the hotqcd equation of state

25
The HotQCD Equation of State Implications for Hydrodynamic Models 03-APR-2009 1 R. Soltz, LLNL-PRES-xxxxxx for T C see presentation by P. Petreczky or poster by M. Cheng arxiv.org:090 3.4379 (backup slides)

Upload: grover

Post on 22-Jan-2016

31 views

Category:

Documents


0 download

DESCRIPTION

The HotQCD Equation of State. Implications for Hydrodynamic Models. for T C see presentation by P. Petreczky or poster by M. Cheng. arxiv.org:0903.4379. (backup slides). Evaluating Z (partition) on the lattice. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The HotQCD Equation of State

The HotQCD Equation of State

Implications for

Hydrodynamic Models

03-APR-2009 1R. Soltz, LLNL-PRES-xxxxxx

for TC see presentation by P. Petreczky or poster by M. Cheng arxiv.org:0903.4379

(backup slides)

Page 2: The HotQCD Equation of State

Evaluating Z(partition) on the lattice

“... consider a continuum action, substitute finite-difference approximations for derivatives, and replace the space-time integral by a sum over the lattice sites”

03-APR-2009 2R. Soltz, LLNL-PRES-xxxxxx

K. Wilson, Phys. Rev. D, 10:2445, 1974...see also M. Creutz, Phys. Rev. D, 21:2308, 1980

gluons fermions

following slides draw on these texts:

Page 3: The HotQCD Equation of State

gluon links

R. Soltz, LLNL-PRES-xxxxxx 3

Uμ (n) = e igaAμ (n )

U−μ (n + μ + ν ) = eiga −Aμ (n )−a∂ν Aμ (n )+O(a 2 )[ ] 1st Taylor series

2nd Taylor series

=e iga 2 (∂ μ Aν −∂ν Aμ )−ig Aμ ,Aν[ ] = e ia 2gFμν

=1−a4g2

2Fμν Fμν + O(a2)( )

S = Tr Fμν Fμν[ ]n,μ <ν

∑ + const.

a= 0 ⏐ → ⏐ 1

4d3x Tr Fμν Fμν[ ]

0

1/T

∫ = SgluonV

fermion

field

fermion

field03-APR-2009

Page 4: The HotQCD Equation of State

trouble with (discrete) fermions

• 1D Dirac Eq. has• degenerate fermion states

03-APR-2009 4R. Soltz, LLNL-PRES-xxxxxx

E = ±sin(ka)

a

∂ψ∂t

= −i

2aγ 5 ψ (n +1) −ψ (n −1)[ ]

Wilson action lifts degenerate states, breaks chiral symmetry, not widely used in thermodynamics

2d n f( )

• preserves a discrete chiral symmetry• additional terms improve cutoff effects

p4 [O(a2)+fat link smearing]

asqtad [O(a2)+tadpole coefficients]

B-W [stout link smearing]

• all have Symanzik gauge improvements O(a2)

• all should converge as a0

M. Cheng, et al, PRD, 77:014511, 2008

C. Bernard et al, PRD, 75:094505, 2007

Y. Aoki, et al, PLB643:46, 2006

continuum dispersio

n

naivelattice fermion

improved staggered

Wilson

Staggering Dirac spinor states along4-corners thins degeneracy by 4

Page 5: The HotQCD Equation of State

Aside to junior experimentalists

• Where to work?

• Because they have superb physics programs and ...– your RHIC colleagues will assume you’re at CERN– your LHC colleagues will assume you’re at BNL– while you submit LQCD EoS jobs to your local BG/L

03-APR-2009 5

LHC

orand

not a

nym

ore!

R. Soltz, LLNL-PRES-xxxxxx

Page 6: The HotQCD Equation of State

Data Sets (≈1/4 shown below)

• > 100M cpu-hrs on LLNL,NYBlue, SDSC BG/L systems– as outlined in ~40 TF-yr proposal to DOE/NNSA

03-APR-2009 6R. Soltz, LLNL-PRES-xxxxxx

• table for 23 p4 Beta runs

• also 17 astad Beta runs

• and an equal number of T=0 runs for both

Δ X = X0

− Xτ

notation used to express T=0 subtraction on next slide

Page 7: The HotQCD Equation of State

Analysis

• Apply thermalization cut, remove autocorrelations• Construct Trace Anomaly (deviation from massless ideal gas)

• Temperature Scale Setting

7

ε−3p

T 4=

ΘFμμ (T)

T 4+

ΘGμμ (T)

T 4= Rβ (β )Nτ

4Δ s

ΘFμμ (T)

T 4= −Rβ RmNτ

4 2 ˆ m lΔ ψψl+ ˆ m sΔ ψψ

s( )

ΘGμμ (T)

T 4= Rβ Nτ

4 Δ sG − Ru 6 ′ β rtΔ R + 4 ′ β pgΔ C +1

4βΔ Tr (2Dl

−1 + Ds−1)

dM

du0

⎝ ⎜

⎠ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎝ ⎜ ⎜

⎠ ⎟ ⎟

asqtad terms

Rβ (β ) = Tdβ

dT= −a

da

r2dV

q q(r)

dr

⎝ ⎜

⎠ ⎟r= 0.469(7)

=1.65

heavy quarkpotentialϒ(2S-1S) M. Cheng, et al, PRD,

77:014511, 2008A. Gray, et al, PRD, 72:094507, 2005

(plaquette histories)

Lines of Constant Physics

ml = 0.1ms(LCP)

03-APR-2009 R. Soltz, LLNL-PRES-xxxxxx

Page 8: The HotQCD Equation of State

Θ fermionic/gluonic contributions

• trace anomaly 85% gluonic (+ fermion interactions)• larger cutoff effects for p4 fermions from LCP Rm

03-APR-2009 R. Soltz, LLNL-PRES-xxxxxx 8

Page 9: The HotQCD Equation of State

Θμμ interpolation and continuum

• quadratic spline interpolations (needed to integrate pressure) • 5 MeV shift Nτ=68 shift by establishes continuum expectation• similar shift expected from approach to physical quark mass

03-APR-2009 R. Soltz, LLNL-PRES-xxxxxx 9

p(T)

T 4=

p(T0)

T04 + d ′ T

Θμμ ( ′ T )′ T 5

T0

T

Page 10: The HotQCD Equation of State

Θμμ low/high-T contact HRG/SB

• T<180 MeV, Nτ=8 closer to, but below HRG

• T>250,300 MeV fit to – perturbative term g4 not constrained; (d4)¼=175-225 MeV

03-APR-2009 R. Soltz, LLNL-PRES-xxxxxx 10

ε−3p

T 4=

3

4b0g

4 +d2

T 2+

d4

T 4

HRG mres<1.5, 2.5 (GeV)

Page 11: The HotQCD Equation of State

Energy, Pressure, Entropy

• systematic error bars from interpolation p(T0=0)=0 MeV

• shaded offset uses p(T0=100 MeV)=HRG03-APR-2009 R. Soltz, LLNL-PRES-xxxxxx 11€

p(T)

T 4=

p(T0)

T04 + d ′ T

Θμμ ( ′ T )′ T 5

T0

T

Page 12: The HotQCD Equation of State

Θμμreprise : Hydro Parametrization

• Three fits each action (p4, asqtad)1. lattice data (solid)2. lattice data and HRG from 100-130 MeV (double-dot)3. lattice-10 MeV shift to approx. chiral/continuum shifts (dash)

12

1−1

1+ e(T −c1 ) / c2[ ]2

⎜ ⎜

⎟ ⎟×

d2

T 2+

d4

T 4

⎝ ⎜

⎠ ⎟

• physically constrains high-T region• reasonably describes peak, low-T• single function avoids fluctuations• few parameters (easy to transfer)

see also poster by P. Huovinen 03-APR-2009 R. Soltz, LLNL-PRES-xxxxxx

Page 13: The HotQCD Equation of State

Energy, Pressure revisited

• new fits fall within previous sys. errors• all curves below SB limit (inc. HRG merger)

13

trace anomaly numerically integrated starting 50 MeV

03-APR-2009 R. Soltz, LLNL-PRES-xxxxxx

Page 14: The HotQCD Equation of State

Speed of Sound in Hydro

1. ready for hydro: smooth approx. to HotQCD EoS w/HRG2. able to propagate systematic variation through models

03-APR-2009 R. Soltz, LLNL-PRES-xxxxxx 14

Page 15: The HotQCD Equation of State

Conclusions

• No one should use 1st order bag EoS, unless μ>μc

• HotQCD EoS parametrization now available to hydro community to be used and improved

03-APR-2009 R. Soltz, LLNL-PRES-xxxxxx 15

First OrderPhase

Transition

Page 16: The HotQCD Equation of State

Results with VH2 (viscous 2D+1)

03-APR-2009 R. Soltz, LLNL-PRES-xxxxxx 16

• Beginning to propagate EOS thru Hydro• Preparing to add cascade afterburner->spectra/flow/HBT

M. Cheng

M. Luzum and P. Romatschke, PRC, 78:034915, 2008

Page 17: The HotQCD Equation of State

HotQCD Collaboration

03-APR-2009 R. Soltz, LLNL-PRES-xxxxxx 17

with help from S. Pratt, P. Huovinen, D. Molnar, S. Bass, P. Romatschke, A. Glenn, J. Newby

Page 18: The HotQCD Equation of State

Evaluating Polyakov loop : the Movie

03-APR-2009 18R. Soltz, LLNL-PRES-xxxxxx

P. Vranas (now at LLNL) and IBM colleagues

Page 19: The HotQCD Equation of State

M. Cheng QM2009 Poster

03-APR-2009 19R. Soltz, LLNL-PRES-xxxxxx

Page 20: The HotQCD Equation of State

Backup slides

• Trace Anomaly (no fit)

03-APR-2009 R. Soltz, LLNL-PRES-xxxxxx 20

Page 21: The HotQCD Equation of State

Transition Temperature

• Deconfinement & Chiral – refer to poster

03-APR-2009 21R. Soltz, LLNL-PRES-xxxxxx

Δ l,s(T) =ψ ψ

l ,T−

ml

ms

ψ ψs,T

ψ ψl ,0

−ml

ms

ψ ψs,0

χ(l ,s)

T 2=

1

VT

∂ 2 log(Z)

∂μ(l ,s)2

Page 22: The HotQCD Equation of State

Scale Setting (more detail, p4)

03-APR-2009 R. Soltz, LLNL-PRES-xxxxxx 22

M. Cheng, et al, PRD, 77:014511, 2008

Page 23: The HotQCD Equation of State

Cutoff dependence

03-APR-2009 R. Soltz, LLNL-PRES-xxxxxx 23

F. Karsch, Lect. Notes., 583:209, 2001

Page 24: The HotQCD Equation of State

Strange Quark No. Susceptibility

03-APR-2009 R. Soltz, LLNL-PRES-xxxxxx 24

Y. Aoki, et al, arxiv:0903.4155, 2009

χ(l ,s)

T 2=

1

VT

∂ 2 log(Z)

∂μ(l ,s)2

A. Bazavov, et al, arxiv.org:0903.4379, 2009

Page 25: The HotQCD Equation of State

trouble with (discrete) fermions

• 1D Dirac Eq. has• degenerate fermion states

03-APR-2009 25R. Soltz, LLNL-PRES-xxxxxx

E = ±sin(ka)

a

∂ψ∂t

= −i

2aγ 5 ψ (n +1) −ψ (n −1)[ ]

lifts degenerate states, breaks chiral symmetry, not widely used in thermodynamics

• preserves a discrete chiral symmetry• additional terms improve cutoff effects• improved staggered fermion actions:

p4 [O(a2)+fat link smearing]

asqtad [O(a2)+tadpole coefficients]

B-W [stout link smearing]

• all have Symanzik gauge improvements O(a2)

• all should converge as a0

DWF actions exponentially bind chiral states to opposing walls in 5th dimensionpreserve chiral symmetry at cpu cost

2d n f( )

M. Cheng, et al, PRD, 77:014511, 2008

C. Bernard et al, PRD, 75:094505, 2007

Y. Aoki, et al, PLB643:46, 2006

P. Chen, et al, PRD, 64:014503, 2001