbonation  technology  in  the  

treatment  of  cement-­‐based  materials  and  sequestration  of  CO2."  Journal  of  Hazardous  Materials  112(3):  193-­‐205.  

Figueroa,  J.D.,  T.  Fout  et  al.  (2007).    “Advances  in  CO2  capture  technology—The  U.S.  Department  of  Energy’s  Carbon  Sequestration  Program.”  International  Journal  of  Greenhouse  Gas  Control.  

Fischer,  J.  H.  F.  T.  W.  L.  E.  P.  C.  S.  D.  L.  D.  (2009).  "Experimental  studies  on  human  health    effets  of  air  pollutants:    short  term  physiological  and  clincal  effects  of  nitrogen  dioxide  exposure."  Archives  of  Environmental  Health  33:  176-­‐181.  

Fluor  Corporation  (2012).  “Final  Front-­‐End  Engineering  and  Design  Study  Report  for  the  Tenaska  Trailblazer  Energy  Center.”  Report  to  the  Global  CCS  Institute.  Nolan  County,  Texas.  

Flower,  D.  J.  M.  and  J.  G.  Sanjayan  (2007).  "Green  house  gas  emissions  due  to  concrete  manufacture."  The  International  Journal  of  Life  Cycle  Assessment  12(5):  282-­‐288.  

Flugge,  F.  and  A.  Abadi  (2006).  "Farming  carbon:  an  economic  analysis  of  agroforestry  for  carbon  sequestration  and  dryland  salinity  reduction  in  Western  Australia."  Agroforestry  Systems  68(3):  181-­‐192.  

Franco,  E.  J.-­‐L.  T.  (2010).  "Microalgae-­‐based  systems  for  carbon  dioxide  sequestration  and  industrial  biorefineries."  Biomass.  

Friedmann,  S.  J.  (2007).  "Geological  Carbon  Dioxide  Sequestration."  Elements  3(3):  179-­‐184.  Fujiwara,  M.,  R.  Kieffer,  et  al.  (1995).  "Development  of  composite  catalysts  made  of  Cu-­‐Zn-­‐Cr  oxide/zeolite  for  the  

hydrogenation  of  carbon  dioxide."  Applied  Catalysis  A:  General  121(1):  113-­‐124.  Galik,  C.  S.  and  R.  B.  Jackson  (2009).  "Risks  to  forest  carbon  offset  projects  in  a  changing   climate."  Forest  Ecology  

and  Management  257(11):  2209-­‐2216.  Ghesmat,  K.,  H.  Hassanzadeh,  et  al.  (2011).  "The  effect  of  anisotropic  dispersion  on  the  convective  mixing  in  long-­‐

term  CO2  storage  in  saline  aquifers."  AIChE  Journal  57(3):  561-­‐570.  Glaser,  J.  A.  (2009).  "Carbon  dioxide  recycling."  Clean  Technologies  and  Environmental  Policy  11(3):  253-­‐257.  Global  CCS  Institute  (2011).    The  Global  Status  of  CCS:  2011.  Canberra,  Australia.  ISBN  978-­‐0-­‐9871863-­‐0-­‐0.  Goldberg,  D.  (2008).  "Carbon  dioxide  sequestration  in  deep-­‐sea  basalt."  Proceedings  of  the  National  Academy  of  

Sciences  105(29):  9920-­‐9925.  

Page 100: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

91  

Gredig,  S.  V.,  R.  A.  Koeppel,  et  al.  (1996).  "Comparative  study  of  synthesis  of  methylamines  from  carbon  oxides  and  ammonia  over  Cu/A12O3."  Catalysis  Today  29(1):  339-­‐342.  

Gromatzky,  L.  G.,  Gregg,  P.T.  (2010).  "Carbon  Storage:    Texas  Stakes  its  Claim."  Natural  Resources  and  Environment  25:  21-­‐25.  

Gullison,  R.  E.,  P.  C.  Frumhoff,  et  al.  (2007).  "Tropical  Forests  and  Climate  Policy."  Science  316(5827):  985-­‐986.  Gunning,  P.  J.,  C.  D.  Hills,  et  al.  (2009).  "Production  of  lightweight  aggregate  from  industrial  waste  and  carbon  

dioxide."  Waste  Management  29(10):  2722-­‐2728. Gutierrez,  J.  P.,  T.  B.  Sullivan,  and  G.J.  Feller  (2006).  “TURNING  NGCC  INTO  IGCC:  CYCLE  RETROFITTING  ISSUES.”  

Siemens  Power  Generation.  Presented  to  2006  Joint  Conference  of  ASME  Power  and  Electric  Power.  Guyot,  F.  O.,  D.  Daval,  et  al.  (2011).  "CO2  geological  storage:  The  environmental  mineralogy  perspective."  Comptes  

Rendus  Geoscience  343(2-­‐3):  246-­‐259.  Hadjpaschalis,  I.  K.,  G.  and  Poullikkas,  A.  (2009).  "Assessment  of  oxyfuel  power  generation  technologies."  

Renewable  and  Sustainable  Energy  Reviews  13:  2637-­‐2644.  Han,  F.  X.,  J.  S.  Lindner,  et  al.  (2007).  "Making  carbon  sequestration  a  paying  proposition."  Die  Naturwissenschaften  

94(3):  170-­‐182.  Hansen,  J.,  D.  Johnson,  et  al.  (1981).  "Climate  impact  of  increasing  atmospheric  carbon  dioxide."  Science  (New  

York,  N.Y.)  213(4511):  957-­‐966.  Harrison,  Y.  L.  a.  D.  P.  (2004).  "Carbon  Dioxide  Capture  Using  Dry  Sodium  Sorbents."  Energy  &  Fuels  18:  569-­‐575.  Harvey,  L.  D.  D.  (2003).  "Impact  of  deep-­‐ocean  carbon  sequestration  on  atmospheric  CO2  and  on  surface-­‐water  

chemistry."  Geophysical  Research  Letters  30(5):  1237.  Hashimoto,  K.  (2002).  "Materials  for  global  carbon  dioxide  recycling."  Corrosion  Science  44(2):  371-­‐386.  Herzog,  H.  J.  and  E.  M.  Drake  (1996).  "CARBON  DIOXIDE  RECOVERY  AND  DISPOSAL  FROM  LARGE  ENERGY  

SYSTEMS."  Annual  Review  of  Energy  and  the  Environment  21(1):  145-­‐166.  Hesse,  M.  A.  and  A.  W.  Woods  (2010).  "Buoyant  dispersal  of  CO2  during  geological  storage."  Geophysical  Research  

Letters  37(1).  Houghton,  R.  A.  (2007).  "Balancing  the  Global  Carbon  Budget."  Annual  Review  of  Earth  and  Planetary  Sciences  

35(1):  313-­‐347.  House,  K.  Z.,  D.  P.  Schrag,  et  al.  (2006).  "Permanent  carbon  dioxide  storage  in  deep-­‐sea  sediments."  Proceedings  of  

the  National  Academy  of  Sciences  of  the  United  States  of  America  103(33):  12291-­‐12295.  Hovorka,  S.  a.  P.  K.  (2003).  "Frio  brine  sequestration  pilot  in  the  Texas  gulf  coast."  Greenhouse  Gas  Control  

Technologies.  Huertas,  F.  J.,  A.  Hidalgo,  et  al.  (2009).  "Interaction  of  bentonite  with  supercritically  carbonated  concrete."  Applied  

Clay  Science  42(3):  488-­‐496.  Huijgen,  W.  J.  J.  and  R.  N.  J.  Comans  (2005).  "Mineral  CO2  Sequestration  by  Steel  Slag  Carbonation."  Environmental  

Science  &  Technology  39(24):  9676-­‐9682.  Huntzinger,  D.  N.,  J.  S.  Gierke,  et  al.  (2009).  "Carbon  Dioxide  Sequestration  in  Cement  Kiln  Dust  through  Mineral  

Carbonation."  Environmental  Science  &  Technology  43(6):  1986-­‐1992.  Ibram,  G.  (2011).  "Conversion  of  Carbon  Dioxide  to  Methanol  Using  Solar  Energy-­‐A  Brief    Review."  Materials  

Sciences  and  Applications  2(10):  1407-­‐1415.  Idem,  R.  W.,  M.  Tontiwachwuthukul,  et  al.  (2006).  "Pilot  plant  studies  of  the  CO2  capture  performance  of  aqueous  

MEA  and  mixed  MEA/MDEA  solvents  at  the  University  of  Regina  CO2  Capture  Technology  Development  Plant  and  the  Boundary  Dam  CO2  Demonstration  Plant."  Industrial  and  Chemical  Research  45:  2414  -­‐  2420.  

Intergovernmental  Panel  on  Climate  Change  (2005).    IPCC  Special  Report:  Carbon  Dioxide  Capture  and  Storage:  Summary  for  Policymakers.      

Iwao,  O.  (2006).  "Aspects  of  carbon  dioxide  utilization."  Catalysis  Today  115(1):  33-­‐52.  Jackson,  T.  (2009).  Prosperity  Without  Growth:  Economics  for  a  Finite  Planet.  GB,  Earthscan.  Jacob-­‐Lopes,  E.,  C.  H.  Gimenes  Scoparo,  et  al.  (2010).  "Biotransformations  of  carbon  dioxide  in  photobioreactors."  

Energy  Conversion  and  Management  51(5):  894-­‐900.  Jansen,  P.  H.  M.  F.  a.  A.  E.  (1995).  "Capture  of  Carbon  Dioxide  Using  Membrane  Gas  Absorption  and  Reuse  in  the  

Horitcultural  Industry."  Energy  Conversion  and  Management  36:  411-­‐414.  Jordal,  K.  A.,  M;  Yan,  J  and  Stromberg,  L  (2004).  "Oxyfuel  combustion  for  coal-­‐fired  power  generation  with  CO2  

capture  -­‐  opportunities  and  challenges."  7th  International  Conference  on  Energy.  

Page 101: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

92  

Juanes,  R.,  C.  W.  MacMinn,  et  al.  (2010).  "The  Footprint  of  the  CO2  Plume  during  Carbon  Dioxide  Storage  in  Saline  Aquifers:  Storage  Efficiency  for  Capillary  Trapping  at  the  Basin  Scale."  Transport  in  Porous  Media  82(1):  19-­‐30.  

Kakaras,  E.,  A.  Doukelis,  et  al.  (2007).  "Economic  implications  of  oxyfuel  application  in  a  lignite-­‐fired  power  plant."  Fuel  86(14):  2151-­‐2158.  

Kakaras,  E.,  A.  Koumanakos,  et  al.  (2007).  "Oxyfuel  boiler  design  in  a  lignite-­‐fired  power  plant."  Fuel  86(14):  2144-­‐2150.  

Kanniche,  M.,  R.  Gros-­‐Bonnivard,  et  al.  (2010).  "Pre-­‐combustion,  post-­‐combustion  and  oxy-­‐combustion  in  thermal  power  plant  for  CO2  capture."  Applied  Thermal  Engineering  30(1):  53-­‐62.  

Karceski,  J.  (2010).  "The  carbon  in  concrete."  E  21(1):  11.  Kaye,  J.,  F.  Buchanan,  et  al.  (2004).  "Acute  Carbon  Dioxide  Exposure  in  Healthy  Adults:  Evaluation  of  a  Novel  Means  

of  Investigating  the  Stress  Response."  Journal  of  Neuroendocrinology  16(3):  256-­‐264.  Kim,  D.  M.  and  J.  Cho  (2011).  "A  comparative  study  of  carbon  dioxide  capture  capabilities  between  methanol  

solvent  and  aqueous  monoethanol  amine  solution."  Korean  Journal  of  Chemical  Engineering  28(1):  22-­‐26.  Kita,  J.  and  T.  Ohsumi  (2004).  "Perspectives  on  Biological  Research  for  CO2  Ocean  Sequestration."  Journal  of  

Oceanography  60(4):  695-­‐703.  Kroeker,  K.  J.,  R.  L.  Kordas,  et  al.  (2010).  "Meta-­‐analysis  reveals  negative  yet  variable  effects  of  ocean  acidification  

on  marine  organisms."  Ecology  Letters  13(11):  1419-­‐1434.  Kutne,  P.,  B.  K.  Kapadia,  et  al.  (2011).  "Experimental  analysis  of  the  combustion  behaviour  of  oxyfuel  flames  in  a  

gas  turbine  model  combustor."  Proceedings  of  the  Combustion  Institute  33(2):  3383-­‐3390.  Lackner,  K.  S.,  C.  H.  Wendt,  et  al.  (1995).  "Carbon  dioxide  disposal  in  carbonate  minerals."  Energy  20(11):  1153-­‐

1170.  Lal,  R.  (2001).  "Potential  of  Desertification  Control  to  Sequester  Carbon  and  Mitigate  the  Greenhouse  Effect."  

Climatic  Change  51(1):  35-­‐72.  Lal,  R.  (2004).  "Soil  carbon  sequestration  impacts  on  global  climate  change  and  food  security."  Science  (New  York,  

N.Y.)  304(5677):  1623-­‐1627.  Lal,  R.  (2009).  "Sequestering  Atmospheric  Carbon  Dioxide."  Critical  Reviews  in  Plant  Sciences  28(3):  90.  Lal,  R.  (2009).  "Sequestering  Carbon  in  Soils  of  Arid  Ecosystems."  Land  Degradation  &  Development  20(4):  441-­‐454.  Lal,  R.  and  L.  Rattan  (2008).  "Carbon  sequestration."  Philosophical  Transactions  of  the  Royal  Society  B:  Biological  

Sciences  363(1492):  815-­‐830.  Langmuir,  D.  (1997).  "Aqueous  Environmental  Geochemistry."  New  Jersey,  Prentice  Hall,  Inc.    Laurance,  W.  F.  (2008).  "Can  Carbon  Trading  Save  Vanishing  Forests?"  BioScience  58(4):  286-­‐287.  Lee,  B.  D.,  D.  M.  Kim,  et  al.  (2009).  "A  comparative  study  on  the  carbon  dioxide  capture  power  between  30  wt%  2-­‐

amino-­‐2-­‐methyl-­‐1-­‐propanol  and  30  wt%  methyldiethanol  amine  aqueous  solutions."  Korean  Journal  of  Chemical  Engineering  26(3):  818-­‐823.  

Leitner,  W.  (2002).  "Supercritical  Carbon  Dioxide  as  a  Green  Reaction  Medium  for  Catalysis."  Accounts  of  Chemical  Research  35(9):  746-­‐756.  

Lemieux,  J.M.  (2011).  "Review:  The  potential  impact  of  underground  geological  storage     of  carbon  dioxide  in  deep  saline  aquifers  on  shallow  groundwater  resources."  Hydrogeology  Journal  19(4):  757-­‐778.  

Lemus,  R.  and  R.  Lal  (2005).  "Bioenergy  Crops  and  Carbon  Sequestration."  Critical  Reviews  in  Plant  Sciences  24(1):  1-­‐21.  

Li,  H.,  Yan,  J.  and  Campana,  P.  (2012).  “Feasibility  of  integrating  solar  energy  into  a  power  plant  with  amine-­‐based  chemical  absorption  for  CO2  capture.”  International  Journal  of  Greenhouse  Gas  Control.  Li,  J.  R.,  Y.  Ma,  et  al.  (2011).  "Carbon  dioxide  capture-­‐related  gas  adsorption  and  separation  in  metal-­‐organic  

frameworks."  Coordination  Chemistry  Reviews  255(15-­‐16):  1791-­‐1823.  Lindzen,  R.  S.  (1997).  "Can  Increasing  Carbon  Dioxide  Cause  Climate  Change?"  Proceedings  of  the  National  

Academy  of  Sciences  of  the  United  States  of  America  94(16):  8335-­‐8342.  Linnenberg,  S.,  V.  Darde,  et  al.  (2012).  “Evaluating  the  impact  of  an  ammonia-­‐based  post-­‐combustion  CO2  capture  

process  on  a  steam  power  plant  with  different  cooling  water  temperatures.”  International  Journal  of  Greenhouse  Gas  Control.  

Lu,  H.,  E.  P.  Reddy,  et  al.  (2006).  "Calcium  Oxide  Based  Sorbents  for  Capture  of  Carbon  Dioxide  at  High  Temperatures."  Industrial  &  Engineering  Chemistry  Research  45(11):  3944-­‐3949.  

Page 102: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

93  

Madden,  M.  P.,  Blatchford,  R.P.  and  Spears,  R.B.  (1991).  "Environmental  Regulations  Handbook  for  Enhanced  Oil  Recovery."  US  Department  of  Energy.  

Mahinpey,  N.,  K.  Asghari,  et  al.  (2011).  "Biological  sequestration  of  carbon  dioxide  in  geological  formations."  Chemical  Engineering  Research  and  Design  89(9):  1873-­‐1878.  

Mallon,  K.  (2006).  Renewable  Energy  Policy  and  Politics  :  A  Handbook  for  Decision-­‐Making:  A  Handbook  for  Decision-­‐Making.  London,  Earthscan.  

Mangalapally,  H.  P.,  R.  Notz,  et  al.  (2012).    “Pilot  plant  study  of  four  new  solvents  for  post-­‐combustion  carbon  dioxide  capture  by  reactive  absorption  and  comparison  to  MEA.”    International  Journal  of  Greenhouse  Gas  Control.  

Marland,  G.,  B.  A.  McCarl,  et  al.  (2001).  "Soil  Carbon:  Policy  and  Economics."  Climatic  Change  51(1):  101-­‐117.  Masera,  O.  R.,  J.  F.  Garza-­‐Caligaris,  et  al.  (2003).  "Modeling  carbon  sequestration  in  afforestation,  agroforestry  and  

forest  management  projects:  the  CO2FIX  V.2  approach."  Ecological  Modelling  164(2):  177-­‐199.  Mattisson,  T.,  F.  Garcia-­‐Labiano,  et  al.  (2007).  “Chemical-­‐looping  combustion  using  syngas  as  fuel.”  International  

Journal  of  Greenhouse  Gas  Control.  Meisen,  A.  (1997).  "Research  and  development  issues  in  CO2  capture."  Energy  Conversion  and  Management  

38(Journal  Article):  S37-­‐S42.  Merel,  J.,  M.  Clausse,  et  al.  (2006).  "Carbon  dioxide  capture  by  indirect  thermal  swing  adsorption  using  13X  

zeolite."  Environmental  Progress  25(4):  327-­‐333.  Merel,  J.,  M.  Clausse,  et  al.  (2007).  "Experimental  Investigation  on  CO2  Post  Combustion  Capture  by  Indirect  

Thermal  Swing  Adsorption  Using  13X  and  5A  Zeolites."  Industrial  &  Engineering  Chemistry  Research  47(1):  209-­‐215.  

Merkel,  T.  C.,  H.  Lin,  et  al.  (2010).  "Power  plant  post-­‐combustion  carbon  dioxide  capture:  An  opportunity  for  membranes."  Journal  of  Membrane  Science  359(1-­‐2):  126-­‐139.  

Michael,  T.  B.  (2005).  "PULVERIZED  COAL  VS.  IGCC."  Public  Utilities  Fortnightly  143(12):  30.  Miller,  G.  (1949).  "Catalytic  Synthesis  of  Higher  Hydrocarbons  from  Carbon-­‐Dioxide  and  Hydrogen."  Dissertation  -­‐  

Brown  University.  Monkman,  S.  (2009).  Maximizing  carbon  uptake  and  performance  gain  in  slag-­‐containing  concretes  through  early  

carbonation.  Dissertation/Thesis.  Monkman,  S.  and  Y.  Shao  (2010).  "Integration  of  carbon  sequestration  into  curing  process  of  precast  

concrete."Canadian  Journal  of  Civil  Engineering  37(2):  302-­‐302.  Mores,  Patricia,  N.  Rodríguez,  et  al.  (2012).  "CO2  capture  in  power  plants:  Minimization  of  the  investment  and  

operating  cost  of  the  post-­‐combustion  process  using  MEA  aqueous  solution.”    International  Journal  of  Greenhouse  Gas  Control.  

Neufeld,  J.  A.  a.  H.,  E.H  (2009).  "Modelling  carbon  dioxide  sequestration  in  layered  strata."  Journal  of  Fluid  Mechanics  625:  353-­‐370.  

Neuhoff,  K.  (2011).  Climate  policy  after  Copenhagen:  The  Role  of  Carbon  Pricing.  New  York,  Cambridge  University  Press.  

Nordhaus,  R.  R.  and  E.  Pitlick  (2009).  "Carbon  dioxide  pipeline  regulation."  Energy  Law  Journal  30(1):  85.  O'Connor,  W.  K.,  D.  C.  Dahlin,  et  al.  (2001).  "Carbon  Dioxide  Sequestration  by  Direct  Mineral  Carbonation:  Results  

from  Recent  Studies  and  Current  Status."  Medium:  ED.  Oexmann,  J.,  C.  Hensel,  et  al.  (2008).  "Post-­‐combustion  CO2  capture  from  coal-­‐fired  power  plants:  Preliminary  

evaluation  of  an  integrated  chemical  absorption  process  with  piperazine-­‐promoted  potassium  carbonate."  International  Journal  of  Greenhouse  Gas  Control  2(4):  539-­‐552.  

Ohsumi,  T.  (2004).  "Introduction:  What  is  the  Ocean  Sequestration  of  Carbon  Dioxide?"  Journal  of  Oceanography  60(4):  693-­‐694.  

Olah,  G.  A.,  A.  Goeppert,  et  al.  (2009).  "Chemical  recycling  of  carbon  dioxide  to  methanol  and  dimethyl  ether:  from  greenhouse  gas  to  renewable,  environmentally  carbon  neutral  fuels  and  synthetic  hydrocarbons."  The  Journal  of  organic  chemistry  74(2):  487-­‐498.  

Orr,  J.  C.,  V.  J.  Fabry,  et  al.  (2005).  "Anthropogenic  ocean  acidification  over  the  twenty-­‐first  century  and  its  impact  on  calcifying  organisms."  Nature  437(7059):  681-­‐686.  

Ozaki,  M.,  M.  Junichi,  et  al.  (2001).  "CO2  ocean  sequestration  by  moving  ships."  Journal  of  Marine  Science  and  Technology  6(2):  51.  

Page 103: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

94  

Park,  A.  H.  A.  and  L.S.  Fan  (2004).  "Mineral  sequestration:  physically  activated  dissolution  of  serpentine  and  pH  swing  process."  Chemical  Engineering  Science  59(22–23):  5241-­‐5247.  

Perez-­‐Alonso,  F.  J.,  M.  Ojeda,  et  al.  (2008).  "Carbon  dioxide  hydrogenation  over  Fe-­‐Ce  catalysts."  (Journal  Article).  Phillips,  M.  (2008).  "CO2  State."  Newsweek.  Pielke,  R.  A.  (2009).  "An  idealized  assessment  of  the  economics  of  air  capture  of  carbon  dioxide  in  mitigation  

policy."  Environmental  Science  and  Policy  12(3):  216-­‐225.  Rahimpour,  M.  H.  (2008).  "A  two-­‐stage  catalyst  bed  concept  for  conversion  of  carbon  dioxide  into  methanol."  Fuel  

Processing  Technology  89(5):  556-­‐566.  Rao,  A.  B.  and  E.  S.  Rubin  (2005).  "Identifying  Cost-­‐Effective  CO2  Control  Levels  for  Amine-­‐Based  CO2  Capture  

Systems."  Industrial  &  Engineering  Chemistry  Research  45(8):    2421-­‐2429.  Ratafia-­‐Brown,  J.  M.,  LM;  Hoffmann,  JW  and  Ramezan,  M.  (2002).  "An  environmental  assessment  of  IGCC  power  

systems  "  Nineteenth  Annual  Pittsburg  Coal  Conference.  Rendek,  E.,  G.  Ducom,  et  al.  (2006).  "Carbon  dioxide  sequestration  in  municipal  solid  waste  incinerator  (MSWI)  

bottom  ash."  Journal  of  Hazardous  Materials  128(1):  73-­‐79.  Rhodes,  J.  S.  and  D.  W.  Keith  (2005).  "Engineering  economic  analysis  of  biomass  IGCC  with  carbon  capture  and  

storage."  Biomass  and  Bioenergy  29(6):  440-­‐450.  Riduan,  S.  N.,  Y.  Zhang,  et  al.  (2009).  "Conversion  of  Carbon  Dioxide  into  Methanol  with  Silanes  over  N-­‐Heterocyclic  

Carbene  Catalysts."  Angewandte  Chemie  121(18):  3372-­‐3375.  Rosa,  A.  P.  C.  d.,  L.  F.  Carvalho,  et  al.  (2011).  "Carbon  dioxide  fixation  by  microalgae  cultivated  in  open  bioreactors."  

Energy  Conversion  and  Management  52(8):  3071-­‐3073.  Roy,  S.  C.,  O.  K.  Varghese,  et  al.  (2010).  "Toward  Solar  Fuels:  Photocatalytic  Conversion  of  Carbon  Dioxide  to  

Hydrocarbons."  ACS  Nano  4(3):  1259-­‐1278.  Sakakura,  T.,  J.  C.  Choi,  et  al.  (2007).  "Transformation  of  carbon  dioxide."  Chemical  reviews  107(6):  2365-­‐2387.  Salvador,  C.,  D.  Lu,  et  al.  (2003).  "Enhancement  of  CaO  for  CO2  capture  in  an  FBC  environment."  Chemical  

Engineering  Journal  96(1-­‐3):  187-­‐195.  Sang  Hwa,  J.,  L.  Myung  Kue,  et  al.  (2011).  "Measurement  Device  and  Characteristics  of  Diffusion  Coefficient  of  

Carbon  Dioxide  in  Concrete."  ACI  Materials  Journal  108(6):  589.  Shao,  Y.,  M.  S.  Mirza,  et  al.  (2006).  "CO2  sequestration  using  calcium-­‐silicate  concrete."     Canadian  Journal  of  Civil  

Engineering  33(6):  776-­‐776.  Shi,  F.,  Y.  Deng,  et  al.  (2003).  "Alternatives  to  phosgene  and  carbon  monoxide:  synthesis  of  symmetric  urea  

derivatives  with  carbon  dioxide  in  ionic  liquids."  Angewandte  Chemie  (International  ed.  in  English)  42(28):  3257-­‐3260.  

Shindell,  D.  and  G.  Faluvegi  (2010).  "The  net  climate  impact  of  coal-­‐fired  power  plant  emissions."    Atmospheric  Chemistry  and  Physics  10(7):  3247-­‐3260.  

Silaban,  A.  a.  H.,  D.  P.  (1995).  "High  Temperature  Capture  of  Carbon  Dioxide:    Characteristics  of  the  Reversible  Reacton  Bwtween  CaO  and  CO2."  Chemical  Engineering  Communications  137(1):  177-­‐190.  

Simmons,  J.  M.,  H.  Wu,  et  al.  (2011).  "Carbon  capture  in  metal-­‐organic  frameworks-­‐a  comparative  study."  Energy  &  Environmental  Science  4(6):  2177-­‐2185.  

Smith,  K.,  C.  Anderson,  et  al.  (2012).  “Pre-­‐combustion  capture  of  CO2—Results  from  solvent  absorption  pilot  plant  trials  using  30wt%  potassium  carbonate  and  boric  acid  promoted  potassium  carbonate  solvent.”  International  Journal  of  Greenhouse  Gas  Control.  

 Soren,  A.  and  N.  Richard  (2004).  "PROSPECTS  FOR  CARBON  CAPTURE  AND  STORAGE  TECHNOLOGIES."  Annual  

Review  of  Environment  and  Resources  29(Journal  Article):  0_2.  Stolaroff,  J.  K.,  G.  V.  Lowry,  et  al.  (2004).  "Using  CaO-­‐  and  MgO-­‐rich  industrial  waste  streams  for  carbon  

sequestration."  Energy  Conversion  and  Management  46(5):  687-­‐699.  Tan,  X.,  K.  Li,  et  al.  (2007).  "Oxyfuel  combustion  using  a  catalytic  ceramic  membrane  reactor."  Catalysis  Today  

131(1-­‐4):  292-­‐304.  Tan,  Y.,  M.  Fujiwara,  et  al.  (1999).  "Syntheses  of  Isobutane  and  Branched  Higher  Hydrocarbons  from  Carbon  

Dioxide  and  Hydrogen  over  Composite  Catalysts."  Industrial  &  Engineering  Chemistry  Research  38(9):  3225-­‐3229.  

Page 104: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

95  

Tomishige,  K.  and  K.  Kunimori  (2002).  "Catalytic  and  direct  synthesis  of  dimethyl  carbonate  starting  from  carbon  dioxide  using  CeO2-­‐ZrO2  solid  solution  heterogeneous  catalyst:effect  of  H2O  removal  from  the  reaction  system."  Applied  Catalysis  A:  General  237(1–2):  103-­‐109.  

Torp,  T.  A.  and  J.  Gale  (2004).  "Demonstrating  storage  of  CO2  in  geological  reservoirs:  The  Sleipner  and  SACS  projects."  Energy  29(9-­‐10):  1361-­‐1369.  

Tu,  M.  and  R.  J.  Davis  (2001).  "Cycloaddition  of  CO2  to  Epoxides  over  Solid  Base  Catalysts."  Journal  of  Catalysis  199(1):  85-­‐91.  

Tzimas,  E.,  A.  Mercier,  et  al.  (2007)  Trade-­‐off  in  emissions  of  acid  gas  pollutants  and  of  carbon  dioxide  in  fossil  fuel  power  plants  with  carbon  capture.  35,  3991-­‐3998.  

Viebahn,  P.,  J.  Nitsch,  et  al.  (2007).  “Comparison  of  carbon  capture  and  storage  with  renewable  energy  technologies  regarding  structural,  economic,  and  ecological  aspects  in  Germany.”  International  Journal  of  Greenhouse  Gas  Control.  

Vitalis,  B.  (2007).    “Overview  of  Oxy-­‐Combustion  Technology  for  Utility  Coal-­‐Fired  Boilers.”  Presented  at  5th  International  Conference  on  Advance  in  Materials  Technology  for  Fossil  Power  Plants.      

Wagman,  D.  (2006).  "S&P  WEIGHS  IGCC  ECONOMICS."  Power  Engineering  110(8):  20.  Wall,  T.  F.  (2006).  "Combustion  processes  for  carbon  capture."  Proceedings  of  the  Combustion  Institute  31(1):  31-­‐

47.  Walter,  L.,  P.  Binning,  et  al.  (2012).    “Brine  migration  resulting  from  CO2  injection  into  saline  aquifers  –  An  approach  

to  risk  estimation  including  various  levels  of  uncertainty.”  International  Journal  of  Greenhouse  Gas  Control.  

Wang,  S.,  K.  Murata,  et  al.  (2000).  "Dehydrogenation  of  ethane  with  carbon  dioxide  over  supported  chromium  oxide  catalysts."  Applied  Catalysis  A:  General  196(1):  1-­‐8.  

Ware,  J.  H.,  B.  G.  Ferris,  et  al.  (1986).  "Effects  of  ambient  sulfur  oxides  and  suspended  particles  on  respiratory  health  of  preadolescent  children."  The  American  review  of  respiratory    disease  133(5):  834-­‐842.  

White,  D.  (1998).  "IGCC:  Poised  for  growth?"  Modern  Power  Systems  18(12):  25.  Williams,  P.  (1996).  "Enhanced  oil  recovery."  Oil  &  Gas  Investor  16(7):  22.  Wittwer,  S.  H.  and  W.  M.  Robb  (1964).  "Carbon  dioxide  enrichment  of  greenhouse  atmospheres  for  food  crop  

production."  Economic  Botany  18(1):  34-­‐56.  Xu,  G.  W.,  C.  F.  Zhang,  et  al.  (1998).  "Gas-­‐Liquid  Equilibrium  in  a  CO2-­‐H2O  System  and  the  Effect  of  Piperazine  on  It."  

Industrial  &  Engineering  Chemistry  Research  37(4):  1473-­‐1477.  Xu,  T.,  J.  A.  Apps,  et  al.  (2005).  "Mineral  sequestration  of  carbon  dioxide  in  a  sandstone  shale  system."  Chemical  

Geology  217(3-­‐4):  295-­‐318.  Xu,  X.  C.,  S  and  Zhang,  D  (2006).  "Connective  stability  analysis  of  the  long-­‐term  storage  of  carbon  dioxide  in  deep  

saline  aquifers."  Advances  in  Water  Resources  29:  397-­‐407.  Yang,  H.,  Z.  Xu,  et  al.  (2008).  "Progress  in  carbon  dioxide  separation  and  capture:  A  review."  Journal  of  

Environmental  Sciences  20(1):  14-­‐27.  Zeiler,  K.  G.,  D.  A.  Heacox,  et  al.  (1995).  "The  use  of  microalgae  for  assimilation  and  utilization  of  carbon  dioxide  

from  fossil  fuel-­‐fired  power  plant  flue  gas."  Energy  Conversion  and  Management  36(6):  707-­‐712.  Zerai,  B.  and  B.  Z.  Saylor  (2004).  "Injection  and  trapping  of  carbon  dioxide  in  deep  saline  aquifers."  Geological  

Society,  London,  Special  Publications  236(1):  285-­‐296.  Zheng,  L.  and  E.  Furinsky  (2004).  "Comparison  of  Shell,  Texaco,  BGL  and  KRW  gasifiers  as  part  of  IGCC  plant  

computer  simulations."  Energy  Conversion  and  Management  46(11-­‐12):  1767-­‐1779.  Zhoa,  B.,  Y.  Su,  et  al.  (2012).  “Post-­‐combustion  CO2  capture  by  aqueous  ammonia:  A  state-­‐of-­‐the-­‐art  review.”  

International  Journal  of  Greenhouse  Gas  Control.    

Page 105: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

96  

 

 

 

 

Page 106: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX  C:    SELECTED  LITERATURE  ABSTRACTS/SUMMARIES  

Page 107: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

98  

SELECTED  LITERATURE  ABSTRACTS/SUMMARIES  

TECHNOLOGY  PERFORMANCE/INNOVATION  

CO2  capture  in  power  plants:  Minimization  of  the  investment  and  operating  cost  of  the  post-­‐combustion  process  using  MEA  aqueous  solution  International  Journal  of  Greenhouse  Gas  Control,  Sept.  2012:  Patricia  Mores  |  Néstor  Rodríguez  |  Nicolas  Scenna  |  Sergio  Mussati  

The  post-­‐combustion  process  based  on  CO2  absorption  using  an  amine  aqueous  solution  is  one  of  the  more  attractive  options  to  drastically  reduce  greenhouse  gas  emissions  from  the  electric  power  sector.  However,  solvent  regeneration  is  highly  energy  intensive,  affecting  the  total  operating  cost  significantly.  The  CO2  removal  target  depends  on  the  absorption  and  desorption  processes  where  the  main  parameters  of  both  processes  are  strongly  coupled.  Consequently,  the  simultaneous  optimization  of  the  whole  CO2  capture  process  is  essential  to  determine  the  best  design  and  operating  conditions  in  order  to  minimize  the  total  cost.  This  paper  presents  and  discusses  different  cost  optimizations  including  both  investments  and  operating  costs.  The  impact  of  different  CO2  emission  reduction  targets  on  the  total  annual  cost,  operating  conditions  and  dimensions  of  process  units  is  investigated  in  detail.  Optimized  results  are  discussed  through  different  case  studies.  

Pilot  plant  study  of  four  new  solvents  for  post-­‐combustion  carbon  dioxide  capture  by  reactive  absorption  and  comparison  to  MEA  International  Journal  of  Greenhouse  Gas  Control,  May  2012:  Hari  Prasad  Mangalapally  |  Ralf  Notz  |  Norbert  Asprion  |  Georg  Sieder  |  Hugo  Garcia  |  Hans  Hasse  

Reducing  solvent  regeneration  energy  is  one  of  the  main  challenges  in  CO2  capture  from  power  plant  flue  gases.  New  tailored  solvents  are  needed  to  achieve  this  goal.  The  present  work  describes  tests  of  such  new  solvents  in  a  gas-­‐fired  pilot  plant  which  comprises  the  complete  absorption/desorption  process  (column  diameters  0.125m,  absorber/desorber  packing  height  4.2/2.52m,  flue  gas  flow  30–110kg/h,  CO2  partial  pressure  35–135mbar).  Four  new  solvents  are  studied  and  compared  to  MEA.  Two  of  the  new  solvents  SOLVENT1  (0.25g/g   N-­‐methyldiethanolamine+0.15g/g   N-­‐methyl-­‐1,3-­‐propanediamine+0.6g/g   H2O)   and   SOLVENT2   (0.25g/g   2-­‐amino-­‐2-­‐methyl-­‐1-­‐propanol+0.15g/g  N-­‐methyl-­‐1,3-­‐propanediamine+0.6g/g  H2O)  are  developed  in  an  EU  project;  and  two  other  solvents  SOLVENT3  and  SOLVENT4  are  developed  by  BASF.  The  four  new  solvents  and  MEA  are  studied  in  the  same  way  in  the  pilot  plant  and  detailed  results  are  reported  for  all  solvents.  The  measurements  are  carried  out  at  constant  CO2  removal  rate  by  an  adjustment  of  regeneration  energy  in  the  desorber.  The  solvent  flow  rate  is  systematically  varied.  An  optimal  solvent  flow  rate  leading  to  a  minimum  energy  requirement  is  found  from  these  studies.  Direct  comparisons  of  such  results  can  suffer  from  differences  in  the  kinetics  of  different  solvent  systems.  These  differences  are  experimentally  studied  by  varying  the  flue  gas  flow  rate  at  a  constant  ratio  of  solvent  mass  flow  to  flue  gas  mass  flow   and   constant   removal   rate.   Taking   into   account   the   results   from   these   studies   on   kinetics   allows   a   reasonable   ranking   of   the  solvents.  The  most  promising  of  the  studied  solvents  is  SOLVENT4.  

Comparison  of  two  electrolyte  models  for  the  carbon  capture  with  aqueous  ammonia  International  Journal  of  Greenhouse  Gas  Control,  May  2012:  Victor  Darde  |  Kaj  Thomsen  |  Willy  J.M.  van  Well  |  Davide  Bonalumi  |  Gianluca  Valenti  |  Ennio  Macchi  

Post-­‐combustion  carbon  capture  is  attracting  much  attention  due  to  the  fact  that   it  can  be  retrofitted  on  existing  coal  power  plants.  Among  the  most  interesting  technologies  is  the  one  that  employs  aqueous  ammonia  solutions  to  absorb  the  generated  carbon  dioxide.  The  evaluation  of  such  process  requires  the  modeling  of  electrolyte  solutions.  In  this  work  two  thermodynamic  models  for  electrolyte  solutions  are  compared  against  each  other  with  respect  to  experimental  data.  They  are  the  e-­‐NRTL  model  and  the  Extended  UNIQUAC  model,  both  implemented  in  the  commercial  software  Aspen  Plus  11.    Aspen  Plus  is  a  registered  trademark  of  Aspen  Technology,  Inc.  (version   7.2).   Subsequently,   a   simple   absorption/regeneration   layout   is   simulated   employing   both   models   and   the   process  performances   are   compared.   In   general,   the   Extended   UNIQUAC   appears   to   describe   the   experimental   data   for   larger   ranges   of  temperature,   pressure   and   concentration   of   ammonia   more   satisfactorily.   The   energy   performances   computed   with   the   Extended  UNIQUAC  models  are  less  promising  than  with  the  e-­‐NRTL  model.  

Post-­‐combustion  CO2  capture  by  aqueous  ammonia:  A  state-­‐of-­‐the-­‐art  review  International  Journal  of  Greenhouse  Gas  Control,  July  2012:  Bingtao  Zhao  |  Yaxin  Su  |  Wenwen  Tao  |  Leilei  Li  |  Yuanchang  Peng  

CO2  emission  by  fossil  fuel  combustion  has  been  considered  a  leading  contribution  to  the  increasing  atmospheric  CO2  concentration  and  the  global  greenhouse  effect.  As  a  chemical  absorption  method  and  technology  to  control  CO2  from  post-­‐combustion  flue  gas,  CO2  capture  by  aqueous  ammonia  is  paid  more  and  more  attention  for  its  advantages  of  high  efficiency,  low  investment  and  convenient  operation.  In  this  paper,  the  advances  in  fundamental  research  on  post-­‐combustion  CO2  capture  by  aqueous  ammonia,  focusing  on  the  process  chemistry,  effect  of  reaction  parameters  on  absorption  efficiency,  absorption  process  intensification  and  simultaneous  capture  with  other  pollutants,  were  critically  summarized  and  reviewed.  In  addition,  future  potential  in  research  and  development  of  CO2  absorption  by  aqueous  ammonia  were  also  briefly  prospected  and  discussed.  

Page 108: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

99  

Evaluating  the  impact  of  an  ammonia-­‐based  post-­‐combustion  CO2  capture  process  on  a  steam  power  plant  with  different  cooling  water  temperatures  International  Journal  of  Greenhouse  Gas  Control,  Sept.  2012:  Sebastian  Linnenberg  |  Victor  Darde  |  Jochen  Oexmann  |  Alfons  Kather  |  Willy  J.M.  van  Well  |  Kaj  Thomsen  

The  use  of  aqueous  ammonia  is  a  promising  option  to  capture  carbon  dioxide  from  the  flue  gas  of  coal-­‐fired  power  plants.  Compared  to  a  capture  process  using  monoethanolamine  (MEA),  the  use  of  ammonia  can  reduce  the  heat  requirement  of  the  CO2  desorption  significantly,  although  an  additional  effort  is  necessary  to  provide  the  cooling  of  the  process.  To  allow  for  a  fair  evaluation  of  the  integration  of  this  CO2  capture  process  into  a  power  plant  process,  an  overall  process  evaluation  is  carried  out.  The  use  of  detailed  models  of  the  power  plant,  of  the  compressor  and  of  the  CO2  capture  process  enables  the  calculation  of  the  power  loss  due  to  the  steam  extraction  as  well  as  due  to  the  required  auxiliary  power  for  CO2  compression,  solvent  and  cooling  pumps  and  mechanical  chillers.  To  study  the  influence  of  the  cold  end  of  the  process,  two  power  plants  with  different  cooling  water  temperatures  are  analyzed.  Additionally,  two  different  process  configurations  of  the  capture  plant,  with  either  one  single  absorber  or  two  absorbers  connected  in  series  where  the  first  absorber  captures  the  majority  of  the  CO2  and  the  second  limits  the  NH3  slip,  are  evaluated.  The  influence  of  the  main  process  parameters  (desorber  pressure,  solvent  circulation  rate,  solvent  recycling  rate  and  chilling  temperature)  are  evaluated  and  the  optimal  configuration  with  respect  to  the  overall  net  efficiency  penalty  is  determined.  The  study  shows  that  the  configuration  of  the  process  with  absorption  at  low  temperature  (approximately  10°C)  with  or  without  precipitation  of  ammonium  carbonate  compounds  leads  to  a  lower  net  efficiency  penalty  than  an  MEA-­‐based  process,  assuming  that  low  temperature  cooling  water  is  available.  An  estimate  of  the  size  of  the  absorber  shows  that  the  absorber  columns  of  an  ammonia-­‐based  process  are  significantly  higher  than  the  ones  required  for  an  MEA-­‐based  process.  

Pre-­‐combustion  capture  of  CO2—Results  from  solvent  absorption  pilot  plant  trials  using  30wt%  potassium  carbonate  and  boric  acid  promoted  potassium  carbonate  solvent  International  Journal  of  Greenhouse  Gas  Control,  Sept.  2012:  Kathryn  H.  Smith  |  Clare  J.  Anderson  |  Wendy  Tao  |  Kohei  Endo  |  Kathryn  A.  Mumford  |  Sandra  E.  Kentish  |  Abdul  Qader  |  Barry  Hooper  |  Geoff  W.  Stevens  

Pre-­‐combustion  capture  of  carbon  dioxide  (CO2)  from  synthesis  gas  has  been  demonstrated  using  a  solvent  absorption  pilot  plant.  The  plant  was  designed  to  capture  30–50kg/h  (∼1tonne/day)  of  CO2  from  300kg/h  of  syngas.  The  solvent  used  in  these  trials  was  a  potassium  carbonate  (K2CO3)  solution.  Potassium  carbonate  shows  promise  as  a  solvent  for  CO2  capture  because  it  requires  lower  energy  for  regeneration  and  has  a  low  environmental  impact  when  compared  with  the  traditional  amine-­‐based  solvents.  However,  the  rate  of  CO2  absorption  in  K2CO3  is  slow  and  as  such  there  have  been  several  studies  evaluating  rate  promoters  for  this  process.  Boric  acid  has  been  identified  as  one  such  promoter.  The  pilot  plant  in  this  study  was  successfully  operated  on  a  campaign  basis  for  16  days  using  both  an  un-­‐promoted  30wt%  K2CO3  solution  as  well  as  a  30wt%  K2CO3  solution  promoted  with  3wt%  boric  acid.  There  was  no  net  improvement  in  the  absorption  of  CO2  observed  in  the  presence  of  boric  acid.  This  result  is  attributed  to  the  boric  acid  having  reduced  the  pH  and  therefore  OH−  concentration  of  the  system,  which  in  turn  reduced  the  rate  of  the  controlling  kinetic  reaction  to  form  potassium  bicarbonate  (KHCO3)  from  CO2.  Changes  in  the  solvent  physical  properties,  due  to  interaction  with  syngas  impurities,  were  found  to  influence  the  hydrodynamic  performance  of  the  packed  columns.  Bicarbonate  precipitation  and  vessel  level  control  issues  also  led  to  operational  difficulties.  ASPEN  Plus  simulations  have  been  developed  to  predict  the  performance  of  the  plant.  In  general  the  model  predicts  the  performance  of  the  plant  well  (to  within  ±5%)  and  will  be  important  for  future  process  development,  design  and  optimization.    Chemical-­‐looping  combustion  using  syngas  as  fuel  International  Journal  of  Greenhouse  Gas  Control,  April  2007:  Mattisson,  T.  |  García-­‐Labiano,  F.  |  Kronberger,  B.  |  Lyngfelt,  A.  |  Adánez,  J.  |  Hofbauer,  H.  

Chemical-­‐looping  combustion  (CLC)  is  a  combustion  technology  where  an  oxygen  carrier  is  used  to  transfer  oxygen  from  the  combustion  air  to  the  fuel,  avoiding  direct  contact  between  air  and  fuel.  Thus,  CO2  and  H2O  are  inherently  separated  from  the  rest  of  the  flue  gases  and  the  carbon  dioxide  can  be  obtained  in  a  pure  form  without  the  use  of  an  energy  intensive  air  separation  unit.  The  paper  presents  results  from  a  3-­‐year  project  devoted  to  developing  the  CLC  technology  for  use  with  syngas  from  coal  gasification.  The  project  has  focused  on:  (i)  the  development  of  oxygen  carrier  particles,  (ii)  establishing  a  reactor  design  and  feasible  operating  conditions  and  (iii)  construction  and  operation  of  a  continuously  working  hot  reactor.  Approximately,  300  different  oxygen  carriers  based  on  oxides  of  the  metals  Ni,  Fe,  Mn  and  Cu  were  investigated  with  respect  to  parameters,  which  are  important  in  a  CLC  system,  and  from  these  investigations,  several  particles  were  found  to  possess  suitable  qualities  as  oxygen  carriers.  Several  cold-­‐model  prototypes  of  CLC  based  on  interconnected  fluidized  bed  reactors  were  tested,  and  from  these  tests  a  hot  prototype  CLC  reactor  system  was  constructed  and  operated  successfully  using  three  carriers  based  on  Ni,  Fe  and  Mn  developed  within  the  project.  The  particles  were  used  for  30-­‐70  h  with  combustion,  but  were  circulated  under  hot  conditions  for  60-­‐150  h.    

 Feasibility  of  integrating  solar  energy  into  a  power  plant  with  amine-­‐based  chemical  absorption  for  CO2  capture  International  Journal  of  Greenhouse  Gas  Control,  July  2012:  Hailong  Li  |  Jinyue  Yan  |  Pietro  E.  Campana  

Solar  thermal  energy  has  the  potential  to  supply  the  thermal  demand  of  stripper  reboiler  in  the  power  plant  with  amine-­‐based  post  combustion  CO2  capture.  The  performance  of  a  power  plant  integrated  with  solar  assisted  post  combustion  CO2  capture  (SCC)  is  largely  affected  by  the  local  climatic  conditions,  such  as  solar   irradiation,  sunshine  hours  and  ambient  temperature,   the  type  of  solar  thermal  collector  and  CO2  recovery  

Page 109: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

100  

ratio.  The  feasibility  evaluation  results  about  such  a  power  plant  show  that  the  cost  of  electricity  (COE)  and  cost  of  CO2  avoidance  (COA)  are  mainly  determined  by  the  local  climatic  conditions.  For  the  locations  having  higher  solar  irradiation,  longer  sunshine  hours  and  higher  ambient  temperature,  the  power  plant  with  SCC  has  lower  COE  and  COA.  COE  and  COA  are  sensitive  to  the  prices  of  solar  thermal  collectors.  In  order  to  achieve   lower   COE   and   COA   compared   to   the   power   plant   integrated   with   non-­‐solar   assisted   post   combustion   capture,   the   price   of   solar  thermal  collector  has  to  be  lower  than  150USD/m2  and  90USD/m2  for  the  solar  trough  and  vacuum  tube,  respectively.    

PROCESS  INNOVATION:  FLEXIBLE  OPERATION  

Optimizing  post-­‐combustion  CO2  capture  in  response  to  volatile  electricity  prices  International  Journal  of  Greenhouse  Gas  Control,  May  2012:  Stuart  M.  Cohen  |  Gary  T.  Rochelle  |  Michael  E.  Webber  

Flexibly   operating   CO2   capture   at   power   plants   allows   a   temporary   increase   in   electrical   output,   which   could   help   maintain   grid  reliability,  meet  peak  demand,  or   improve  profitability  when  electricity  prices  are  high.  This  article  presents  a  versatile  optimization  model  that  maximizes  profits  at  a  fossil-­‐based  power  plant  with  CO2  capture  by  operating  in  response  to  volatile  electricity  prices.  The  model   is   demonstrated   for   a   500MW   coal-­‐fired   unit   using   7   molal   monoethanolamine   for   post-­‐combustion   CO2   capture.   The  importance  of  modeling  electricity  price  volatility  when  valuing  flexible  capture  is  demonstrated  by  comparing  model  results  to  those  from  a   first-­‐order  electricity  dispatch  model   that  does  not   incorporate  price   volatility.   CO2  emissions   and  plant   economics   are   then  compared  for  operation  under  three  20-­‐year  CO2  price  paths  and  four  facility  configurations:  no  CO2  capture,   inflexible  CO2  capture,  flexible  CO2  capture  that  vents  CO2  at  partial   load,  and   flexible  capture  that  uses  solvent  storage  to  mitigate  venting  at  partial   load.  Flexible   capture   improves   investment   value   over   inflexible   capture   while   maintaining   substantial   CO2   emissions   reductions,   but  economic  benefits   are  greatest  at   low  CO2  prices  where  CO2  capture   investment  might   still   be  unjustifiable.   Flexibility  provides   the  greatest  economic  advantage  if  CO2  prices  are  $40–50  per  metric  ton  of  CO2  for  a  substantial  portion  of  plant  economic  life.  Solvent  storage   permits   greater   operating   profits   and   lower   CO2   emissions   than   a   venting-­‐only   flexible   capture   facility,   but   benefits   can   be  offset  by  increased  capital  costs.  

Flexible  operation  of  coal  fired  power  plants  with  post-­‐combustion  capture  of  carbon  dioxide  JOURNAL  OF  ENVIRONMENTAL  ENGINEERING  ASCE,  JUNE  2009:    Hannah  Chalmers;  Mathieu  Lucquiaud;  Jon  Gibbins;  and  Matt  Leach  

Carbon   capture   and   storage   is   one   family   of   technologies   that   could   be   used   to   significantly   reduce   global   carbon   dioxide   (CO2)  emissions.   This   paper   reviews   the   likely   flexibility   of   power   plants   with   post-­‐combustion   capture,   with   a   focus   on   an   improved  characterization  of  the  dynamic  performance  of  power  plants  with  CO2  capture.  The  literature  has  focused  on  design  and  optimization  for   steady   state  operation  of  power  plants  with   capture,  often  at   a   single  design  point.  When  dynamic  behavior   is   considered,   it   is  possible   that   designs   should   be   altered   for   best   overall   plant   performance.   Economic   trade-­‐offs   between   improving   transport   and  storage  scheme  flexibility  and  constraining  power  plant  operations  should  also  be  carefully  analyzed,  particularly  if  the  captured  CO2  is  to  be  used   in  another  process   such  as  enhanced  oil   recovery.  Another   important  aspect  of   real  plant  operation  will   be  adhering   to  legislative   requirements.   Further   work   is   required   to   identify   mechanisms   that   allow   flexible   operation   without   undermining   any  targets  set  for  storing  CO2  and/or  restricting  global  CO2  emissions.  

OTHER  PROCESS  INNOVATION  

Optimized  process  configurations  of  post-­‐combustion  CO2  capture  for  natural-­‐gas-­‐fired  power  plant  –  Power  plant  efficiency  analysis  International  Journal  of  Greenhouse  Gas  Control,  May  2012:  Zeinab  Amrollahi  |  Paul  Andreas  Marchioro  Ystad  |  Ivar  S.  Ertesvåg  |  Olav  Bolland  

Carbon  dioxide  was  removed  by  chemical  absorption  processes  from  the  flue  gases  of  a  natural-­‐gas-­‐fired  combined-­‐cycle  power  plant.  The  main  challenge  of  chemical  absorption  processes  is  reducing  the  energy  requirement.  This  paper  discusses  the  selection  of  most  important  parameters  necessary  to  obtain  90%  capture  ratio  and  the  lowest  energy  consumption  for  the  CO2  capture  and  compression  plants.  The   integrated  capture  processes  with  power  plant  were  evaluated  by  using  the  net  power-­‐plant  efficiency.  Several  chemical  absorption  process  configurations  were  analyzed  and  the  design  parameters  were  compared  for  the  different  cases.  The  findings  show  decreased  reboiler  energy  consumption  for  the  Base  case  chemical  absorption  process  configuration  with  3.74–2.71MJ/kg  CO2  for  the  modified   chemical   absorption   process   configuration   of   lean   vapor   recompression  with   absorber   inter-­‐cooling.   The   net   power   plant  efficiency  with  CO2  capture  and  compression  was  increased  from  49.4%  (LHV)  for  the  Base  case  chemical  absorption  process  to  50.2%  (LHV)  for  the  chemical  absorption  process  with  absorber  inter-­‐cooling  and  lean  vapor  recompression.  The  power  output  reduction  due  to  CO2  capture  and  compression  was  decreased  from  48MW  for  the  Base  case  chemical  absorption  process  to  42.5MW  for  the  case  with  absorber  inter-­‐cooling  and  lean  vapor  recompression.  

Page 110: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

101  

BUSINESS  CASE  /  COST  COMPARISONS  

Comparison  of  carbon  capture  and  storage  with  renewable  energy  technologies  regarding  structural,  economic,  and  ecological  aspects  in  Germany  International  Journal  of  Greenhouse  Gas  Control,  April  2007:  Viebahn,  P.  |  Nitsch,  J.  |  Fischedick,  M.  |  Esken,  A.  |  Schüwer,  D.  |  Supersberger,  N.  |  Zuberbühler,  U.  |  Edenhofer,  O.  

For   the  option  of  "carbon  capture  and  storage",  an   integrated  assessment   in   the   form  of  a   life  cycle  analysis  and  a  cost  assessment  combined   with   a   systematic   comparison   with   renewable   energies   regarding   future   conditions   in   the   power   plant   market   for   the  situation   in  Germany   is  done.  The  calculations  along   the  whole  process   chain   show   that  CCS   technologies  emit  per  kWh  more   than  generally   assumed   in   clean-­‐coal   concepts   (total   CO2   reduction   by   72-­‐90%   and   total   greenhouse   gas   reduction   by   65-­‐79%)   and  considerable  more   if   compared  with   renewable  electricity.  Nevertheless,  CCS  could   lead   to  a   significant  absolute   reduction  of  GHG-­‐emissions  within  the  electricity  supply  system.  Furthermore,  depending  on  the  growth  rates  and  the  market  development,  renewables  could  develop  faster  and  could  be  in  the  long  term  cheaper  than  CCS  based  plants.  Especially,  in  Germany,  CCS  as  a  climate  protection  option   is   phasing   a   specific   problem  as   a   huge  amount   of   fossil   power  plant   has   to   be   substituted   in   the  next   15   years  where  CCS  technologies  might  be  not  yet  available.  For  a  considerable  contribution  of  CCS  to  climate  protection,  the  energy  structure  in  Germany  requires   the   integration  of   capture   ready  plants   into   the  current   renewal  programs.   If  CCS   retrofit   technologies   could  be  applied  at  least  from  2020,  this  would  strongly  decrease  the  expected  CO2  emissions  and  would  give  a  chance  to  reach  the  climate  protection  goal  of  minus  80%  including  the  renewed  fossil-­‐fired  power  plants.    

STORAGE  

Carbon  dioxide  storage  potential  of  shales  International  Journal  of  Greenhouse  Gas  Control,  July  2008:  Busch,  A.  |  Alles,  S.  |  Gensterblum,  Y.  |  Prinz,  D.  |  Dewhurst,  D.N.  |  Raven,  M.D.  |  Stanjek,  H.  |  Krooss,  B.M.  

Options   for   the   geologic   storage  of   carbon  dioxide   vary   from   saline   aquifers   and  depleted  oil   and   gas   reservoirs   to   unminable   coal  seams   and   abandoned   coal   mines.   Important   aspects   include   the   sealing   integrity   of   the   cap   rock   and   potential   changes   in   this  integrity,  owing  to  the  interaction  with  CO2.  In  this  study,  diffusive  transport  and  gas  sorption  experiments  on  one  well  characterized  shale  sample   (Muderong  Shale,  Australia)  and  different  clay  minerals  were  performed  to  obtain   information  on  the  sealing   integrity  and   the   CO2   storage   potential   of   these   materials.   All   measurements   were   performed   under   reservoir   conditions   relevant   for   CO2  storage  (T  =  45-­‐50  °C;  p  <  20  MPa).  Repeat  diffusion  experiments  on  one  shale  plug  yielded  increased  effective  diffusion  coefficients  and  a  decrease  in  the  concentration  of  the  bulk  CO2  volume  in  the  sample.  The  latter  is  believed  to  be  dissolved  in  formation  water,  sorbed   to  mineral   surfaces   or   involved   with   geochemical   reactions.   For   the  Muderong   Shale,   bulk   volume   CO2   concentrations   are  greater   within   the   experimental   time   frame   (222-­‐389   mol/m3),   when   compared   to   coal   and   cemented   sandstone   (3-­‐4   and   8-­‐10  mol/m3),  respectively.  This  high  CO2  storage  potential  could  not  fully  be  explained  by  CO2  dissolution  in  water  alone.  Thus,  gas  sorption  experiments  were  performed  on  crushed  shale  and  various  clay  minerals.  High  CO2  sorption  capacities   (e.g.  up   to  1  mmol/g   for   the  Muderong  Shale)  show  that  the  high  CO2  concentration  is  related  to  a  combination  of  CO2  dissolution  in  water  and  gas  sorption  on  clay  minerals.  Additionally,  changes  in  specific  surface  areas  before  and  after  the  sorption  experiments  and  variations  in  the  CO2  sorption  and  diffusion  behavior  due  to  repetitive  experiments  on  the  identical  sample  were  observed,  possibly  related  to  geochemical  alteration  of   the  Muderong  Shale  and   the   clay  minerals.   These  could  not  be  quantified  however  and   seemed   to  occur  only  at  high  pressures.  Results  obtained  in  this  study  provide  a  more  positive  view  on  the  sealing  integrity  of  intact  cap  rock  formations.  Carbon  dioxide  that  migrates  from  a  storage  reservoir  into  the  cap  rock  through  the  pore  network  will  be  immobilized  to  a  certain  extent,  hence  minimizing  (slow,  diffusion-­‐driven)  leakage  and  providing  additional  CO2  storage  potential.    

Brine  migration  resulting  from  CO2  injection  into  saline  aquifers  –  An  approach  to  risk  estimation  including  various  levels  of  uncertainty  International  Journal  of  Greenhouse  Gas  Control,  July  2012:  Lena  Walter  |  Philip  John  Binning  |  Sergey  Oladyshkin  |  Bernd  Flemisch  |  Holger  Class  

Comprehensive  risk  assessment  is  a  major  task  for  large-­‐scale  projects  such  as  geological  storage  of  CO2.  Basic  hazards  are  damage  to  the  integrity  of  caprocks,  leakage  of  CO2,  or  reduction  of  groundwater  quality  due  to  intrusion  of  fluids.  This  study  focuses  on  salinization  of  freshwater  aquifers  resulting  from  displaced  brine.  Quantifying  risk  on  the  basis  of  numerical  simulations  requires  consideration  of  different  kinds  of  uncertainties  and  this  study  considers  both,  scenario  uncertainty  and  statistical  uncertainty.  Addressing  scenario  uncertainty  involves  expert  opinion  on  relevant  geological  features  such  as  caprock  properties,  faults,  and  distinct  geological  layers.  This  is  considered  in  this  work  by  6  different  scenarios  having  different  characteristic  geological  features.  On  the  other  hand,  Monte  Carlo  methods  are  a  classical  approach  to  address  statistical  uncertainty.  This  is  not  feasible  for  large-­‐scale  3D  models  including  complex  physics.  Therefore,  we  apply  a  model  reduction  based  on  arbitrary  polynomial  chaos  expansion  combined  with  probabilistic  collocation  method.  It  is  shown  that,  dependent  on  data  availability,  both  types  of  uncertainty  can  be  equally  significant.    The  presented  study  provides  estimates  of  the  risk  of  brine  discharge  into  freshwater  aquifers  due  to  CO2  injection  into  geological  formations  and  resultant  salt  concentrations  in  the  overlying  drinking  water  aquifers.  

Page 111: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

102  

 

 

 

 

Page 112: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX  D:    EXAMPLE  PROJECTS  

Page 113: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

104  

EXAMPLE  PROJECTS  

Examples  of  Pre-­‐Combustion  Carbon  Capture  Projects  Name   Texas  Clean  Energy  Project  (TCEP)  IGCC  Plant  

Team   Summit  Power  Group,  Siemens,  Linde  Group,  R.W.  Beck,  Blue  Source,  and  the  Texas  Bureau  of  Economic  Geology  

Technology   • Siemens  gasification  and  power  block  technologies  • Linde  Rectisol  CO2  capture  technology  to  capture  >90%  of  the  CO₂  produced  

Estimated  Cost   Total  project  cost  estimated  at  $2.4  billion  for  a  400  MW  (gross)  plant  • DOE  incentives  =  $450  million  ($350  from  Clean  Coal  Initiative  &  $100  million  from  the  

American  Recovery  and  Reinvestment  Act)  

More  Information   In  addition  to  the  CO₂  captured,  TCEP  will  also  capture  99%  of  sulfur  dioxide,  90%  of  nitrogen  oxide,  and  99%  of  mercury.  More  information  available  at:  www.texascleanenergyproject.com  and  http://sequestration.mit.edu/tools/projects/tcep.html    

 Name   Kemper  County  IGCC  Plant  in  Mississippi  Team   Mississippi  Power,  Southern  Energy,  and  KBR  Technology   • Transport  Integrated  Gasification  (TRIG)  technology  developed  by  Southern  Company  and  

KBR  in  conjunction  with  the  DOE  • Selexol  CO2  capture  technology  to  capture  >65%  of  CO2  

Estimated  Cost   Total  project  cost  originally  estimated  at  $2.4  billion  for  a  582  MW  plant  (524  MW  coal  and  58  MW  natural  gas);  cost  estimate  was  raised  to  $2.8  billion  this  year  

• $680  million  in  grants  and  tax  incentives  received  to  date,  including  a  DOE  Clean  Coal  Power  Initiative  (CCPI)  Phase  2  award  for  $270  million  and  a  $133  million  Investment  Tax  Credit    

More  Information   Plant  uses  Mississippi  lignite  coal  and  natural  gas.    The  proposed  transport  gasifier  has  been  successfully  used  for  over  50  years  in  the  petroleum  refining  industry.    A  scale-­‐up  of  a  test  plant  is  already  in  operation  at  the  PSDF  in  Wilsonville,  Alabama.  The  plant  ran  into  legal  hurdles  in  March  2012,  but  is  currently  re-­‐approved.  More  information  available  at:  http://www.mississippipower.com/kemper/home.asp  and  http://sequestration.mit.edu/tools/projects/kemper.html    

 Name   Hydrogen  Energy  California  (HECA)  IGCC  Plant  Team   SCS  Energy  acquired  the  project  from  initial  owners  in  May  2011;  previous  project  team  included:  

BP,  Rio  Tinto,  Fluor,  URS,  and  GE  Technology   • Mitsubishi  Heavy  Industries’  oxygen-­‐blown  dry  feed  gasification  will  gasify  a  blend  of  coal  

and  petroleum  coke  to  produce  hydrogen-­‐rich  gas  • Linde  Rectisol  CO2  capture  technology    

Estimated  Cost   Total  project  cost:  $2.8  billion  for  a  300  MW  plant  • DOE  has  invested  $54  million  –  project  can  access  remaining  $354  million  under  HECA’s  

Clean  Coal  Power  Initiative  (CCPI-­‐3)  award    • $55  million  previously  invested  by  BP  and  Rio  Tinto  • California  Public  Utilities  Commission  also  awarded  $30  million    

More  Information   The  captured  CO₂  will  be  transported  for  use  in  enhanced  oil  recovery  (EOR)  in  the  adjacent  Elk  Hills  Oil  Field  owned  and  operated  by  Occidental  of  Elk  Hills,  Inc.  More  information  available  at:  http://www.hydrogenenergycalifornia.com/    and  http://sequestration.mit.edu/tools/projects/heca.html    

Page 114: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

105  

 

Name   GreenGen  IGCC  Plant    Team   China  Huaneng  Group  (the  largest  utility  in  China)  

 Technology   • Two-­‐stage  gasification  technology  that  has  been  developed  and  refined  by  China  Huaneng  

Group  through  HCERI  (formerly  TPRI)  Estimated  Cost   Unknown  

• At  least  $46  million  provided  by  the  government  and  $3.3  million  provided  by  the  industry  for  all  of  the  National  863  Program  projects  

More  Information   This  project  is  expected  to  deliver  250  MW  of  electricity  to  the  Tianjin  area  of  China.    On  April  17,  2012,  the  team  successfully  operated  the  gasifier  for  18  hours,  reaching  60%  of  the  rated  capacity  and  2.2MPa  reaction  pressure.    The  400  MW  GreenGen  demonstration  project  with  full  scale  CO₂  capture  has  an  estimated  start  date  of  2018.  More  information  available  at:  http://sequestration.mit.edu/tools/projects/greengen.html    

 Name   Sweeny,  Texas  IGCC  Plant  Team   ConocoPhillips  had  been  investigating  building  an  IGCC  plant  near  its  refinery  in  Sweeny,  Texas  Technology   • ConocoPhillips  E-­‐Gas  gasification  process  (estimated  >85%  CO₂  removal)  would  have  been  

used  with  Selexol  CO2  capture  technology  Estimated  Cost   N/A  More  Information   This  plant  would  have  been  a  680  MW  net  (Coal  +  Petcoke).    Technology  had  previously  been.    

demonstrated  at  the  Wabash  River  IGCC.    Denbury  Resources  would  have  used  captured  CO2  for  EOR.    Cancellation  due  to  financial/regulatory  uncertainty.  More  information  available  at:  http://sequestration.mit.edu/tools/projects/sweeny.html  and  http://www.osti.gov/bridge/servlets/purl/992131-­‐jTc6Iw/992131.pdf  

 Name   Taylorville  Energy  Center  IGCC  Plant  in  Taylorville,  Illinois    Team   Christian  County  Generation,  L.L.C.  (a  Joint  Venture  between  Tenaska  and  MDL  Holding  Company  of  

Louisville,  Kentucky);  Siemens  Technology   • Siemens  gasification  and  power  block  technologies  Estimated  Cost   $3.5  billion  for  a  716  MW  gross  (602  MW  net)  plant  More  Information   Project  incentives  not  approved  by  Illinois  Senate.    Unsure  if  project  will  move  forward.      

 Name   Good  Springs  IGCC  Team   EmberClear  (HCERI’s  Exclusive  North  American  &  Eastern  European  partner)    Technology   HCERI  technology  (formerly  TPRI),  PRENFLO  gasifier  /  boiler,  ECUST  Estimated  Cost   $800  million  More  Information   Plant  design  changed  from  IGCC  to  NGCC  in  May  2012  for  financial  reasons  

 

 

Page 115: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

106  

Examples  of  Post-­‐Combustion  Carbon  Capture  Projects  Amine-­‐based  Solvents  Name   W.A.  Parish  Plant  in  Houston,  Texas  Team   NRG  Energy,  Fluor,  Ramgen/Dresser-­‐Rand,  Sargent  &  Lundy,  University  of  Texas,  and  University  of  

Texas  Bureau  of  Economic  Geology  Technology   • Fluor  Econamine  FG  Plus  technology  

• Ramgen’s  supersonic  CO2  compression  system  Estimated  Cost   $334  million    

• DOE  share  is  $167  million  (50%  of  the  total  cost)  from  the  DOE  Clean  Coal  Project  Initiative  More  Information   The  captured  CO₂  from  the  60  MW  flue  gas  slipstream  will  be  used  for  EOR  in  the  Texas  Gulf.    

Project  to  begin  construction  in  2013,  commissioning  in  2014,  and  project  completion  2017.      More  information  at:  http://sequestration.mit.edu/tools/projects/wa_parish.html      

 

 Name   Plant  Barry  Power  Station  in  Mobile,  Alabama  Team   Southern  Energy,  Mitsubishi  Heavy  Industries  (MHI),  Southern  Company,  SCARB  (US  DOE’s  Southeast  

Regional  Carbon  Sequestration  Partnership),  and  Electric  Power  Research  Institute  (EPRI)  Technology   • Mitsubishi  Heavy  Industries’  KS-­‐1  solvent  Estimated  Cost   Southern  Energy  has  not  provided  a  cost  estimate    

• DOE  awarded  $295  million  for  an  11  year  CCS  contract  as  part  of  CCPI  • Southern  Company  received  $15  million  from  the  US  DOE    

More  Information   Plant  Barry  successfully  started  capturing  CO₂  in  June  2011.    Stage  1  was  25  MW  slipstream  of  the  2,567  MW  plant;  Stage  2  was  160  MW  –  TBD  if  phase  2  will  go  ahead.  Southern  Company’s  Plant  Barry  was  originally  granted  a  third  round  of  CPPI  funding,  but  with  DOE  money  came  a  hard  deadline  of  commitment  to  the  project.  Representatives  of  Southern  Company  state  that  due  to  the  nature  of  the  DOE  money  (coming  from  economic  stimulus)  they  did  not  have  enough  time  to  perform  due  diligence  in  terms  of  financial  ramifications  for  the  company.  Finally,  due  to  incomplete  negotiations  with  subcontractors,  Southern  Company  is  going  ahead  with  the  smaller  25  MW  pilot,  but  the  larger  160  MW  is  still  uncertain.  More  Information  at:  http://sequestration.mit.edu/tools/projects/plant_barry.html    

 

Name   Trailblazer  Energy  Center  in  Sweetwater,  Texas  Team   Tenaska,  Fluor,  Arch  Coal  Technology   • Supercritical  pulverized  coal  technology  with  Fluor  Econamine  FG  Plus  technology  to  

capture  85%-­‐90%  of  the  CO2  Estimated  Cost   $3.0  billion  for  a  765  MW  gross  (600  MW  net)  plant  More  Information   CO₂  produced  by  combustion  and  deliver  it  via  pipeline  to  Permian  Basin  oil  fields  for  use  in  EOR  and  

ultimately,  geologic  storage  More  information  available  at:  http://www.tenaskatrailblazer.com  and  http://sequestration.mit.edu/tools/projects/tenaska.html    

Name   Boundary  Dam  Power  Station  in  Saskatchewan,  Canada  Team   SaskPower,  Fluor,  Hitachi,  Babcock  &  Wilcox  Canada,  Neill  and  Gunter,  Air  Liquide,  and  SNC  Lavalin-­‐

Cansolv  Technology   • Hitachi’s  steam  turbine  technology    

• Cansolv’s  CO2  capture  technology  Estimated  Cost   $1.5  billion  

• Received  $240  million  from  the  federal  government  More  Information   This  project  was  resized  from  an  earlier  plan  to  build  a  300  MW  clean  coal  facility  near  Estevan  due  to  

escalating  costs.    Project  construction  is  scheduled  to  begin  in  2013.    This  will  be  a  retrofit  project.    More  information  at:  www.saskpower.com/sustainable_growth/projects/carbon_capture_storage.shtml  and  http://sequestration.mit.edu/tools/projects/boundary_dam.html  

Page 116: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

107  

Ammonia-­‐based  

Name   We  Energies  Pleasant  Prairie  Plant  in  Milwaukee,  WI  (Pilot)  Team   Alstom,  Electric  Power  Research  Institute  (EPRI),  and  We  Energies  Technology   Post-­‐combustion  with  chilled  ammonia  Estimated  Cost   Unknown  

• DOE’s  Office  of  Fossil  Energy  contributed  $7.2  million  • Alstom  and  AEP  contributed  $1.4  million  for  the  initial  phases  

More  Information   We  Energies’  chilled  ammonia  CO2  capture  pilot  in  Wisconsin,  USA  went  into  operation  in  2008.  The  pilot,  designed  to  capture  15,000  metric  tonnes  of  CO2  per  year,  has  already  logged  more  than  7,000  operating  hours  and  subjected  to  24  x  7  operations  to  prove  reliability  –  it  succeeded  and  captured  90%  of  all  CO2  in  continuous  operation  at  full  load.  More  information:  http://sequestration.mit.edu/tools/projects/pleasant_prairie.html  and  http://mydocs.epri.com/docs/CorporateDocuments/SectorPages/GEN/CarbonCaptureProject/doc/cc_report.pdf  

 Name   AEP’s  Mountaineer  Project  Team   American  Electric  Power,  Alstom,  RWE,  NETL,  and  Battelle  Memorial  Institute  Technology   Alstom’s  chilled  ammonia  process  Estimated  Cost   $100+  million  

• DOE’s  Office  of  Fossil  Energy  contributed  $7.2  million  • Alstom  &  AEP  contributed  $1.4  million  for  initial  phases  • Geologic  investigation  of  the  Mountaineer  site  will  cost  $4.2  million  

More  Information   After  a  successful  pilot,  AEP  cancelled  this  project  due  to  the  current  uncertainty  of  US  climate  policy  and  the  continued  weak  economy.    AEP  further  stated  that  if  political  and  economic  policy  climates  change  they  will  re-­‐consider  starting  Phase  2.  More  information:  http://sequestration.mit.edu/tools/projects/aep_alstom_mountaineer.html  and  http://www.aep.com/environmental/climatechange/carboncapture/  

 Name   Basin  Electric’s  Antelope  Valley  (ND)  Project  

Team   Basin  Electric,  HTC  Purenergy,  Burns  and  McDonnell,  and  Doosan  Babcock  Technology   Post-­‐combustion  with  ammonia.    Originally  Powerspan  ECO2,  then  changed  to  HTC  Purenergy  Estimated  Cost   $287  million  

• Awarded  a  US  $100  million  grant  from  DOE  • Awarded  $300  million  loan  from  USDA  

More  Information   In  December  2010  Basin  Electric  announced  that  the  cost  and  timing  of  a  proposed  CCS  project  at  Antelope  Valley  Station  have  caused  the  plant’s  directors  to  table  the  project  indefinitely.  More  information:  http://sequestration.mit.edu/tools/projects/antelope_valley.html      and  http://www.powerofcoal.com/?id=25&page=Antelope+Valley+Station    

 Name   Statoil  Mongstad,  The  European  CO₂  Test  Centre  Mongstad  (TCM)                                                                  

<Test  of  Alstom’s  Technology>  Team   The  European  CO₂  Test  Centre  Mongstad  owned  by  the  Norwegian  Government,  Statoil,  Sasol,  and  

Shell  Technology   Alstom’s  chilled  ammonia-­‐based  technology  Estimated  Cost   $1.02  billion;  increased  by  $462  million  in  October  2010  More  Information   The  goal  of  the  TCM  is  to  develop  the  most  cost  effective  way  to  capture  CO₂  with  post-­‐combustion  

technology;  they  will  do  this  by  testing  both  Aker  Clean  Carbon  and  Alstom’s  technology.  More  information  at:  http://www.statoil.com/en/OurOperations/TerminalsRefining/ProdFacilitiesMongstad/Pages/EnergiverkMongstad.aspx  and  http://sequestration.mit.edu/tools/projects/statoil_mongstad.html  

   

 

Page 117: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

108  

Examples  of  Carbon  Mineralization  Projects  Name   Big  Brown  Steam  Electric  Station  Team   Luminant,  Skyonic  Corporation  Technology   Skyonic  Skymine  Estimated  Cost    More  Information   Big  Brown  coal-­‐fueled  generation  plant  served  as  a  host  site  from  2006  to  2009.  

More  information:  http://luminant.com/pdf/fact/co2management-­‐03022011.pdf  

 Examples  of  Oxy-­‐Combustion  Capture  Projects  

 Name   Schwarze  Pumpe  Team   Air  Products  and  Vattenfall  AB  Technology   Air  Products  Oxyfuel  Combustion  System  Estimated  Cost   $96  million  for  30  MW  More  Information   The  Air  Products  oxyfuel  combustion  system  will  take  flue  gas  directly  off  the  30  MW  wall-­‐fired  

boiler,  purify,  and  compress  the  CO₂,  of  which  a  portion  will  ultimately  be  transported  for  sequestration.      Project  information  prior  to  Air  Products  joining  the  pilot:  http://sequestration.mit.edu/tools/projects/vattenfall_oxyfuel.html    

 Name   Doosan  Babcock  Clean  Combustion  Test  Facility  (Renfrew,  Scotland)  Team   Doosan  Babcock,  Air  Products,  DONG  Energy,  Drax  Power  Limited,  EDF  Energy  PLC,  EON  UK  PLC,  

Scottish  Power  Limited,  Vattenfall  AB,  and  UK  Coal  PLC  Technology   Air  Products  Oxyfuel  Combustion  System  Estimated  Cost   Approximately  $12.8  million;  $2.5  million  from  DECC  More  Information   40  MW  oxyfuel  burner  test  rig;  this  pilot  project  is  a  test  rig  adapted  specifically  for  testing  oxyfuel  

capture  technology  (on  pulverized  coal)  and  applicable  to  both  new  and  retrofit  supercritical  boilers,  completed  test  program  in  early  2011.  More  Information  at:  http://www.decc.gov.uk/en/content/cms/emissions/ccs/innovation/ccsprojects/ccsprojects.aspx  

 Name   Datang  Daqing  Oxy-­‐Fuel  Demo  Project  Team   Datang  Heilongjiang  Power  Generation  Co.  Ltd  with  Alstom  China  Technology   Oxyfuel  Combustion  Estimated  Cost    More  Information   Datang  and  Alstom  signed  a  feasibility  study  agreement  in  November  2011;  Project  is  expected  to  

start  operation  in  2015.  Approximately  1  million  tons  per  year  of  CO₂  are  expected  to  be  captured  at  the  plant;  with  the  CO₂  being  transported  by  pipeline  for  sequestration  in  a  deep  saline  formation  and  use  in  EOR.    More  Information  at:  http://www.globalccsinstitute.com/projects/27921  

Name   FutureGen  Alliance  Team   FutureGen  Industrial  Alliance  which  includes  Anglo  American  LLC,  BHP  Billiton,  Chian  Huaneng  

Group,  Consol  Energy,  E.ON,  Foundation  Coal,  Peabody  Energy,  PPL  Energy  Services  Group,  Rio  Tinto  Energy  America,  Xstrata  Coal,  Exelon,  Caterpillar  and  Air  Liquide  

Technology   Oxy-­‐Combustion  Estimated  Cost   $1.65  billion;  $1.1  billion  to  report  the  generating  unit  &  $550  million  for  the  CO₂  pipeline  and  

storage,  $1  billion  awarded  from  the  Recovery  Act  More  Information   FutureGen  will  equip  Ameren’s  200MW  Unit  4  in  Meredosia,  Illinois  with  advanced  oxy-­‐combustion  

technology.  Project  partners,  are  working  with  the  State  of  Illinois,  to  establish  a  regional  CO2  storage  site  in  Mattoon,  Illinois  and  a  175-­‐mile-­‐long  CO2  pipeline  network  from  Meredosia  to  Mattoon  that  will  transport  and  store  more  than  1  million  tons  of  captured  CO2  per  year.  More  Information  at:  http://sequestration.mit.edu/tools/projects/futuregen.html  and  http://www.futuregenalliance.org/  

Page 118: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX  E:    LISTING  OF  POWER  PLANT  CCS  PROJECTS  WORLDWIDE  

Page 119: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

110  

LISTING  OF  POWER  PLANT  CCS  PROJECTS  WORLDWIDE  (SOURCE:  MIT)    

Large-Scale Power Plant CCS Projects Worldwide

USA

Project Name Leader Feedstock Size MW Capture Process

CO2 Fate Start-up Location

TCEP Summit Power Coal 400 Pre EOR 2014 Texas

Trailblazer Tenaska Coal 600 Post EOR 2014 Texas

Kemper County Southern Coal 582 Pre EOR 2014 Mississippi

HECA SCS Petcoke 390 Pre EOR 2014 California

FutureGen FutureGen Alliance Coal 200 Oxy Saline 2015 Illinois

WA Parish NRG Energy Coal 60 Post EOR 2017 Texas

Sweeny Gasification ConocoPhillips Coal 680 Pre Saline/ EOR Cancelled Texas

AEP Mountaineer AEP Coal 235 Post Saline Cancelled West Virginia

Taylorville Tenaska Coal 602 Pre Saline Cancelled Illinois

Antelope Valley Basin Electric Coal 120 Post EOR Cancelled North Dakota

  Canada  

Project Name Leader Feedstock Size MW Capture Process

CO2 Fate Start-up Location

Boundary Dam SaskPower Coal 110 Post EOR 2014 Saskatchewan

Bow City BCPL Coal 1000 Post EOR 2017 Alberta

Project Pioneer TransAlta Coal 450 Post Saline/ EOR Cancelled Alberta

Belle Plaine TransCanada Petcoke 500 Pre Undecided Undecided Saskatchewan

  European Union  

Project Name Leader Feedstock Size MW Capture Process

CO2 Fate Start-up Location

Longannet Scottish Power Coal 300 Post Saline Cancelled UK

Belchatow PGE Coal 250-858 Post Saline 2015 Poland

Ferrybridge SSE Coal 500 Post Depl. Oil 2015 UK

ROAD E.ON Coal 250 Post Saline 2015 Netherlands

Compostilla ENDESA Coal 323 Oxy Saline 2015 Spain

Don Valley 2Co Coal 650 Pre EOR 2015 UK

Magnum Nuon Various 1200 Pre EOR/EGR 2020 Netherlands

Getica Turceni Energy Coal 330 Post Saline 2015 Germany

Porto Tolle ENEL Coal 660 Post Saline On hold Italy

Page 120: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

111  

Goldenbergwerk RWE Coal 450 Pre Saline On hold Germany

Janschwalde Vattenfall Coal 250 Oxy Saline Cancelled Germany

Norway

Project Name Leader Feedstock Size MW Capture Process

CO2 Fate Start-up Location

Mongstad Statoil Gas 350 Post Saline 2012 Norway

Kårstø Naturkraft Gas 420 Post Saline Delayed Norway

  Rest of the World  

Project Name Leader Feedstock Size MW Capture Process

CO2 Fate Start-up Location

Daqing Alstom & Datang Coal 350 &1000 Oxy EOR 2015 China

GreenGen GreenGen Coal 250/400 Pre Saline 2018 China

Pilot CCS Projects

Project Name Leader Feedstock Size MW Capture Process

CO2 Fate Start-up Location

Schwarze Pumpe Vattenfall Coal 30 Oxy Depl. Gas 2008 Germany

ECO2 Berger Powerspan Coal 1 Post Vented 2008 OH, USA

Pleasant Prairie Alstom Coal 5 Post Vented 2008 WI, USA

AEP Mountaineer AEP Coal 30 Post Saline 2009 WV, USA

Shidongkou Huaneng Coal 0.1MT/Yr Post Comm. use 2009 China

Lacq Total Oil 35 Oxy Depl. Gas 2010 France

Puertollano ELCOGAS Coal 14 Pre Recycled 2010 Spain

Brindisi Enel &Eni Coal 48 Post EOR 2011 Italy

Buggenum Vattenfall Coal 20 Pre Vented 2011 Netherlands

Callide-A Oxy Fuel CS Energy Coal 30 Oxy Saline 2011 Australia

Plant Barry Southern Energy Coal 25 Post EOR 2011 AL, USA

Ferrybridge SSE Coal 5 Post Depl.Oil 2012 UK

Mongstad Statoil Gas 0.1MT/Yr Post Saline 2012 Norway

Big Bend Station Siemens Coal 1 Post Vented 2013 FL, USA

Polk Tampa Electric Coal 0.3MT/Yr Post Saline 2013 FL, USA

Belchatow PGE Coal 250 Post Saline 2014 Poland

Karlshamn E.ON Oil 5 Post Vented 2014 Sweden

Compostilla ENDESA Coal 30 Oxy Saline 2015 Spain

Kimberlina Clean Energy Systems Coal 50 Oxy Saline On Hold CA, USA

Source:  http://sequestration.mit.edu/tools/projects/index_capture.html  

Page 121: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

112  

 

Page 122: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX  F:    ADDITIONAL  SUPPORTING  INFORMATION  

Page 123: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

114  

Additional  Supporting  Information  The  following  studies  and  analyses  provide  instructive  cost  data  on  carbon  capture/CCS  projects.    Alstom  CCS  Study  A  study  released  in  June  2011  by  Alstom  Power,  based  on  experience  from  their  13  pilot  and  demonstration  CCS  projects  and  validated  by  independent  experts,  concluded  that  the  cost  of  generating  electricity  at  commercial  scale  in  2015  will  be  below  8.5  eurocents/kWh  when  burning  coal  (~10.6  cents/kWh  at  today’s  exchange  rates)  and  below  6.5  eurocents/kWh  when  burning  gas  (~8.1  cents/kWh  at  today’s  exchange  rates).    Alstom’s  demonstration  pilots  proved  that  the  full  chain  of  capture  and  storage  technologies  can  work  to  remove  carbon  (captured  90%  of  CO2)  and  store  it  safely  and  reliably.    More  information  available  at:  http://www.alstom.com/press-­‐centre/2011/6/alstom-­‐power-­‐study-­‐demonstrates-­‐carbon-­‐capture-­‐storage-­‐ccs-­‐efficient-­‐cost-­‐competitive.    DOE/NETL  Analyses  In  the  DOE/NETL’s  December  2010  “Carbon  Dioxide  Capture  and  Storage  RD&D  Roadmap”,  DOE/NETL  analyses  indicated  that  for  a  nominal  550-­‐MW  net  output  power  plant,  the  addition  of  CO2  capture  technology  increased  the  capital  cost  of  a  new  Integrated  Gasification  Combined  Cycle  (IGCC)  facility  by  $400  million  and  resulted  in  an  energy  penalty  of  20%.  For  post-­‐combustion  and  oxy-­‐combustion  capture,  the  increase  in  capital  costs  was  $900  million  and  $700  million  respectively,  and  the  energy  penalties  would  be  30%  and  25%.    For  a  Natural  Gas  Combined  Cycle  (NGCC)  plant,  the  capital  cost  would  increase  by  $340  million  and  the  energy  penalty  would  be  15%  (DOE,  2010).      As  shown  below,  the  reported  Levelized  Cost  of  Electricity  (LCOE)  for  CCS  plants  ranged  from  $116/MWh  to  $151/MWh,  depending  upon  the  type  of  facility  and  whether  the  application  was  for  a  new  plant  or  a  retrofit  of  an  existing  plant.    This  compared  to  an  LCOE  of  $85/MWh  for  a  new  pulverized  coal  plant  and  $27/MWh  for  the  existing  fleet  of  power  plants.    

 FIGURE  F-­‐1.  Estimated  Levelized  Cost  of  Energy  for  Various  Types  of  Power  Plants  

SOURCE:  DOE/NETL,  2010  

Page 124: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

115  

2008  DOE  REPORT  –  COST  BASELINES  An  April  2008  DOE  publication  summarized  detailed  results  from  two  prior  NETL  studies:  1)  “The  Cost  and  Performance  Baseline  for  Fossil  Energy  Power  Plants”  and  2)  “Pulverized  Coal  Oxyfuel  Combustion  Power  Plants.”    The  instructive  findings  have  been  reprinted  below  for  reference.    The  full  report  can  be  found  at  http://www.netl.doe.gov/publications/factsheets/program/Prog065.pdf.  

 FIGURE  F-­‐2.  Estimates  of  the  Cost  of  CO2  Capture  from  Coal-­‐Fired  Power  Plants  and  Sequestration  in  Geologic  Formations  

SOURCE:  DOE/NETL,  2008    

A  sensitivity  study  on  natural  gas  prices  referenced  in  the  report  revealed  that  the  cost  of  electricity  (COE)  for  an  Integrated  Gasification  Combined  Cycle  (IGCC)  plant  was  equal  to  that  of  a  Natural  Gas  Combined  Cycle  (NGCC)  plant  at  $7.73/MMBtu,  and  for  pulverized  coal,  the  COE  was  equivalent  to  NGCC  at  a  gas  price  of  $8.87/MMBtu.  In  terms  of  capacity  factor,  when  the  NGCC  drops  below  60  percent,  such  as  in  a  peaking  application,  the  resulting  COE  is  higher  than  that  of  an  IGCC  operating  as  baseload  at  an  80  percent  capacity  factor.

Page 125: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

116  

 2007/2008  DOE  REPORT  –  SCENARIOS  Another  DOE  report  (Ciferno,  DOE/NETL-­‐2007/1301)  examined,  in  great  detail,  the  question  of  whether  it  is  more  cost  effective  to  design  a  new  plant  in  anticipation  of  future  restrictions  on  carbon  emissions  so  that  the  plant  is  CO2  “capture-­‐ready”  or  to  proceed  with  no  anticipation  of  a  future  retrofit.    The  report  created  eight  different  scenarios:  four  for  an  Integrated  Gasification  Combined  Cycle  (IGCC)  plant  and  four  for  a  pulverized  coal  (PC)  plant,  ranging  from  business  as  usual  (BAU),  retrofit,  capture-­‐ready,  to  capture-­‐ready  retrofit.        The  IGCC  scenarios  used  a  plant  design  with  ConocoPhillips  “E-­‐Gas”  gasification  technology  and  a  carbon  dioxide  recovery  system  that  would  remove  90%  of  the  CO2  via  a  water-­‐gas  shift  reactor,  CO2  absorption  system,  solvent  stripping/reclaiming  system,  and  CO2  compression/purification  system.    Specifically,  the  Selexol  two-­‐stage  acid  gas  removal  process  was  selected.    The  pulverized  coal  cases  utilized  a  carbon  dioxide  recovery  system  to  remove  90%  of  the  CO2  in  the  flue  gas  using  an  amine-­‐based  process  (Fluor  Econamine  FG+).        The  “Total  Plant  Cost”  for  each  case  from  that  report  is  shown  in  the  following  figure.    It  indicates  that  the  total  cost  for  the  retrofitted  pulverized  coal  plants  was  substantially  higher  than  the  retrofitted  integrated  gasification  combined  cycle  plants  on  an  unit  basis  ($/kW).    

 FIGURE  F-­‐3.  Total  Plant  Costs  for  Various  IGCC  and  PC  Scenarios  

SOURCE:  DOE/NETL,  2008  

Page 126: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

117  

 The  following  figure,  also  from  that  report,  shows  the  differences  between  the  levelized  cost  of  energy  (LCOE)  for  all  cases.    Consistent  with  reported  results  elsewhere,  the  LCOE  for  a  conventional  pulverized  coal  power  plant  without  CO2  capture  was  the  lowest  cost  option.  However,  upon  retrofitting  for  CO2  capture,  the  cost  of  electricity  for  pulverized  coal  power  plants  was  estimated  to  be  higher  than  IGCC.    

 FIGURE  F-­‐4.  Calculated  LCOE  for  Various  IGCC  and  PC  Scenarios    

SOURCE:  DOE/NETL,  2008    

The  complete  report  is  available  at:  http://www.netl.doe.gov/technologies/carbon_seq/refshelf/analysis/pubs/CO2%20CaptureReadyCoalPowerPlants%20Final.pdf    Front-­‐End  Engineering  Design  Study  for  Tenaska  Trailblazer  The  Front-­‐End  Engineering  Design  (FEED)  Study  for  Tenaska’s  Trailblazer  plant  is  also  publically  available  and  contains  some  very  useful  cost  data.    One  of  the  excerpts:    

“One  of  the  well-­‐known  challenges  with  CCS  is  the  cost  –  primarily  in  terms  of  the  capital  cost  and  energy  consumption.  Under  current  market  conditions,  power  plants  with  CCS  cannot  compete  with  those  without  CCS.  The  strategic  location  of  the  Project  provides  the  ability  to  sell  CO2  into  the  mature  Permian  Basin  EOR  market.  This  defrays  some  of  the  costs  of  CCS.  However,  the  current  CO2  market  prices  are  insufficient  to  cover   the   entire   costs   of   CO2   capture.   In   addition,   the   CO2   prices   vary   as   a   function   of   oil   prices,  which  introduces  uncertainty  in  this  revenue  stream  over  the  life  of  the  Project.”  

 More   available   at:   http://cdn.globalccsinstitute.com/sites/default/files/publications/32321/traiblazer-­‐front-­‐end-­‐engineering-­‐and-­‐design-­‐study-­‐report-­‐final.pdf.  

Page 127: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

   

118  

Summary  of  Design  Studies  from  Global  CCS  Institute  2011  Report  The  Global  CCS  Institute’s  2011  Global  Status  of  CCS  report  included  the  following  useful  table  that  

summarized  comparison  data  from  “recent”  design  studies:    

TABLE  F-­‐1.  Summary  of  Results  from  Recent  CCS  Studies  

 SOURCE:  Global  CCS  Institute,  2011    

The  complete  report  is  available  at:  http://www.globalccsinstitute.com/publications/global-­‐status-­‐ccs-­‐2011.  

Page 128: THE INTEGRATED CARBON SOLUTIONS INDEX LIBRARY …texasenergy.utsa.edu/images/uploads/CarbonReportJuly2012-DRAFT.pdf · the integrated carbon solutions index library and technology

One UTSA Circle - San Antonio, TX 78249 - 210-458-7970